Debugging in Envision

Research Project Description

Lukas Vogel
luvogel@student.ethz.ch

September 5, 2014

Introduction

Envision is a research project with the goal to provide a next generation inte-
grated development environment (IDE) for object-oriented programming lan-
guages. Envision presents code in a visual environment using a combination
of text and graphics. The visual environment tries to help programmers in
managing large code-bases, both in terms of comprehension and navigation.

While Envision currently has functionality to edit and write code, its goal is
also to improve productivity in additional tasks by integrating more tools. One
essential feature of IDEs is the ability to build, run and debug programs. This
project aims to improve Envision in exactly those aspects.

Debugging in file-based IDEs can be confusing as one often jumps through
files and thus quickly loses the context. Code Bubbles [1, 2] is a project, which
tries to improve the debugging experience. A code bubble shows a certain part
of code, often a method, in a freely dragable, resizable and colored rectangle.
The interface of Code Bubbles is designed to make the working set of developers
explicit as an arrangement of bubbles. This is especially useful for debugging.
Microsoft Research introduced a production ready Visual Studio plug-in called
Debugger Canvas [3] which uses an interface based on the bubble paradigm to
improve the debugging experience. Both the Code Bubbles and the Debugger
Canvas authors found, in user studies, that their new approach can improve a
programmer’s productivity.

While both projects introduce a visual component, the bubbles, the code
inside a bubble is still presented as plain text. Envision has more visual el-
ements, it visualizes code in a mixture of text and graphics. In this project
we will explore how we can create a productive debugging environment inte-
grated in Envision. We will investigate how different visualizations and visual
arrangements can improve the debugging experience.

Tasks

1 Build support

The first task is to add support for compiling Java code from within Envision
and visualizing possible feedback from the compiler, such as errors and warnings.

2 Run support

As a requirement for debugging, Envision needs to be able to run a built pro-
gram inside Envision. This task includes finding a visual representation of the
program output. Many IDEs do this with a built-in console, which is one of
several possibilities to consider. In Code Bubbles [1] there is the possibility to
split console output to multiple console bubbles, which is also an interesting
idea to investigate.

3 Debug back end

The next step is to debug the program while it is running. We will evaluate
possible ways to connect to a Java debugger and choose a suitable one to use
in Envision. We can either connect to jdb over standard input and output, or
use the Java Debug Interface (jdi) via the Java Native Interface.

Then we have to implement an API in Envision, which is to be used in the
front end. The API should support basic debug actions using the chosen Java
interface. Basic support means support for breakpoints, reading runtime values
of variables and stepping forward.

4 Debug front end

The main focus of this project is to design and experiment with an effective
visual interface for debugging in Envision. We will explore ways to present
stack traces, breakpoints, variable values, controls and more. This visualization
should make use of the visual elements enabled by Envision.

In file-based IDEs it is difficult to show methods from different files concur-
rently. Envision has the possibility to freely arrange methods or other program-
ming fragments such that they can be shown at the same time. This allows
us to investigate ideas as shown in Code Bubbles, where callgraphs are created
while stepping through the code in a debug session. We can experiment with
the elements Envision already provides to further improve on such ideas, for
example with run-time value overlays for variables and fields.

The newly introduced debugging view should provide a helpful tool to the
programmer. That means the debugging view should be responsive, easy to
understand, and provide a fast way to find bugs. There should be several test
cases which highlight the usefulness of this debugger tool.

At a minimum we will introduce controls to start, pause, resume and stop the
execution, this also requires a visual cue for the current location when we break
the execution. Another core feature is the possibility to introduce breakpoints
at any statement. When the execution is paused there has to be a way to read
the memory values of the current context and the call trace should be shown.

Schedule

A tentative time schedule for the project

Task Start date | Time
Compile support 15.9.2014 | 2 weeks
Run support 29.9.2014 2 weeks
Debug back end 13.10.2014 | 4 weeks
Debug front end 10.11.2014 | 4 weeks
Tasks completion 8.12.2014 | 2 weeks
Break (holidays & exam session) | 19.12.2014 | until next task
Write-up & finalizing 26.1.2015 | 3 weeks
End 13.2.2015

References

1]

Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr. Code bubbles: Rethinking the user interface
paradigm of integrated development environments. In Proceedings of the
32Nd ACM/IEEE International Conference on Software Engineering - Vol-
ume 1, ICSE 10, pages 455-464, New York, NY, USA, 2010. ACM.

Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola, Jr. Code bubbles: A working set-based interface for
code understanding and maintenance. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, CHI ’10, pages 2503-2512,
New York, NY, USA, 2010. ACM.

Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P.
Reiss. Debugger canvas: Industrial experience with the code bubbles
paradigm. In Proceedings of the 3/th International Conference on Software
Engineering, ICSE ’12, pages 1064—1073, Piscataway, NJ, USA, 2012. IEEE
Press.

	Build support
	Run support
	Debug back end
	Debug front end

