Adding Closure Support to Chalice

Prateek Agarwal

Master’s thesis report

Chair of Programming Methodology
Department of Computer Science
ETH, Zurich

http://www.pm.inf.ethz.ch
November 2010

Supervisors:
Dr. Yannis Kassios
Prof. Dr. Peter Mueller

Contents

1 Introduction 5
1.1 Motivation S 5
1.2 Adding Closure support to Chalice 5
1.3 OVerview e e e e e e e e e e 5

2 Background in Chalice 6
2.1 Chalice Verification Methodology 6
2.2 Permissions e e e e e e e e e e e e e e e e 6
2.3 Threads« . . e e e e e e e 7
2.4 Functions . . . o . o e e e e e e e e e e 8
2.5 Predicates e e e e e e e e e 9
2.6 Program State e 10

3 Challenges in adding closure support 11
3.1 Sample Program L 11
3.2 Local state abstraction L. e e e 12
3.3 Statically Unknown Specificationo oL 12
3.4 Shared state between closureso e e e e e e e 13

4 New Syntax 14
4.1 Closure Creation & TYpPes« « o o i v i i i i e e 14
4.2 Closure Specification L 14
4.3 Closures as method arguments L 15
4.4 Closure FUNCLIONS o v 0 o e e e e e e e e e e e e e e e e 16
4.5 Closure Predicates 0 e e e e e e e e e e e 17

5 Examples 20

6 Technical Treatment 23
6.1 Specification Functions 23
6.2 Additive Translation L e e e e e 23

6.2.1 Additive Heap Translation 24
6.2.2 Additive Mask Translation L e 24
6.3 Entails Operator 25
6.4 Containment e e e e e e e e e 25
6.5 Closure as Return Parameters and Method Arguments 26
6.6 Closure Creation o 0 i i e e e e e e e 26
6.7 Closure Call & Concurrent Invocation e 26
6.8 Closure FUnctionis 0 v 0 e e e e e e e 27
6.8.1 Creation 0 v e e e e e e 27

6.8.2 Containment
6.8.3 Evaluation
6.9 Closure Predicates

7 Conclusions

Listings

2.1
22
2.3
2.4
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
6.1
6.2

Example with read and write 8ccess oL oo o e e 7
Parallel Threads in Chalice o . o o 0 e e e e e 7
Chalice functions for abstraction L Lo 8
ProdiCateS . . v v v e e e e e e e e e e e e e e e e 9
Closure Factory returning closures which share state variablecount 11
ClOSUTE CTERLION -« + « v e o e e e e e e e e e e e e e e e e e 14
Closure specification syntax L oo c e e e e 14
Example of closure specification Lo oo oo 15
Example of closure function specificationo Lo 15
Ignore variable LT 15
Closure as method argument o 0 b e e 16
Closure TUNCEON« « o o e e e e e e e e e e e e e e e e e e 17
CloSUre PrediCates« v« v e e e e e e e e e e e e 18
Closure Predicate for parallel invocation o oo 19
Closures for callback« . o L o e e 20
COM © o o o e e e e e e e e 21
Parallel invocation of CloSUre o 0 0 v e e e e e e e e e e e e e e e 27
Closure predicates to abstract access local state Lo oo 28

List of Tables

6.1 List of memory locations and their permissions inside a Chalice expression
6.2 Additive Mask Translation L. P

4

Abstract

Proving correctness of programs is a challenge in computer science research. The problem gets harder if the
programming language contains closure, an important feature in object oriented languages. The goal of this
thesis is to come up with a methodology to verify concurrent programs in the presence of closures.

Chalice is a language and program verifier for modular verification of programs. We have chosen to
extend Chalice because it supports concurrency with object orientation but it has no support for closures.
To achieve our goal we identify significant challenges in adding closure support to Chalice. We propose
new syntax coustructs to use closures in the language and present methodology for verification of newly
introduced syntax elements.

We have extended Chalice program verifier and provided a test suite of Chalice programs to cover all the
aspects of the extended language. :

Chapter 1

Introduction

1.1 Motivation

In programming methodology research, special languages are created with minimal features to focus on core
concepts of the language in isolation. These languages contribute as proof of concept to demonstrate the
efficacy of a certain programming methodology. However to realize their potential the languages have to be
developed on par with languages used in industry such as C#, Java etc. One of the biggest hurdle in this
path is for different language features to work together.

1.2 Adding Closure support to Chalice

Chalice[3][4] is an object based programming language. It provides methodology to formally verify that pro-
grams are free from concurrency issues such as deadlocks and race conditions. Chalice has minimal support
for object oriented features. One such feature heavily used in QO languages is closure. Closures are methods
which can capture their lexical environment. Using closures one can write concise programs and utilize newer
programming patterns. With their introduction in C# [9] and Scala [10] and dynamic languages such as
Python [11] and Ruby [12] elosures have gained popularity in main stream industrial usage. Recently a first
order formalism has been developed for verification of sequential programs with closures [1].

The goal of this thesis is to use ideas from [1] to add closure support in Chalice. The Chalice imple-
mentation has been extended with new features to support verification of programs with closures. The new
methodology uses specification functions and abstract functions as described by Kassios and Mueller[1] with
modifications.

1.3 Overview

This document presents the syntax and framework extension to the Chalice language. In Chapter 2 relevant
features of existing lahguage are discussed in brief. For details of the programming language and underlying
verification methodology one should refer to [3] and [4]. Chapter 3 describes the major challenges in adding
closure support to existing Chalice framework. Chapter 4 describes the newly introduced syntax elements to
solve the challenges. Detailed examples are presented in Chapter 5. Chapter 6 describes the the methodology
used for verification and shows formal encoding for proof obligations. Chapter 7 presents the conclusion of
the work.

Chapter 2

Background in Chalice

This chapter describes features of syntax and verification framework of Chalice which are relevant to un-
derstand the extension provided later in the document. The Chalice program verifier works by translating
Chalice programs into equivalent BoogiePL programs. BoogiePL is an intermediate language intended for
program analysis and verification. BoogiePL programs can be verified automatically using the Boogie pro-
gram verifier [7] and an SMT solver like Z3 [8] without any human assistance.

2.1 Chalice Verification Methodology

Chalice uses modular verification by using explicit method specifications. The method caller is concerned
only with the method contract visible to it. A method contract includes the types of formal arguments,
returned values and method specifications. The obligations for a method call is to establish method’s pre-
conditions before the method call. Its postconditions can be safely assumed after the method call terminates.

Methods in their specifications indicate access permissions required and ensured by them on shared state
of program they use. Each potentially shared memory location is associated with access permissions to read
or write.

2.2 Permissions

Chalice uses Fractional Permissions proposed by Boyland [6]. A permission is a fraction ranging between 0
and 100% inclusive. No permission to read or write is expressed as 0% permission and full permission to
read as well as write by 100%. Any fraction in between 0 and 100% (exclusive) implies only read access.
The syntax: acc{o.f,m) is used to indicate m% access of the field f of object o and rd(o.f) implies a positive,
infinitesimally small permission € and rd(o.f,n) means n units of e. acc(o.f) is equivalent of acc(o.f,100) and
rd{o.f} is equivalent to rd(o.f,1)

At the point of object creation the creating thread is given full access of the object and all its fields. In
Listing 2.1. When a method is called, permissions are transferred to the called method based on the called
method’s precondition. After the method terminates it gives back the permissions present in its postcon-
ditions. Since the method upCount updates the field count, it has to specify full access in its precondition
whereas the method hasReached requires only a read access to compare the field value with the input pa-
rameter. Both methods release the acquired access permissions in their post conditions. If upCount had not
declared acc(count) in its postcondition, the call c.hasReached(1) would not be successful.

st}

class Counter {
var count:int

method upCount()
requires acc(count)
ensures acc(count) {
count := count + 1

}

method hasReached(num:int) returns (b:bool)
requires rd(count)
ensures rd(count) {
b := (count == num)

}

method main() {
var ¢ := new Counter
call ¢.upCount()
var b := call c¢.hasReached(1)
assert (b)

}

Listing 2.1: Example with read and write access

2.3 Threads

Threads in Chalice are created by the fork statement using a method, indicating parallel execution of the
method in a new thread. Using the join statement a thread can wait for another thread to complete and get
the result(s) of the method.

fork tokl := c.upCount({) // invoke thread I

join tokl // wait for thread 1 to terminate
fork tok?2 := c.hasReached(1) // invoke thread 2
Jjoin b = tok2 // wait for thread 2 to terminate

Listing 2.2: Parallel Threads in Chalice

Listing 2.2 shows an alternative to invocation of the methods upCount and hasReached shown in Listing
2.1. Token variable tok! is used to identify the instance of newly created thread. A token can be used by the
creating thread to wait upon the invoked thread’s termination by using join statement. To fork a thread, the
preconditions specified by the method should be satisfied and all access permissions in the preconditions are
taken away. After the invoked thread terminates, its result can be obtained by the caller in join statement
and method’s postconditions are ensured to be satisfied at this point.

A parallel invocation of methods upCount and hasReached should fail because they access the same
shared state that is the field count. Verification of following lines would fail at the second statement. When
a new thread is created using method upCount the executing thread gives away 100% of the field count
to newly created thread. At the second statement, the executing thread is left with 0% whereas method
hasReached requires 1 unit of ¢ permission.

fork tokl := c.upCount()
fork tok2 := c.hasReached(1)

Permission transfer between method call happens through two procedures known as Exhale and Inhale.
Exhale(E) checks if current thread owns the required access permissions inside the expression E and that E
holds. After this the access permissions are taken away. Inhale(E) is the inverse of E that is E is assumed
and all access permissions in E are given to the current thread. When a thread is invoked the preconditions
are exhaled by the invoking thread and they are inhaled back only after the thread joins. Hence method call
is equivalent to a fork and join in subsequent statement. Following two pieces of code are equivalent:

call retvals := foo(inputs)

fork tk := foo(inputs)
join retvals := tk //equivalent to call

2.4 Functions

Functions are a mechanism in Chalice to abstract over values of expressions. In Listing 2.3 the class Ac-
count uses the function isPositive to yield if the field amount is positive or not. In order to evaluate it, the
calling thread should have access of the amount. This is specified in the precondition of the function. Since
functions are side effect free they can’t alter access permissions or program state, hence they require only
preconditions. Intuitively this is equivalent of having the same postcondition as precondition

class Account {
var amount:int

function isPositive (): bool
requires acc(amount)
{ amount > 0 }

method add(increment:int) .
requires acc{amount) && isPositive() && increment > 0
ensures acc(amount) && isPositive()
amount := amount + increment

class Banker {

method process() {
var clientAccount := new Account
clientAccount.amount := 1
call clientAccount.add(10)
assert (client Account. isPositive ())

}

Listing 2.3: Chalice functions for abstraction

2.5 Predicates

Predicates are a mechanism to abstract values of expressions as well as permissions. When permissions in-
side definition of a predicate are to be abstracted, the predicate is folded which means all access permissions
in predicate’s definition are taken away from the calling thread and 100% permissions are transferred to
predicate. Similarily when a predicate is unfolded, if the thread has access of the predicate then all access
permissions inside the definition of the predicates are given to the thread. ‘

The Account class given in Listing 2.3 can be extended using predicates to hide the access permission of
the field amount as shown in Listing 2.4. Within the body of method add the statement unfold hasAccess
verifies because access of hasAccess is mentioned in the method’s precondition. After the unfold statement,
access of the predicate is taken away and access of the field amount is given to the thread. The statement
fold amount takes away the access of the field and access of the predicate hasAccess are given back. If the
field amount is updated either before the unfold statement or after the fold statement, the program would
not successfully verify.

class Account {
var amount:int

predicate hasAccess { acc(amount) }

function isPositive(): bool
requires hasAccess
{ unfolding hasAccess in amount > 0 }

method add(increment:int)
requires hasAccess && isPositive() && increment > 0
ensures hasAccess && isPositive()

unfold hasAccess
amount := amount + increment
fold hasAccess

}

method create()

requires acc(amount)

ensures hasAccess && isPositive()
{

amount == |

fold hasAccess

}
}

class Banker {
method proces() {
var clientAccount := new Account
call clientAccount.create()

call clientAccount.add(10)
assert (client Account. isPositive ())

10

Listing 2.4: Predicates

2.6 Program State

The state of a Chalice program at any point of execution is represented by a heap, permission mask and local
variables. Local variables are declared in stack as their values are needed inside the method body. However
this needs to be changed in the presence of closures.

All objects in Chalice are allocated on a global heap which is a 2 dimensional map which maps object
reference and field names to their valnes.

Each permission is tuple of two integers: R, N to denote the fractional permission: R+ N -¢. Permis-
sions of all memory locations are stored in a 2 dimensional map called PermissionMask which maps object
reference and field names to fractional permission corresponding to the memory location. Integer values are
used instead of fractions because many popular SMT solvers have limitations on use of rational numbers.

11

Chapter 3

Challenges in adding closure support

This chapter shows a sample program in Section 3.1 which uses closures. Sections 3.2,3.3 and 3.4 illustrate
the significant challenges associated with verification of concurrent programs in the presence of closures using
the sample program. Different elements of the newly introduced syntax are discussed in detail in Chapter 4.

3.1 Sample Program

The program in Listing 3.1 implements a method makeCounter which creates two closures: up and down by
assigning anonymous methods to them. These closures operate on variable count which is local to the method
makeCounter. Since both the closures access the shared memory location, count they specify acc(count) in
their pre/post conditions. The client method calls the method makeCounter to associate instance of the
returned closure with variables v and d. It can then invoke these closures using variables v and d in sequence
or in parallel.

class ClosureExample {

method makeCounter()
returns (up:()—->int , down:()——>int)
{

var count := 0

up := method() returns count : int
requires acc(count)
ensures acc(count) && count = old(count) + 1

{

count := count -+ 1

}

down := method() returns count : int
requires acc{count)
ensures acc(count) && count = old(count) — 1
{
count := count - 1
}
}

method client() {
var i : int

var j : int

varu: (} ——> (int)
var d : () ——> (int)
var ul : () ——> (int)
var d1: () ——> (int)

call u,d := call makeCounter

call i :=u();
call j := d();
fork u()
fork d()
call i := ul();
call j :=di();
}
}

Listing 3.1: Closure Factory returning closures which share state variable count

3.2 Local state abstraction

Closures can capture their local state of the method they are created in. E.g., the local variable count is
accessed by both the returned closures. Due to rules of lexical scoping local state can’t be referred to from
outside the lexical scope. The client method can’t refer to the variable counter, hence it can’t reason about the
state of variable count. e.g. it can’t assert that after call to closure u terminates counter is incremented by 1.

3.3 Statically Unknown Specification

Closures can be assigned to variables, passed as formal arguments to methods or returned by methods hence
the specification claims associated with them can’t be statically known always. e.g. in Listing 3.1 the anony-
mous method assigned to variable 1 and d specify they require and ensure write access to count. A method
caller should possess 100% access to count in order to call these methods. However method contracts of
the closures are invisible to the client as it knows only the method contract of makeCounter. The closure
creating method, also known as closure factory, should specify behavior of returned closure in its contract
for the client to use.

Kassios & Muller [1] proposed a methodology to verify sequential programs in presence of closures. Fach
closure instance is represented by a closure object. Let S denote the type used to represent program state, C'
the type of closure object, T; represent types of formal arguments and R; represent method return types. For
cach closure type: (11.T%,...,7,) = (Ry, Ra, ..., Ry,) there are two pure functions pre and post declared
of following types:

pre (C, S, T1,T2,...,Tn) — (boolean) (3.1)
post :(C, S, T1,7T2,....,Tn,S,R1,R2,..., Rn) — (boolean) (3.2)

pre is a single state function which evaluates to true if precondition of the closure instance hold given the
program state of its evaluation and formal arguments to the call. post is a two state function which asserts

13

that the post condition of a closure instance holds for the formal arguments, returned values and two states,
the first one is state before the closure call and the second one is state after call.

Closure factory uses two fixed conditions, lets call them P and Q to specify behavior of returned closure
to the client. If the factory returns a closure foo, it has to prove containment property as follows:

Vstate,ins :P == pre(foo, state,ins) (3.3)
Voldstate, state, ins, outs :post(foo, oldstate, ins, state, outs) == Q (3.4)

The client, in order to successfully verify a closure call has to establish that condition P holds before
call and it can safely assume Q to be satisfied after call terminates. However since Chalice specifications are
not side effects free, they can’t be present in antecedent of logical implication. Semantics of expressions like
ace(field) A field > 0 == pre(...) are undefined in Chalice.

3.4 Shared state between closures

It is possible for two more closures to capture the same local state. In such situations, their parallel invocation
would lead to race condition. E.g. in Listing 3.1, both the returned closures share access to variable count.
If closures v and d were invoked concurrently there would be a race condition. Since count is hidden from
client. The method makeCounter can’t use count in its contract to specify u and d share the same local
state. In the same example, the states captured by closures v and ul are disjoint. Each call to makeCounter
allocates different locations for count. Hence concurrent invocation of 4 and ul has no race conditions. In
addition to exposing abstracted values of local state another mechanism is needed for a method to abstract
access permissions to local state used by closures.

14

Chapter 4
New Syntax

This chapter introduces new syntax constructs for using closures in Chalice by giving code snippets and
describing their behavior in each section.

4.1 Closure Creation & Types

Closure Types are defined as 11,73, -+ , 15, — — > Uy, Us, - -+ , U, where T; and U; denote the types of input
and output parameters of the closure. Closure functions have similar notation but they are differentiated in
the syntax by the use of — > to separate input and output parameters. Since functions evaluate to a single
expression they have single type for owtput: 71,75, | T,— > U

A new closure instance is created by assigning anonymous methods to a variable of closure type. Anony-
mous method definition is similar to Chalice methods except that anonymous methods don’t have a name.
Anonymous methods can be used only inside method bodies, currently their assignment to class fields is not
supported. Closure variables are immutable hence they can be assigned only once.

class Counter {

method makeCounter() returns (closure:()— —>(int))
requires /+ closure specification */
{
closure := method(i:int)
requires i != 0
{ /* closure body =/}

Listing 4.1: Closure creation

4.2 Closure Specification

In order for a closure factory to express specifications of the closure(s) being created, two new specification
operators have been added req and ens. req is used to specify precondition of the closure and ens is used
to specify post conditions of the closure. In general a closure specification statement looks like :

kik2 ..., kM = call closureVar(j1,j2 ,..., JN) req ClosurePre ens ClosurcPost

Listing 4.2: Closure specification syntax

Variables j1,...,jN and kI,...,kM represent input and output variables of the closure closureVar. Clo-
surePre and ClosurePost represent the pre and post conditions of the closure. When a method returns a
closure, it has to use a closure specification statement in its postconditions and when a method accepts
closure as its formal argument, it has to use a closure specification statement in its preconditions.

req P is equivalent to (req P ens true) and ens @ is equivalent to (req true ens Q). The program in
Listing 4.3 specifies that the closure div being created takes a variable inp and returns variable out. Call to div
requires the input variable, inp to be non-zero and its termination ensures out to be positive if inp is positive.

method foo() returns (div:(int)——>(int))
requires call out := add(inp) req iup != 0 ens inp > 0 ==> out > 0
{
S ox/
}

Listing 4.3: Example of closure specification

Scope of the variables introduced in closure specification is limited to the reg and ens construct in which
they appear and their types are inferred by the closure’s type.

Behavior of a closure function is described using a similar syntax as closures but function application
syntax is used instead of method call: e.g. in Listing 4.4 the method foo returns a closure function abs. To
describe its behavior variables inp and out are introduced using syntax of function application the specifi-
cation is given using only the req operator.

method foo() returns (abs:(int)—>(int))

requires out := abs(inp) req (inp < 0 => out == —inp) && (inp>=0 => out == inp)
{
}

Listing 4.4: Example of closure function specification

In closure specifications all input/output parameters of a closure might not be of interest so an addi-
tional variable “.” has been introduced to for variable(s) which don’t appear in closure specification. So if
in Listing 4.5 the programmer was interested in describing only the precondition of div, the requires clause
can be written as:

requires call . := add(out) req out I= 0

Listing 4.5: Ignore variable

4.3 Closures as method arguments

When a method receives a closure as one of its formal arguments, it has to express desired behavior of the
closure in its preconditions. These preconditions create the necessary proof assertions to verify use of the
closure inside the receiver method. In listing 4.6 the method update accepts a closure callback as its argument
and calls it. Since call to callback needs write access to field amount, update has to specify write access to
the field amount in its precondition. The client can then pass any closure which requires and ensures access

16

to field amount and it is guaranteed that the method wupdate can invoke it successfully.

class Account {
var amount:int;

method update(callback:(Account) ——> ())
requires acc(amourt)
requires callback !'= null
requires call callback(a) req acc(a.amount)
ensures acc{amouit)

call callback (this);
}

method updateaccount()
requires acc(amount)

{

var debit100 : (Account) ——> ()

debit100 := method (a:Account)
requires acc(a.amount)
ensures acc(a.amount)

{
if (a.amount > 100) {
a.amount := a.amount — 100
}
}
call update(debit100)

}
}

Listing 4.6: Closure as method argument

4.4 Closure Functions

Closure functions address the challenge of exposing abstraction of state captured by a closure. Like closure
methods, closure functions can be assigned to variables, passed as formal arguments to a method and re-
turned by a method. Instances of closure functions are created by assigning anonymous functions to variables
of closure function type.

In Listing 4.7 the closure factory makeCounter returns a closure method ¢ and a closure function state.
The specification of makeCounter exposes the function state which abstracts the state of local variable count.
The client gets to know following things about ¢ and state:

e Evaluation of returned closure function state requires access to field field
e Call of ¢ requires & ensures access to field

e Call to ¢ ensures evaluation of state after the call is greater than that before the call

17

e ¢ and f are not null

This example shows closure functions can be used to specify behavior of returned closure(s) and abstract
hidden state. Closure function variables just like closure variables are also immutable. Closure functions are
statically bounded to the closures which use them in their specifications.

In the program shown in Listing 4.7, if a local variable was used instead of an object field, closure func-
tions are not sufficient for abstraction. Hence makeCounter can’t use the variable count in its contract to
specify ¢ requires access to the local state and closure functions can’t be used to abstract permissions. Usage
of predicates can facilitate this mechanism as described in Section 4.5

class Counter{
var field :int

method makeCounter() returns (c:()——>(int), state:(}—>(int))
ensures i := state() req acc(field)
ensures call x:= ¢() req acc(field) ens acc(field) && state() > old(state())
ensures c != null && state != null

{

state = function() :int
requires acc(field)

{ field }

¢ := method() returns (x:int)
requires acc(field)
ensures acc(field) && state() == old(state()) + 1

{
}

field = field + 1

Listing 4.7: Closure function

4.5 Closure Predicates

Closure functions abstract values of memory locations but they can’t abstract permissions assertions on
those locations. To solve this problem we introduce the following convention, When a closure factory returns
closure(s) which capture local state, it can declare closure predicates in its contract and define them in its
body, e.g. in Listing 4.8 method counter declares a predicate valid in its contract and defines it as acc{count).
Closure specification can then use the closure predicate to describe returned closures and closure function’s
behavior: closure up requires and ensures predicate velid in its pre and post conditions.

Definition of closures can use these predicates as normal chalice predicates to fold and unfold permissions
on local state. Client knows only predicate declaration, it is not allowed to fold or unfold closure predicates
in source language. At the point of closure call, calling thread has to possesses access to the closure pred-
jcate. For the client to possess the access to closure predicate, the factory method automatically folds the
predicates declared in its contract and gives it to the calling thread at its termination.

In Listing 4.8 the method client automatically gets access to the predicate valid after call to the factory
method counter terminates. Call of the closure variable clos verifies because invoking thread has access to

18

the predicate. If the client was modified to invoke two threads of the returned closure in parallel it would
not verify. In Listing 4.9 the second statement doesn’t verify because access to the predicate is given away
to the new thread in the first statement.

method counter() returns (up: ()——>(int), iseven: ()—>(bool))
ensures call . := up() req valid ens valid && iseven() != old(iseven())
predicate valid

{

var count:int;
predicate valid { ace(count) }

up := method() returns (x:int)
requires valid
ensures valid

unfold valid
count = count + 1;
X 1= count;
fold valid
}

iseven := function() : bool
//evaluation of this function requires thread to have
//access to predicate wvalid
requires valid

unfold valid in count % 2 == 0;

}
}

method client()

{
val ret:int;
var clos : ()——>(int)
var absfunc : ()—>(bool)
var statel :bool;
var state2 :bool;

call clos,absfunc := counter()
// access to the variable count is folded by the closure factory counter
// current thread has access to predicate valid

// access to valid is required for function evaluation
statel := absfunc()

// access to wvalid is given to the closure call which unfolds it
call ret := clos ()
// access to wvalid is given back by the closure

// access to valid is required for function evaluation

state2 := absfunc()
assert (statel == lstate2)

19

Listing 4.8: Closure predicates

fork clos()
fork clos() //error: predicate is given away in the first call

Listing 4.9: Closure Predicate for parallel invocation

Closure predicates are allowed to refer only memory locations local to the method in which they are
defined. The reason for this is explained in Section 6.9

Chapter 5

Examples

The method increment of class Math in Listing 5.1 the method increment accepts a callback aedder and
reguires that adder returns a value greater than input provided to it. Using the specifications of adder,
increment can safely assert that when it calls adder using inp, its own result res is greater than inp. This
example shows how methods can use specification of callbacks for their own specifications. The method
decrement uses the same specifications to state it returns a lesser output.

class Math {

method increment(inp: int, adder:(int) ——> (int)) returns (res:int)
requires adder != null
requires call x := adder(y) ens x >y
ensures res > inp

{

call res := adder(inp)

}

method decrement(inp: int, adder:(int) ~—> (int))} returns (res:int)
requires adder != null
requires call a := adder(b) ens a > b
ensures res <= inp
{
var temp : int;
call temp := adder(inp)
res = —1 % terp

}

method add10()
var add10 : (int) ——> (int)

add10 := method(inp:int) returns (out:int)
ensures out > inp

{

out = inp + 10;

}

var returnedval:int
call returnedval := increment(5,add10)

}

Listing 5.1: Closures for callback

The method getCounters in Listing 5.2 returns two closures and a closure function all three of which
operate on the same location referred by local variable count. The state of counter is exposed to the client
using the closure function state. Even though the closures actually increment or decrement the value of
count by 1, the client of method getCounters knows just the fact that up increments the state and down
decrements it. Both the closures use same closure predicate valid which indicates they might be sharing the
same local state, hence client can’t invoke them in parallel. Using closure predicates and closure functions
together, methods can abstract their states and hide implementation details from a client.

class Counters

{

method getCounters() returns (up:()——>(int), down:()——>(int), state:()—>(int))
predicate valid
ensures call x := up() req valid ens valid && (state() > old(state()))
ensures call y := down() req valid ens valid && (state() < old(state()))
ensures z := state() req valid
ensures up != null && down !=null && state != null

{

var count:int;
predicate valid { acc(count) }

state := function() : int
requires valid
{ unfolding valid in count }

up := method() returns (x:int)
requires valid
ensures valid && (state() == old(state()) + 1)

unfold valid
count := count + 1
fold valid

}

down := method() returns (y:int)
requires valid
ensures valid && (state() == old(state()) — 1)

unfold valid
count := count — 1
fold valid
}
}

method client()
var u: (J)——>(int)

var ul : ()——>(int)
var d : ()—-—>(int)

22

var d1: ()—->(int)

var f:()—>(int)

var g:()—>(int)

var i : int

var j : int

var ¢ : int

call u,d,f := getCounters()

fork u()

fork d() //error, access to wvalid has been given away by u

call ul,dl,g := getCounters()

fork ul() //ok, ul and u capture different states

Listing 5.2: Com

Chapter 6

Technical Treatment

This chapter describes the formalism for verification of concurrent program with closures. Sections 6.1, 6.2,
6.3, 6.4 describe the newly introduced formalisms. Sections 6.5, 6.6, 6.7, 6.8, 6.9 describe how new syntax is
verified using these formalisms.

6.1 Specification Functions

Specification functions are pure function which evaluate to boolean. Each closure is associated with two such
specification functions: pre and post. They evaluate to true when the corresponding precondition/postcon-
ditions hold in the given states. As described in Section 3.3 pre and post are of the following types:

pre :(C,H,M,Ty,...,Tn) — (boolean) (6.1)
post :(C,H,M,Ty,...,Tn,H,M,R1,..., Rn) — (boolean)

Here C represents the type to represent closure instances. H and M represent types use for Heap and
Mask. T; represent types of the input arguments and Ry represent types of the returned values.

For each closure function type, two Boogie functions are created of the following type:

abspre : (C,H, M, Ty, ..., T, R) — (boolean) (6.2)
abseval : (Ty,...,T,) — (R)

The function abspre holds if the preconditions of the anonymous method holds in the program state of
its evaluation. The function abseval represents the result of evaluation of the closure instance.

6.2 Additive Translation

Let E be an expression which can have access permissions as well as logical operators. Additive transforma-
tion results in a conjunction of two boolean expressions:

ATv(E) =AHeapTr(E) A AMaskTr(E) (6.3)

AHeapTr and AMaskTr are additive heap translation and additive mask translations respectively.
ATr(E) holds if all the heap related conditions in F hold and if all the locations present in E have at least
sum of all the permissions present in E.

6.2.1 Additive Heap Translation

AHeapTr(E) translates the expression E to contain only heap related assertions inside E. All permissions
related expressions are translated as true. Following is a recursive definition of AHeapTr(E).

AHeapTr(P = Q) = AHeapTr(P) = AHeapTr(Q)
AHeapTr(P A Q) = AHeapTr(P) A AHeapTr(Q)
AHeapTr(acc(o.f, 1)) = true

AHeapTr(rd{o.f,r)) = true

AHeapTr(E) = Tr(E)

Tr{E) translates the source expression to BoogiePL expression as described in [3]. T'r should never encounter
access permissions. The definition of AT'r ensures this as Chalice access permissions acc and rd are allowed
to be present only in outermost level of conjuncts and consequents of implications which are processed before
Tr is used.

6.2.2 Additive Mask Translation

Additive Mask Translation expresses the minimum fractional permission to be held by each memory location
present in a Chalice expression. AMaskTr(E) first computes list of memory locations present in F and list
of access permissions corresponding to each such location. The assertion for a particular memory location
is that the location should have at least the sum of all fractional permissions associated with it.

Let us assume E contains n locations indicated by loc;. Each of the memory locations loc; is assomated
with m; number of fractional permissions represented by p;,; then:

m;

AMaskTr(E /\ Masklloc;] > Zp, iy (6.4)

Table 6.1 shows the computation of memory location and list of permissions associated with few Chalice
expressions and Table 6.2 shows their additive mask translations.

Expression E collectPermissions(E)

ace(x) (z, ((true, 100,0)))

acc{z) Az >0 (z, ((true, 100,0)))

ace(x) A ace(x) (z, ((true, 100,0), (true, 100,0)))
ace(z,5) Ard(z, 10) (z, ((true,5,0), (true, 0,10)))
ace(z,50) Ard(y,40) (z, ((true, 50,0))), (v, ((fruc 0,40)))
b > 0= ace(x,50) A e < 0 = rd(x,40) | (z,((b>0,5,0),(c <0,0,40}))

Table 6.1: List of memory locations and their permissions inside a Chalice expression

In Chalice access permissions are allowed to be present in consequent of implication, hence the antecedent
of the implication should be preserved together with the permission fraction.

Expression E AMaskTr(E)

ace(x) Mz] > 100

acc(z)y Nz >0 M|z] = 100

ace(x) A ace(x) Miz] > 10(+ 100

ace(z, 5) A rd{z, 10) Mlz] > 5+40-¢

acc(x, 50) Ard(y, 40) (AI[E] > 50) (Tly] = 40 -€)

b> 0= ace(z,50) A e < 0= rd(z,40) | Mz] > ((¢ > 0)750 : 0) 4 ((¢ < 0)?40 - € : 0)

Table 6.2: Additive Mask Translation

6.3 Entails Operator

Let A and B be two Chalice expressions, then we define an operator entails:

A—B

This means expression A is stronger than expression B.

6.4 Containment

The property Contains{ Py, Q1, P, Q2) holds if following assertions bold:

Pl ——\PQ (65)
Q2 =

This can be written in Boogie as following:

Havoc
Havoc
Inhale
Ezxhale

Havoc
Havoc
Havoc
Havoe
Inhale
Exzhale

newHeap (6.6)
newMask

(Py, newHeap, newMask)

(Py, newHeap, newMask)

oldHeap

oldMask

newHeap

newMask

(Q2, oldHeap, oldMask, newH eap, newM ask)
(Q1,oldHeap, oldMask, newHeap, newM ask)

The Boogie statement Havoc V ensures that the variable V' gets an arbitrary value. Since Inhale and
Exhale procedures in 6.6 use arbitrary heaps and masks, it guarantees the containment property in listing
6.5 holds for all possible heaps and masks. This methodology replaces the nced for universal quantification
over all program states proposed by [1]. We call it implicit state quantification.

6.5 Closure as Return Parameters and Method Arguments

One of the proof obligations of a method returning a closure is that the specification of the returned closure
should be “contained” in the specifications of the closure as ensured by the factory. Similarly when a closure
is passed as an argument to a receiver method, the caller has to establish that the specification of closure
being passed are “contained” with specifications of the closure as required by the receiver method. The
actual specifications of a closure have to be contained in the exposed specifications.

Let the exposed pre/post conditions be (P, @1) and actual pre/post conditions be (Py, (J2) then verifi-
cation of the method passing or returning a closure has to establish the containment property mentioned in
Listing 6.5.

When a method returning a closure has to establish containment property, P1 are Q; are the specifications
of the closure in its postcondition. When a method caller passes a closure as an argnment, Py are @1 are the
specifications of the closure exposed by the receiver method’s preconditions. Py and Q2 are the specification
functions obtained by additive translation at the time of closure creation as mentioned in Section6.1.

(P, — pre(e, newHeap, newMask, iy, ..., i,)) (6.7)

(post(c, oldHeap, newMask, i1, ..., in, newHeap, newMask, 01, ..., 0,) — Q1)

Since closure specifications are statically bound to a closure variable 6.7 can be simplified by using the
exact specifications instead of specification functions.

6.6 Closure Creation

When a closure instance is created two assertions are generated regarding pre and post conditions for the
instance of newly created closure.

© Yh,m,... zpre(c, h,m,...) = ATr(Cpre) (6.8)
Yoh, h,m, ... =post(c, oh, ..., h,m,...) = ATr(Cpost) (6.9)

Where AT is additive translation of the specification for the closure and CPre and CPost are the fixed
pre and post conditions of closure specified by using req and ens operators.

6.7 Closure Call & Concurrent Invocation

Usage of specification functions pre and post are not sufficient to verify closures call or their concurrent
invocation. They can either give assertion on the program state before method call or they can give assump-
tions on the program state after the method call. Specification functions can’t alter the state of the program
unlike Chalice Inhale and Exhale procedures. As a solution closure specifications are statically bound to the
closure variable. For this methodology to work correctly, all closure variables are made immutable. This
ensures fixed specifications can be used for verification of closures. F.g., in the program listed in 6.1, the call
to method foo assigns the returned closure to the variable z and binds the specifications of method output
parameter retval from method contracts of foo. The actual specifications of retval inside the body of foo
might be different from those given in it’s contract. Now that fixed expressions for specification of closures
are knowr, verification steps for closure call and concurrent invocation are similar to those for Chalice meth-
ods.

o
|

class Counter {
var field :int;

method foo() returns (retval:()——>())

ensures call retval() req ace(field) ens acc(field) && field > 0
{

}

method bar()
requires acc(field)

{

var x:(int) ——> (int)

//x gets precondition: acc(field) and postcondition: acc(field) &€ field > 0
call x := foo()

//Inhale acc(field)
call x()
//Ezhale acc(field)

//Inhale ace(field)
fork x()

//error location not writable
field := 10

Listing 6.1: Parallel invocation of closure

6.8 Closure Functions

6.8.1 Creation

Each closure function is always associated with an instance. Closure function creation establishes following
agsertions:

Vh,m, iy, ...y iy o abspre(fopg, Bamy i, ooy in) = ATr(Funcyre) (6.10)

Yh,m. iy, ... in o abseval{fors, Bym i, .. yin) = Tr(Funcges))

Where iy, . .., 4, represent the input arguments of the function. fu; represents the newly created function
instance, Func,,.. represents the precondition of the function, Funcgey represents its definition. AT'r and
Tr are additive translation and Chalice translation respectively as described in 6.2

6.8.2 Containment

Verification of closure Function creation is verification of containment property, with respect to the precon-
ditions:

P — pre(c, newHeap, newMask, il, ..., in)

Where P is precondition of the specification function given by the factory method.

6.8.3 Evaluation

Verification of closure function evaluation requires evaluating thread to possess the permissions required in
preconditions of the function. Since closure functions like static Chalice functions are side effect free, they
don’t Inhale or Exhale when they are evaluated. So a function application statement like:

v = closfunc(10)

gets translated to following statements:

v = abseval(clos func, H, M, 10)

6.9 Closure Predicates

Closure predicates act as normal Chalice predicates for anonymous method definitions inside the method
creating them. When a method declaring a closuré predicate is called, the verification framework auto-
matically folds the closure predicate at method termination. That is, all access permissions present in the
predicate definition are taken away and 100% permission of the predicate is given to the closure object(s)
being returned. When a closure object is invoked, it should posses access of the closure predicate instance.
Since all the closures returned by same method call share the same local environment, they also share the
same predicate instance. Hence this methodology ensures their is no race condition on access to the shared
local state between closures. Closure predicate generated by different calls to the same method will generate
distinct instances of closure predicates.

Closure predicates should abstract only the memory locations of local variablss because two or more
closures can always refer to the same “non-local” environment. E.g., in Listing 6.2 if we don’t limit the
predicate valid to local variables it can refer to field field. Forking c! twice is correctly caught as a race
condition because they share the same environment. But forking of ¢2 is verified incorrectly even though
there is a race condition on location of field. Since predicate definitions are not available to the client the
information that ¢/ and ¢2 access shared state is hidden.

class A {
var field :int;

method factory() returns (retval:()——>(})
ensures call retval() req valid ens valid
predicate valid

{
predicate valid { acc(local) && acc(field) }

var local: int;
retval = method()

requires valid
ensures valid

unfold valid
// .. local and field can be modified
fold valid

}
}

method client()

var c¢l:() ——> ()
var c2:() ——> ()

call ¢l := factory()
//a new folded predicate pl assigned to cl

call ¢2 := factory()
//a new folded predicate p2 assigned to c2

fork cl;
fork cl; //error correctly caught, cl has already given away access to pl
fork c2; //incorrectly verifies , ¢l still has access to field

//incorrect, as ¢l and c2 can update the field variable concurrently

}

Listing 6.2: Closure predicates to abstract access local state

30

Chapter 7

Conclusions

Related Work

Kassios and Mueller[1] have proposed a methodology for the specification and verification of closures for
sequential programs in first order logic. They used universal quantification over all program states to verify
that a closure’s actual specifications are contained inside its exposed specifications. We use implicit state
quantification to solve the problem without using first order formalization.

A significant difference between verification methodologies of [1] and Chalice is the way the framing
problem is tackled. Both the methodologies use modular verification, that is, they use a method’s contract
and not its implementation details to verify the method’s use. This requires the method contracts to contain
frames, which give an upper bound on the set of memory locations modifiable by the method. In {1}, the
authors use Dynamic Frames|2] where method contracts should contain a mod clause in the source language
to specify the method’s frame. Chalice uses Implicit Dynamic Frames [5][3] where the frame of a method can
be derived from access permissions present inside its specifications. We have used Implicit Dynamic Frames
by statically binding specifications to closure variables. This approach required us to limit closure variables
to be immutable. '

Our state abstraction mechanism uses ideas from both Chalice and [1]. Closure functions, like Chalice
pure functions, specify preconditions that a thread should possess in order to evaluate them. The verification
of closure functions uses abstraction specification functions as defined in [1]. To abstract over permissions
on local state we have used Chalice predicates to define closure predicates.

Issues

In the Boogie statements generated for verification of Chalice programs, havoc statements are used on the
current heap of the program, which assign an arbitrary value to the heap. The statements after such havoc
statements work on the assumption that the state of local variables have not been modified as they are al-
located on program stack. In our methodology, since we have allocated local variables on heap, their values
are lost after current heap is “havoced”. This issue causes test cases given in the existing Chalice repository
to fail. A fix of this problem can be to restore values of the local variables in the newly havoced heap.

Due to time restrictions, the rule that a closure predicate should use only local variables in its definition

has not been implemented in the program verifier. This restriction should be implemented in the type
checking phase.

31

Extensions

We have used immutable variables to represent closure instances. If we allow closure variables to be mutable,
their specifications can’t be attached statically. To solve this problem, a possible future direction of work is
to use specification functions from [1] together with Implicit Dynamic Frames.

For the sake of simplicity, closures were restricted to be used as local variables, method arguments or
method return values. As a future work, it would be useful to study interaction of closure with other lan-
guage features e.g. fields and channels.

Concluding Remarks

In this thesis we have proposed a verification methodology for concurrent programs with closures. We
solved the framing problem using Implicit Dynamic Frames. We gave an extension to the Chalice language
by introducing new syntax elements and showed how challenges identified are addressed by the proposed
methodology. All the examples shown in the document have been verified using the extended Chalice verifier.
We have created a comprehensive suite of test cases (not included in report) to cover different aspects of the
newly introduced language extension.

Bibliography

[1] Ioannis T. Kassios & Peter Mueller, Specification and Verification of Delegates in First Order Logic.

[2] Ioannis T. Kassios, Dynamic frames: Support for framing, dependencies and sharing without restrictions,
FMO06, volume 4085 of Lecture Notes In Computer Science, pages 378-393. Springer-Verlag, 2009

[3] Leino and Mueller, A basis for verifying multi-threaded programs. Programming Languages and Systems,
volume 5502 of Lecture Notes In Computer Science, pages 268-283. Springer-Verlag, 2006

4] k. R. Leino, Peter Mueller and Jan Sinans, Verification of Concurrent Programs with Chalice. In Foun-
| g
dation of Security Analysis and Design, Lecture Notes in Computer Science, page 195-222. Springer,
2009.

[5] J.Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. In FT{JP 2008, pages 1-12,2008. Technical
Report ICIS-R08013, Radboud University

/6] J. Boyland. Checking interference with fractional permissions. In SAS 2003, volume 2694 of Lecture Notes
in Computer Science, pages 55-72. Springer, 2003

[7] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In FMCO 2005, volume 4111 of Lecture Notes in Computer Science,
pages 364-387. Springer, 2006

[8] Leonardo de Moura, Nikolaj Bjgrner Z3: An efficient SMT solver. In TACAS 2008, volume 4963 of
Lecture Notes in Computer Science, pages 337-340. Springer, 2008.

[9] ECMA. C# language specification. Technical Report Standard 334, ECMA, 2006.
[10] M. Odersky, L. Spoon, and B. Veners. Programming in Scala. Artima, 2007
[11] D. M. Beazly. Python Essential Reference. SAMS, 3rd edition, 2006.

[12] D. Flanagan, Y. Matsumoto. The Ruby Programming Language. OReilly, 200

33

