Integrating dynamic test generation
with sound verification

Patrick Emmisberger

Research in Computer Science

Chair of Programming Methodology
Department of Computer Science
ETH Zurich

http://www.pm.inf.ethz.ch/

07/02/2015
Supervised by:
Maria Christakis
Prof. Dr. Peter Miiller
Chair of Programming Methodology ETH
Informatik Eidgendssische Technische Hochschule Ziirich
I n Computer Science Swiss Federal Institute of Technology Zurich

http://www.pm.inf.ethz.ch/

]
o

Abstract

In this project we set out to find ways to combine sound verification with dynamic symbolic
execution in the form of a wizard that aggregates the results from both tools and provides helpful
feedback to the developer. We use Dafny, a programming language focused on sound static
verification and Delfy, a dynamic symbolic execution engine for Dafny, with the aim to build an
extension for the preferred development environment for Dafny: Microsoft Visual Studio. We
define a new program abstraction that is easy to analyse statically and run dynamic symbolic
execution on, yet is still powerful enough to model the semantics of most programming languages,
in particular of Dafny. Based on this abstraction, we perform a static and dynamic analysis and
augment this information with the results of the existing sound verification for Dafny. Finally,
we present how this information is used to insert annotations and hints into the source code to
support the developer.

Chapter 1 introduces the technologies and previous work on which this project is based. Chapter
2 continues by presenting the Delfy Engine, a framework that implements dynamic symbolic
execution in a language-agnostic way based on a model of the source program. Subsequently,
Chapter 3 shows how Delfy was adapted for Dafny specifically. Chapter 4 concludes with a
description of the feedback that we can provide the developer with, as well as how this feedback is
integrated into Visual Studio and the existing IDE tooling for Dafny.

iii

Contents

1 Introduction

1.1 Dafny e
1.2 Dynamic Symbolic Execution
1.3 Delfy . . o oo e e
1.4 Goals and Motivations

2 The Delfy Engine

4.4.4 Auto-Exploration
5 Related Work

6 Conclusion

2.1 Imtroduction L
2.2 Program Model (Intermediate Representation)
2.2.1 Type System
222 Terms e
2.2.3 Instructions
2.3 Static Analysis
2.4 Dynamic Analysis
2.4.1 Exploration Engine L Lo o
2.4.2 Constraint Solving
2.4.3 Exploration Extensions oL
2.4.4 Handling input-dependent loops,
2.4.5 Execution Models
2.4.6 Out-of-process exploration L.
3 Integrating Delfy and Dafny
3.1 Supported Language Features 0 oL
3.2 Translating Dafny to Delfy IR..
3.2.1 Specifications
3.2.2 Quantifiers
3.2.3 Sets e
3.24 Arrays e
4 Combining Verification and Dynamic Symbolic Execution
4.1 Colour-coding of assertions
4.2 Proving assertions by exhaustive search o0
4.3 Rewriting proved assertion to strengthen verification
4.4 Additional Features
4.4.1 Debugging of counterexamples
4.4.2 Visualising the control flow 000
4.4.3 Exploration coverage information o oL

W N = =

—
O © 000000~~~ otot Ut

—_ ==
— O O

13
13
14
14
14
15
15

17
17
18
18
18
18
19
19
19

21

23

vi

CONTENTS

Chapter 1

Introduction

In this project we explore the possibilities that arise from combining sound verification with
dynamic symbolic execution. In particular, we want to build an extension for Microsoft Visual
Studio (from now on referred to as “wizard”) that simplifies working with Dafny by providing direct
feedback on the source code currently under development. In the following sections we give an
overview of the key technologies and ideas which this project is built on. This chapter concludes
with an introduction of the concrete features and type of feedback that we want to provide as part
of the wizard and our motivation for the main decisions that were made during the project.

1.1 Dafny

Dafny[13] is a programming language with built-in specification constructs to support sound
static verification. For verification, the Dafny program is first compiled into IVL (Intermediate
Verification Language). This intermediate representation is passed on to the Boogie verifier|[1],
which internally relies on the Z3 constraint solver[5]. Dafny has a class-based type system and
provides language constructs for specifying pre- and postconditions as well as loop invariants among
others. The specification constructs are complemented with special syntax for sets and sequences as
well as advanced features like non-deterministic statements and uninterpreted functions. The Dafny
compiler produces C# code but omits all specifications which are used only during verification.

An extension[14, 15] for Microsoft Visual Studio provides language support, debugging tools[12]
and automatic background verification while editing. Verification errors are displayed directly at
the respective locations inside the editor, allowing the user to quickly respond to problems with
the ultimate target of finding a proof of functional correctness.

1.2 Dynamic Symbolic Execution

Dynamic symbolic execution (DSE) is a white-box test generation technique[7]. Its roots lie
in an approach called “fuzzing” where the inputs of a program (e.g. a file or the parameters of
a function) are modified randomly or using heuristics to provoke software errors[10, 2, 19]. This
is also called “black-box fuzzing” since it does not take the code of the program being tested
into account. Dynamic symbolic execution uses the same idea but takes a different approach to
generating input values. The code is executed with a set of concrete values, but simultaneously
these values and their usage are tracked symbolically, indicating to the testing tool how to change
the values to provoke different execution paths in the code under test.

2 1 Introduction

As a concrete example consider Listing 1.1. void Test(int a, int b){

Assume the first execution uses parameter val- if (a > 10) {

uesa = 0; b = 0;. The test a > 10 will re- if (b > a*2)

turn false and the method returns. The sym- throw new Exception ("Unexpected
bolic execution engine observes all branch con- Error");

ditions and generates a path condition that con- }

strains the input values, so that for all input }

valugs that Sat1§fy the constraint the same ex-
ecution path will be taken. For our concrete

example the path condition for the first run is

a < 10.

In order to explore more parts of the method, the path condition is modified (normally the last
conjunct is inverted) and by using a constraint solver, new values for the inputs are found. In our
example the new path condition would be a > 10 and we assume that the constraint solver returns
a = 11. b is not modified and still uses its default value of 0. For the next run, the first test
holds and the then branch is executed, containing a second condition. The second condition will
evaluate to false for this run and the method returns. The symbolic execution engine provides
the new path condition a > 10 A b < a * 2. We invert the last part of the path condition resulting
ina > 10Ab > ax*2, for which the constraint solver returns the valuesa = 11; b = 23;. We run
the method with this input and the exception is thrown.

Using this technique, the testing tool tries to maximize branch coverage and find input values
for which the method behaves unexpectedly.

Listing 1.2 contains the basic algorithm in pseudo-code. solve runs the constraint solver to
find concrete values that satisfy the given condition. execute runs the method under test with
the given input values and returns the path condition that was generated in this run.

void explore (IEnumerable <Term> pathCondition) {
values = solve(pathCondition);
if (pathCondition is satisfiable) {
newPathCondition = execute(values);
for(int 1 = |pathCondition|; i <= |newPathCondition]|; i++) {
var prefix = newPathCondition[1l..i];
prefix[i] = —prefix[i];
explore(prefix);

Listing 1.2: Dynamic Symbolic Execution Algorithm (Pseudo-Code)

1.3 Delfy

Delfy implements dynamic symbolic execution for Dafny and is the result of Patrick Spettel’s
master thesis[17]. The existing Dafny to C# compiler was extended to emit Code Contracts|8]
annotations for checking the specifications at runtime. To track the execution symbolically, the
compiler was modified to emit instrumentation code along with the output program that provides
different types of callbacks at runtime. The callbacks are mainly used to send code snippets of
the executed Dafny code back to the DSE engine and can be viewed as an execution trace on the
source level. The engine parses the code snippets and executes the parsed code symbolically.

1.4 Goals and Motivations 3

Delfy supports different exploration strategies as well as in-process and out-of-process exploration.
The later allows the DSE engine and the program under test to run in different processes. This is
desirable because the DSE engine is usually tightly coupled with the development environment
and the exploration procedure could interfere with the operation of the IDE. To implement out-
of-process exploration, Delfy relies on the Windows Communication Foundation framework to
marshal the callbacks between processes.

In this section we summarised the approach of the already existing version of Delfy. For this
project we heavily modified Delfy to provide the features motivated by the next paragraphs.

1.4 Goals and Motivations

Through the combination of static verification and dynamic test generation we want to achieve
higher developer productivity by reducing the effort of debugging spurious verification errors and
also lower the need for specifications. To achieve this goal, we propose the following features:

e Run the verifier and DSE in parallel and combine the results of both tools. If the verifier
can verify an assertion, it is not necessary to attempt to generate a failing test case for it.
Likewise, if the verification cannot prove an assertion but DSE has full coverage without an
assertion violation, we definitely found a spurious error.

e Prioritise assertions based on the (path) coverage that can be achieved by DSE. The lower
the coverage, the less information DSE can provide, neither for verification nor in the form of
counterexamples.

e Strengthen the verification by converting assertions into assumptions if they can be proven
by full exploration of straight-line code. Because DSE is less modular than static verification,
it does not rely on summarisation using postconditions and invariants, thus reducing the
need for specifications in cases where DSE is sound.

As we set out to implement these features, we soon realised that DSE alone does not provide
the necessary information for proving properties of straight-line code. We also needed a static
analysis that calculates the control flow graph (CFG) and can provide an upper bound on the
number of paths through a method. This confronted us with two main problems:

Delfy tracks the symbolic values by sending a source level trace of the code being executed back
to the DSE engine. However, the code snippets cannot be easily mapped to elements of the AST,
making it difficult to combine the callback information with the results of the static analysis.

Dafny uses an internal representation (IR) that is relatively close to the original parse tree. This
makes it difficult to build proper control flow graphs because Dafny supports various types of loops
and control flow structures, has short-circuit evaluation of logical “and” and “or” operations and
provides a conditional expression similar to the C-style 7: ternary operator. This would require the
CFG to describe transitions between partial expressions, resulting in a CFG that is very difficult
to work with.

These problems in combination with other unsatisfactory circumstances, like the performance
of the out-of-process exploration as implemented by Delfy, lead us to the conclusion that we need
another abstraction layer that has simpler semantics than the Dafny AST and that the callbacks
should be tightly coupled to this abstraction. It became clear that the existing Delfy code had to
be fundamentally changed, so that it can be used as a base for implementing the features described
previously.

1 Introduction

Chapter 2

The Delfy Engine

2.1 Introduction

In this chapter, we introduce the new abstraction layer that was previously motivated in Section
1.4. We designed the abstraction in a language-agnostic way, such that it completely separates
the static and dynamic analysis from the source language. The intermediate representation was
chosen to consist only of a few distinct node types and to be easy to analyse, while still being
powerful enough to represent all features found in the compilable subset of Dafny or any mainstream
language. This not only allows us to solve the problems posed by this project in a (compared to
a real language) simple representation, but also to easily transfer the results to source languages
other than Dafny.

This fundamental change in the architecture of Delfy resulted in a complete rewrite. For the
remaining part of this report we refer to the initial implementation as the original Delfy, while
Delfy Engine or just Delfy describes the new implementation.

This chapter introduces the intermediate representation used by the Delfy Engine as well as its
internal structure and extensibility points.

2.2 Program Model (Intermediate Representation)

Delfy abstracts from a concrete source language by working on a program model. A program
model describes the types and methods of a program as well as their precise operational semantics.
To use the Delfy Engine for a particular source language, an adapter must be provided that can at
least build the program model from a program in the source language. If the adapter is bidirectional
(i.e. it can map elements of the program model back to the original source language elements), the
Delfy Engine can provide feedback directly in terms of the source language. It provides its own
type system, instruction set and is accompanied by a type checker and compiler.

Delfy represents code as Instructions and Terms. Instructions may have side-effects and contain
control flow. Terms represent the building blocks of values (constant values, local variables, etc.)
as well as a way of combining them into more complex expressions (operators, field access, array
indexing etc.). The evaluation of a term may not have any side effects.

The following sections describe Delfy’s model for representing types, methods, statements and
expressions.

6 2 The Delfy Engine

2.2.1 Type System

The Delfy program model can be seen as a statically typed programming language, meaning
that every term is assigned a single type before execution. During execution, every value that
results from the evaluation of a term must have a type that is compatible to the term’s static
type. By default, the notion of compatibility is defined over the subtype relationship. A type T is
compatible to another type U, if and only if the types are equal or T is a subtype of U. However,
this behaviour can be replaced. Finally, the static type determines which fields, methods and
operators are supported by a value of said type.

The Delfy type system is object oriented and comparable to the type systems found in main-
stream languages like Java or C#. However, it deliberately does not define the concrete semantics
of types like equality, compatibility etc. so that it may be adapted to fit the type system of the
source language.

Delfy differentiates between two different kinds of types. Nominal types are identified by a name.
Type references, on the other hand, have no name and are usually modifiers or combinations of
other types. The only kind of type reference currently implemented are generic type instantiations,
but examples for other types in this category would be tuples, pointers and C++-style references.

Nominal types provide a namespace and a name. The concatenation of both is called the fully
qualified name and must be unique in a program. Namespaces are a way of grouping types and
allow to avoid name conflicts. This feature exists only for developer convenience, as for the Delfy
Engine namespaces have no semantic meaning attached and types are always referred to by their
fully qualified name. Every type can provide fields and methods. Because the Delfy IR is not used
as a “language” that a programmer uses directly, it does not support visibility modifiers.

Methods have a name and can have zero or more parameters and results. The name of a method
does not have to be unique as long as it is possible to uniquely identify the receiver method at all
call sites (e.g. by using the parameter types, i.e. method overloading). The default method binder
uses the name and the types of all parameters to identify a method. However, this behaviour can
be replaced to match the source language.

Operators are implemented as methods with special names. When an operator is used, the type
of each operand is searched for a matching operator method. The search is conducted from left to
right and stops as soon as a matching method is found.

Methods and fields can be attached to an object instance or be static. Static fields and methods
do not expect a receiver object when they are referenced. The value of a static field is shared
across all instances of the type and can be thought of as a global variable.

The Delfy type system supports generics. Nominal types and methods can have generic type
parameters. In case a type has at least one generic parameter, we refer to it as a generic type
definition or an open type. Generic type definitions cannot be used directly in a program, but must
first be instantiated by providing a closed type for each generic parameter. When a type has no
generic parameters or was fully instantiated it becomes a closed type. Similarly, a generic method
definition must be instantiated at every call site.

Only the most basic types are directly built into Delfy. The reason for this is that many
languages have subtle differences in their type systems. The more built-in functionality is provided,
the greater are the chances that some aspect of an implementation is incompatible with a source
language, thus preventing the usage of Delfy in combination with said language. The following
types are directly built into the Delfy engine:

e Null. The null type only has a single value which refers to a non-existing object (the null

2.2 Program Model (Intermediate Representation) 7

literal). The null type takes a special role, because it is assignable to all reference types.

e Object. The root of all reference types. The object type only provides the equality operator
that uses its identity for equality.

e Boolean. The boolean type consists of two values: true and false. Each element of the path
condition as well as the path condition itself is of this type.

e Invalid. The invalid type is used for terms that cannot be properly typed. It has no value
and does not support any conversions. The Delfy IR requires all terms to have a type assigned
to them. However, there are cases where this is not possible (e.g. an operator is applied to
arguments that do not support this operator). In that case the term is typed as invalid. This
is detected by the type checker and a proper error message is generated.

The user can define additional nominal types, kinds of type references, override the method
binding logic and replace type compatibility and equality.

2.2.2 Terms

Terms are versatile building blocks for representing values. A term is either a leaf-node (e.g.
literal value, local variable, symbol) or a composite node (operator, field access, indexer) built from
other terms. Every term must have a single type, which also can be invalid. Terms have multiple
purposes, as they represent code that results in a value (e.g. the right hand side of an evaluation or
the condition of a control flow instruction), are used to represent the clauses of the path condition
and are also used as containers for values that are passed to the user program.

A central problem is the conversion between different types of representations of a value. There
are the AST representation of the source language, the AST representation of the constraint solver,
the runtime values that are passed to the concrete execution of the program and the in-memory
representation of these values, between which we need to convert. This problem is solved using
a concept called term constructors and destructors. A term constructor is a transformation that
converts a value into a term (e.g. from the constraint solver AST to term representation), a term
destructor is the inverse transformation. To perform a concrete execution using a value generated
by the constraint solver, we first use a term constructor to create the term representation from the
model provided by the constraint solver and then deconstruct the term into a runtime value that
can be used by the program.

Terms are serialisable, which allows to persist terms or exchange them between processes. This
property is essential for rerunning explorations and perform out of process exploration as described
in Section 2.4.6.

2.2.3 Instructions

The instruction set of Delfy has been kept small to make it easier to analyse. The following
instructions are supported:

e Assignment. Evaluates a source term and assigns its value to a target term.

e Branch. Evaluates a condition and, if it evaluates to true, performs a jump to an arbitrary
instruction in the same method. If the condition is false, the next instruction is executed.

e Call. Calls a method with a set of argument values and stores the results in the given target
terms.

e Constraint. Asserts or assumes that a specific condition holds.

8 2 The Delfy Engine

e Return. Exits from the current method.

Even though the instruction set is very simple, it is powerful enough to represent arbitrary
looping constructs, recursion and side-effects.

2.3 Static Analysis

Based on the program model, the Delfy Engine performs a number of static analyses that are
used internally, but are also available to clients to gain a more detailed understanding of the source
program.

As a first step, the control flow graph is calculated. The instructions of a method are first
grouped into uninterruptible segments called basic blocks. The basic blocks are then connected by
transitions that model the control flow. Transitions can have a condition that must hold, if that
transition is to be taken. However, at the end of each basic block, at least one transition must be
navigable. This allows us to calculate the number of paths through a method, detects loops and
reveals dead code.

From the control flow graph, assignments to local variables are versioned to derive the static
single assignment (SSA) form of that method. The SSA representation is usually found in the
optimiser pass of a compiler, but in our case we use it to provide information about data flow and
uninitialised variables.

By combining the data flow information with the transition conditions between basic blocks,
we can under-approximate an invariant for each entry and exit state of a basic block. Using these
invariants, we can prune paths and unfeasible counterexamples.

2.4 Dynamic Analysis
2.4.1 Exploration Engine

The following sections provide an overview of the internal structure and introduce the terminology
of the exploration engine.

An exploration takes as input a program model and a method runner that allows to execute
the program concretely with enabled instrumentation. The method runner is either provided for a
specific source language or obtained by compiling the program model into executable code (see
Section 2.4.5 for more information).

A single execution is called an ezploration run. During an exploration run, the program is both
executed concretely and symbolically. The parameters for an exploration run are the method to
explore, a path condition and a set of initial symbols (e.g. for parameters or heap structures).
As a first step, the constraint solver tries to find values for all symbols such that they satisfy the
path condition. If the constraint solver fails to generate values (either because of a timeout or
because the path condition is unsatisfiable), the exploration run ends with the respective error
status. Otherwise, the program is executed concretely with the generated values while the data and
control flow is tracked symbolically. If an assumption is not met, the path condition is extended by
the assumptions’s condition, the execution is aborted and no error is generated. If an assertion
is violated, we also append it to the path condition and we abort with an error. If any other
exception (e.g. null reference exception) occurs, we also abort with an error. All the information of
an exploration run (parameters, initial input values generated by the constraint solver, concrete
and symbolic output values, statement and branch coverage, the final path condition and the error
information) is combined into an ezploration node.

2.4 Dynamic Analysis 9

Independently of an error, we pass the exploration node to a successor provider that generates
a number of parameters for additional exploration runs. The default implementation uses the
path expansion described in Section 1.2. If there is no existing exploration node with exactly the
same parameters, we add the parameters to the search frontier. The search frontier contains all
parameter sets for which no exploration run has been executed yet. The default implementation
uses a breadth-first search to traverse the search frontier but this behaviour can be replaced to use
a depth-first, generational or custom algorithm instead.

When the exploration either reaches one of the limits (maximum duration, node count, run
count) or the search frontier is empty, the exploration ends and all exploration nodes are stored
inside an exploration report. The nodes are stored as a directed graph, where an edge represents
the successor relationship between two nodes.

2.4.2 Constraint Solving

Delfy uses the Z3[5] constraint solver by default. Z3 is a theorem prover built by Microsoft
Research which is released under the MIT license. Delfy includes term con-/destructors compatible
with Z3 for its built-in types. For custom types, the users can define their own mapping, thus
allowing to implement e.g. set types or arrays directly using the Z3 array theory[6].

Z3 uses value-based equality and has no concept of object identity or subtyping built-in. If we
want to allow type checks or object equality based on identity as part of the path condition, we
need to map these concepts to structures that Z3 can reason about. The following approach was
chosen to map subtyping, polymorphism, nullability and object identities to Z3 using integers as
well as array and set theory.

We first translate the type hierarchy in a program to sets of integers. Let T" be the set of all
types in our program, Sub(t) the set of all direct subtypes of ¢ and Id(t) a function that maps a type
t € T to a unique natural number, s.t. Vt,u € T. t=wu < Id(t) = Id(u). For each type ¢t we define
Z3 constant 7; that represents the type t. 7 is defined as an integer set 7 = {1d(t)} UU,c5up(s) Tu-
Using 7 we can now express the subtyping relationship > in Z3 using t > u < 74 D 7.

Next, we transfer object identities to integers. For each symbol o that represents an object
instance we introduce a Z3 variable of type int w,. Object equality simply translates to integer
equality, s.t. 0 = p & w, = wy,. We reserve 0 as a special object identity for null, thus nullity
translates to o = null & w, = 0.

Now we want to impose a typing restriction on instance o. For that we define a Z3 array
m : I — Ny that represents the type of object o. In Z3 types this is simply a mapping from integer
to integer. To represent t I> typeof (o), we assert w, # 0 = m(w,) € 7v. We need the presumption
w, # 0 because null is a valid value for all reference types. Z3 must now choose m(w,) as an element
of 7, which is exactly the set of all Id(u) for which u is a subtype of t (particularly u can be equal
to t). If it cannot find a type, the expression is unsatisfiable.

To translate restrictions over fields like o.f = x, we create an array for each field of typeof (o).
Similar to 7 for the type of an object, we translate the former constraint to w, # 0A f(w,) = z. We
require the non-nullity condition to prevent setting fields on null. This allows to prove assertions
like

o.f #op= f(wo) # flwp) = 0#p. (2.1)

This translation of object identity is a big departure from the translation used in the original
version of Delfy, since it did not take into account subtyping (objects of different types are always
different) and aliasing of fields (violation of (2.1) possible).

10 2 The Delfy Engine

The translation is implemented as described above with the exception of the definition of set
T. The problem is that for real programs, creating the structure 7 for all types would result in a
large overhead and in the presence of generics, this set becomes infinitely large. For that reason
we only include types that are required for expressing the constraint that we want to translate.
However, this can result in unsatisfiable constraints when we have type constraints using generic
types or multiple subtyping, because even if a type exists that would satisfy the path condition, it
is potentially not included in T'.

2.4.3 Exploration Extensions

In many cases it is desirable to influence the exploration behaviour, e.g. to guide the exploration
to certain paths, handle loops in different ways or provide support for language constructs that are
not supported out of the box. Exploration extensions provide a modular way to replace or extend
the default behaviour by either implementing one of the extensibility interfaces (e.g. for changing
the search strategy), providing additional successors to an exploration node or directly hooking
into the symbolic interpretation.

The set of active exploration extensions can vary between each exploration, providing a flexible
way of exploring the source program using different strategies.

2.4.4 Handling input-dependent loops

One application of an exploration extension that is included in the Delfy Engine is an alternative
way to treat input-dependent loops. Input-dependent loops have always been problematic for testing
because full coverage can never be reached through unrolling. However, if loops are annotated with
an invariant, we can apply a different strategy than simple unrolling.

The primary idea is to view the loop body as an independent method, using the loop invariant
as a pre- and postcondition. Furthermore, the precondition is strengthened with the loop guard.
The loop targets (i.e. the values that are modified during the loop execution) are modelled as
parameters. The loop iterations can now be viewed as individual method calls. If the loop invariant
is too weak, this is of course an over-approximation that leads to false positives.

We implemented the aforementioned approach using a combination of static analysis and
extending the symbolic interpreter. By hooking into the execution callbacks, we check on entering
a loop, if the symbolic loop condition contains an input symbol (in which case the condition is
input-dependent). If this holds, we havoc all loop targets, assume the loop guard and execute
the loop body. The first instruction inside a loop is the assumption of the invariant, constraining
the new symbols for the loop targets to the loop invariant. Then we continue exploring normally
until we reach the end of the loop. When exiting the loop, we havoc the loop targets again for the
remaining part of the method and assume the negation of the loop guard. Havocking loop targets
is only problematic if they are aliased object references. In the presence of aliasing, the potential
aliases must be tracked and also be havocked.

2.4.5 Execution Models

Delfy supports two different execution models. The best choice for the execution model depends
on the source language and its runtime environment. In summary, the first execution model only
tracks the execution using a callback on every IR instruction. The second execution model compiles
the IR and adds the callbacks during compilation automatically.

2.4 Dynamic Analysis 11

Callback-based Monitoring

In this execution model, the instrumentation of the source program obliges the adapter for the
source language. Delfy only relies on a small set of callbacks to track the symbolic state of the
program. The callbacks that are required are as follows:

e Instruction(s). Callback before the instruction with index ¢ is executed.

e Transition(:). Callback when a branch is taken where i is the index of the transition in the
control flow graph of the method.

e Constraint(i, success). Callback when an assertion or assumption is executed. success
is a boolean flag that indicates if the constraint holds.

e Enter(m). Callback when method m is entered.

e Leave(m). Callback when method m is exited.

This execution model is preferred if the language has a runtime environment that is very
different from the CLR that Delfy is using. The advantage is that the original source code and all
libraries available in the source language can be used.

IR to IL Compilation

If the source language also runs on the CLR, this execution model can save time by directly
compiling the program model into CLR types and IL code (the intermediate language used by the
CLR). The IL code is then just-in-time compiled and can be executed in the same virtual machine.
The advantage of this method is the automatic instrumentation. Since the IL code is generated
from the IR representation, the compiler can automatically insert the required callbacks into the
compiled code. Furthermore, when the user provides a mechanism to map instructions back to the
original source code (e.g. bidirectional source language adapter), the compiler emits debugging
information that can be used inside Visual Studio to debug the code while it is being explored.

2.4.6 Out-of-process exploration

A key requirement of the project was the direct integration of Delfy into the development
environment of the source language. However, during the exploration of user code, we are constantly
compiling and executing code that is still under development and potentially dangerous (e.g. infinite
recursion leads to stack overflows). If we would explore the code in the same process as the IDE,
we would risk crashes and out-of-memory exceptions from constantly loading additional code. To
mitigate this problem, Delfy supports out-of-process exploration (OOPE). When using OOPE,
Delfy parses the source code inside the host process and also sends it to an external agent process.
The agent process explores the method and sends the exploration report (i.e. the collected results)
back. Delfy then merges the exploration report with the already parsed AST, so that the user does
not see a difference between local exploration and OOPE. Should the exploration result in a crash,
the operation simply times out from the view point of the host process. The agent process can be
restarted quickly without losing any information, while a crash of the whole IDE would be fatal.

To allow this, all information that is exchanged between host process and agent must be
serialisable. For the exploration request, this is simple because it primarily consists of the source
code of the program, which is simply a string. However, the exploration report contains complex
objects and numerous references to elements of the program model. These objects all live inside
the agent process. When the host process retrieves the exploration report, Delfy automatically
replaces all references to objects outside of the exploration report (e.g. references to program model
objects) with the corresponding objects inside the host process.

12

2 The Delfy Engine

Chapter 3

Integrating Delfy and Dafny

The first part of this report introduced the new Delfy Engine that implements the core algorithms
for running dynamic symbolic execution based on a program model that generalises over an
arbitrary source language. In this chapter, we focus on integrating the Dafny language with Delfy
and examine how some of the more interesting features of Dafny are translated into the Delfy
program model.

3.1 Supported Language Features

Feature original Delfy Delfy
Classes and Methods yes yes
Objects yes yes
Quantifiers yes yes
Object construction (new) yes yes
old keyword yes yes
fresh keyword yes no
Sets partially'?2 yes>
Sequences partially!4 yes
Uninterpreted methods partially! yes
Non-deterministic values partially! yes
Assign-such-that statements | partially!'® yes
Aliasing of arguments no yes
Arrays no yes
Multidimensional Arrays no yes

Table 3.1: Supported Danfy language features

Table 3.1 provides an overview of the Dafny language features that are supported by Delfy and
compares the original Delfy with the new Delfy Engine in combination with the Dafny adapter.
In general, the new implementation supports a broader spectrum of features or improves existing
features to be more generic. The only feature that is not supported anymore is the fresh keyword.
This keyword allows to detect if an object instance was newly instantiated inside the current method

1Only for ints, nats and booleans

20nly membership, equality, inequality, union, intersection and difference operations

3 All operations of the original Delfy plus subset and proper subset relationship, disjointness.
4Only length, membership, equality and inequality.

50nly if Dafny can statically determine a range of possible values.

13

14 3 Integrating Delfy and Dafny

or one of its callees. The reason for not supporting this is not a restriction of Delfy itself, but
the relatively complex instrumentation that is needed to determine this property in the generated
executable code. To migrate this instrumentation code was not possible in the timeframe of the
project.

3.2 Translating Dafny to Delfy IR

Dafny is a class-based language making the translation of the type system to the OOP-based
Delfy IR relatively simple. Modules and nested modules are mapped to namespaces. Dafny classes
are mapped to reference types in Delfy. Dafny supports multiple types of method-like constructs
called methods, functions and predicates. All these different concepts are mapped to the generalised
method model of Delfy that supports multiple parameters and results.

For most of the Dafny statements and expressions the translation to the Delfy program model
is straight forward. However, some of the more interesting language constructs need more attention
and a combination of IR instructions to represent. The following sections describe these language
features and the implemented solutions.

3.2.1 Specifications

While Dafny supports various types of spec-
ifications, Delfy can only handle assumptions

and assertions. Preconditions are translated be?:J(-)rrz('iition = <loop condition >;
into assumptions at the beginning of a method, assert <invariant >;
while postconditions become assertions at the if lcondition goto exit;
end of a method. assume <invariant >;
// Loop body
Loop invariants are asserted after the loop goto begin;
condition is checked and assumed at the begin- oxit:

ning of the loop body and after the loop ends.
Listing 3.1 illustrates this transformation with
pseudo-code. The positioning of the assert |FRE i e e B e it R e
and assume statements is crucial to the cor-

rectness of the input-dependent loop handling

strategy introduced in Section 2.4.4.

assume <invariant >;

3.2.2 Quantifiers

Quantifiers in Dafny allow to assert properties over a bounded range, e.g. given by a lower and
upper integer bound, a set, a sequence or booleans. With exception of boolean ranges, which can
simply be expressed using a conjunction or disjunction, the quantifier expression is expanded into
an inline loop that iterates over all elements inside the range. The implementation is short-circuited,
meaning that the iteration is interrupted as a soon as the result is determined.

This implementation was chosen contrary to a solution that extends the Delfy IR with quantifiers
because they suffer from many of the same problems that loops do (e.g. input-dependentness).
This choice allows strategies that deal with loops also to be effective for quantifiers. Furthermore,
it allows for arbitrary code in the expression over which the quantifier is applied. However, it also
has the drawback that the code is more general and therefore is more difficult for the constraint
solver to deal with.

3.2 Translating Dafny to Delfy IR 15

3.2.3 Sets

Sets were implemented by providing both a special set type for Delfy and a C# implementation
of sets for use at runtime that follows the same semantics as the built-in set type of Dafny. In
contrast to the previous implementation, immutable data structures were used because they mimic
the value-type behaviour of Dafny sets much better and do not require cloning the elements at
runtime, which makes the implementation faster.

To formalise sets for constraint solving, the built-in Z3 set-logic was used. There is a potential
mismatch between the axiomatisation of sets in Z3 and in Boogie, which could lead to unnecessary
test cases or missed bugs in the worst case. However, the axiomatisation is pluggable and could be
replaced later with a better axiomatisation, found through experimentation.

Additionally to the membership, equality, inequality, union, intersection and difference opera-
tions that are supported by the original Delfy, the new implementation also supports the subset and
proper subset relation as well as disjointness. Set cardinality is only supported for code generation,
but cannot appear as part of the path condition because Z3 sets have no notion of cardinality.

3.2.4 Arrays

A new feature is the support for arrays and multidimensional arrays. Arrays use the built-in
array types of the CLR as runtime representation. To formalise arrays in Z3 a slight adaption
of the scheme introduced in Section 2.4.2 is used. The array length is encoded as a field of the
array object. For multidimensional arrays a different field for each dimension is used. The array
elements are represented using Z3’s array theory[6]. The data structure is an array of an array of
the element type. The outer array is indexed using the object identity w and the index for the
inner array corresponds to the index of the array element. For multidimensional arrays, the indices
are flattened by iteratively adding the index in one dimension and then multiplying with the array
length in the next dimension.

This formalisation allows aliasing, nullity of arrays and the appearance of the array length in
all dimensions as well as references to any array element as part of the path constraint.

16

3 Integrating Delfy and Dafny

Chapter 4

Combining Verification and
Dynamic Symbolic Execution

In this chapter, we present how we combine the information from the static analysis, the exploration
data from the dynamic symbolic execution and the results of the static verification to provide
different types of feedback to the developer. We also show how this feedback is incorporated into
the development environment and visualised for the user.

4.1 Colour-coding of assertions

All assertions in the explored part of the code are highlighted in different colours to reflect their
status. Figure 4.1 shows how assertions are highlighted using the following colours:

e Green. Assertions are highlighted in green if they were either proved by the static verifier
or by full exploration of the method.

e Yellow. An assertion cannot be proved by the static verifier, but we can also not generate a
counterexample that violates the assertion. In this case the developer should try to simplify
the code until we can either find a counterexample or the proof can be found.

e Red. We found a set of input parameters that leads to an assertion violation. In this case,
we provide a smart tag that starts a debugging session with a counterexample that results in
this assertion violation.

4.2 Proving assertions by exhaustive search

If we can fully explore an assertion by enumerating all possible paths and never run into an
assertion violation, we have proven that the method is correct. This is most effective for code that
is missing specifications or where the specifications are too weak. Since the prover summarises
loops/method calls by their invariant/pre- and post condition, while DSE simply unrolls/inlines
the code, DSE can be more effective in these situations.

In Figure 4.2 we see the feedback of the IDE for a code snipped that uses an underspecified

function (Square2). While Dafny cannot prove the correctness because of a missing post condition,
Delfy can show that the assertion always holds.

17

18 4 Combining Verification and Dynamic Symbolic Execution

9 var index 1| 8 <= index < 1@;
16 assert alindex] @== @;
12 SESEri o — it
13}

15 [Hmethod Verified(i: int) {
6 var squared := Squaref{i};
assert squared == i*i;

Figure 4.1: Delfy highlights assertions with different colours to indicate their status (line 10:
no counterexample, line 12: counterexample found, line 17: verified). The red dot indicates a
verification error.

25 [Fmethod ExhaustiveSearch(i: int) {
26 var squared = Square2(i);
27 assert {:verified under true} i*i;

Figure 4.2: Delfy can prove an assertion, while Dafny displays an error (red dot).

4.3 Rewriting proved assertion to strengthen verification

If DSE can prove an assertion, it inserts an annotation in the source code ({:verified_under
true}) that tells the static verifier that it does not need to verify this assertion but instead can
assume it to be true. In the case where the prover first failed because of a missing specification,
it can now continue and prove parts of the code on which it previously failed. Similarly, we can
prune exploration paths if we know, that certain assertions are provably correct (there is no need
to invert then).

Now we are in the situation where the static verification can benefit from the results of the
dynamic symbolic execution and vice versa. Through applying verification and dynamic symbolic
execution alternatively, straight-line code with missing or weak specifications can now be verified
as seen in Figure 4.3.

34 method Abs(i: int) returns (j: int)

35 ensures j == if 1 < @ then -i else i;

36 B

37 var squared := Square2fi);

38 assert {:verified_under true} squared == i*i;
39 return Sqri(squared);

e |}

a1 |

Figure 4.3: Dafny proves the post condition relying of Delfy the prove the assertion in line 38.

4.4 Additional Features

The following features were not core requirements for the wizard and do not use all of the
collected information (i.e. a combination of verification and exploration data), but still provide
useful and interesting functionality. While mostly existing for convenience, features like the
debugging of counterexamples can have a great positive impact on developer productivity.

4.4 Additional Features 19

4.4.1 Debugging of counterexamples

Because Dafny uses the IR to IL compilation and the Danfy adapter works bidirectionally (i.e.
it can map elements of the program model back to the source program), we can provide source
level debugging of Dafny code including the inspection of variables (watch window) and setting
break points as seen in Figure 4.4. By combining this with the ability to persist and rerun previous
explorations, it is possible to interactively debug through a failing run step-by-step. This can help
developers to find and resolve bugs quickly when a program is too complex to detect a bug simply
by looking through the code.

method Counterexample(xs: seq<int», ys: set<int>) RUEGEN > M X
requires forall v | y in ys :: y in xs; Mame Value
1 B B @ xs {11, 15,121}
var ys2 1= ys;
var xs2 := []; @ 0] {11}
111 {15}
// Create sequence from set. @ [2]] {12}
while (ys2 I= {}) @ FRaw View
decreases |ys2| @ ys {12, 15}
{ @ g2 {51}
var y :| y in ys2; @ ys2 {12}
L= xs2 + [y]H @y {15}
ys2 = ys2 - {y};
}
assert [xs == |x32]|;
i Autos Locals | Watch 1

Figure 4.4: Live debugging session for Dafny code with breakpoint and watch window.

4.4.2 Visualising the control flow

The control flow of each method is calculated as a result of the static analysis that is performed
by the Delfy Engine. Our extension allows to visualise the control flow as an interactive directed
graph. The graph shows the individual basic blocks, the possible transitions with their respective
condition as well as the invariant state information that is derived by the static analysis. While
being especially helpful during the development of the extension itself, there are also applications
for educational purposes, e.g. for introduction to program analysis or formal methods.

4.4.3 Exploration coverage information

During an exploration, the Delfy Engine uses the callbacks to collect statement and branch
coverage information. When the statement coverage flag is enabled, code that was executed during
an exploration is highlighted in green, while unreached code is marked in red. This can guide the
developer to the parts of the program that are not explorable by Delfy and therefore direct them
to areas potentially containing bugs.

The branch coverage is automatically visualised as part of the control flow graph described in
the previous section. Before the first exploration is complete, all edges are drawn in black. After
an exploration report is available, the edges are coloured green if they were transitioned at least
once, otherwise they are coloured red. Figure 4.5 shows how we visualise the control flow as well as
statement and branch coverage.

4.4.4 Auto-Exploration

After selecting an entry method for exploration, the source code of the current file is automatically
monitored for changes. When the changes in the document stop for a short amount of time and

20 4 Combining Verification and Dynamic Symbolic Execution

/{ Coverage and control flow -------------- Explorations | Assertions | Basic Blocks
methed Coverage(i: int) returns (j: int) t
requires 1 »= @; 12 // State: [j-» 4G+ 1 G- DN (UG>=0) | G==0) | i>=0
R o if ((< 0)) goto 4
. /f State: [j > {(= 10,5 G- DA G >=0) || (== 0| (== D) ¢

jor=ds
while decreases j*j {

case j < @ =» W &;
=== n

] -
>8> 47/ States [j-> (= 1), i, G- 131 (G < 0) &Be (i >= 0)

CESE.
g == = 2.4/ State: (> (G + 1.1, G- 1
} 71 State: [j -> (j + 1)] | i >= 0) if (> 0) goto 5

* |
| 3: 7/ State: i -> 46+ 10 i i - VALK

(=R

Figure 4.5: Visualisation of control flow and coverage information.

the source code does not contain any syntax errors, the method is automatically reexplored in
the background and all the annotations are updated. Even if the document changes during the
exploration, the annotations are displayed at the correct position based on the change history since
the start of the last exploration. If auto-exploration is not desired, e.g. because a method is still in
early development, it can be disabled manually.

Chapter 5

Related Work

Various other approaches to combining verification with systematic testing already exist. YOGI[16]
is similar to our work in that it searches for proof of a specific property and also tries to find a
test that violates this property. However, the coupling between verification and test generation is
bidirectional and thus tighter than in our approach, where the feedback only flows from Delfy to
Dafny. The idea of combining unsound static checkers with dynamic test generation is explored in
works like Check’n’Crash [3], DSD-Crasher [4], DyTa [9].

Dafny[13] is a programming language with built-in specification constructs to support sound
static verification. The Dafny verifier is preferably run in an integrated development environment
(IDE)[14, 15], which extends Microsoft Visual Studio. Similar to our wizard, it displays verification
errors inside the source code editor.

Boogie[1] is an Intermediate Verification Language (IVL) for describing proof obligations to be
discharged by a reasoning engine, typically an SMT solver. Boogie is similar to the Delfy Engine
by targeting various source languages using an intermediate abstraction. While Delfy focuses on
dynamic symbolic execution, Boogie is aimed at static verification.

Pex[18] is a white-box testing tool based on dynamic symbolic execution that automatically
explores methods and generates test-cases. Pex works on CIL level and can therefore also be used
on the compiled Dafny code. A comparison between Pex and the original Delfy can be found in
Patrick Spettel’s master thesis[17].

TronClad[11], developed by Microsoft Research, lets a user securely transmit their data to a
remote machine with the guarantee that every instruction executed on that machine adheres to a
formal abstract specification of the app’s behaviour. One of the key verification tools used in its
development is Dafny.

21

22

5 Related Work

Chapter 6

Conclusion

In this project we developed a language-agnostic engine for dynamic symbolic execution based on a
model of the source program. The chosen architecture for this engine provides a high flexibility for
modelling different type systems and has various extensibility points, not only to support complex
source language constructs, but also to substitute and improve various aspects of the exploration
algorithm itself. Out of the box, Delfy supports subtyping, inheritance, value types, reference
types with heap state and aliasing. Performance and stability were considered from the start and
manifest themselves in features like concurrent and out-of-process exploration.

We use this engine to provide dynamic symbolic execution for Dafny and are able to support more
language features and achieve shorter exploration times than an already existing implementation.
By combining the information from the verifier with the results of the program exploration, we can
help the user during development by providing counterexamples, proving properties of straight-line
code and prioritising assertions based on their path coverage. All this information is visualised
directly inside the development environment and by exploring the code automatically in the
background, the developer receives fast and reliable feedback. Additional features like debugging
based on counterexamples and coverage information further enhance the development process.

We see the potential applications of the wizard mostly in the area of eduction and research, e.g.
for the IronClad project that already uses Dafny as its main verification tool.

23

24

6 Conclusion

References

(1

2

3

[4

5]

6

[7

8

19

(10]

(11]

(12]

(13]

(14]

(18]

[16]

(17]

(18]

(19]

Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In FMCO, volume 4111 of LNCS, pages 364-387. Springer, 2005.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. EXE: Automatically
generating inputs of death. In CCS, pages 322-335. ACM, 2006.

Christoph Csallner and Yannis Smaragdakis. Check 'n’ Crash: Combining static checking and testing. In ICSE, pages
422-431. ACM, 2005.

Christoph Csallner, Yannis Smaragdakis, and Tao Xie. DSD-Crasher: A hybrid analysis tool for bug finding. TOSEM,
17:1-37, 2008.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In TACAS, volume 4963 of LNCS, pages
337-340. Springer, 2008.

Leonardo de Moura and Nikolaj Bjgrner. Generalized, efficient array decision procedures. In FMCAD, pages 45-52.
IEEE Computer Society, 2009.

Patrick Emmisberger. Dynamic test generation with static fields and initializers. Bachelor’s thesis, ETH Ziirich,
Switzerland, July 2013.

Manuel Fiahndrich, Michael Barnett, and Francesco Logozzo. Embedded contract languages. In SAC, pages 2103-2110.
ACM, 2010.

Xi Ge, Kunal Taneja, Tao Xie, and Nikolai Tillmann. DyTa: Dynamic symbolic execution guided with static verifi-
cation results. In ICSE, pages 992-994. ACM, 2011.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated random testing. In PLDI, pages
213-223. ACM, 2005.

Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and Brian Zill. Ironclad
apps: End-to-end security via automated full-system verification. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 165-181, Broomfield, CO, October 2014. USENIX Association.

Claire Le Goues, K. Rustan M. Leino, and MichatMoskal. The Boogie verification debugger. In SEFM, volume 7041
of LNCS, pages 407-414. Springer, 2011.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR, volume 6355 of
LNCS, pages 348-370. Springer, 2010.

K. Rustan M. Leino and Valentin Wiistholz. The Dafny integrated development environment. In Formal-IDE, volume
149 of Electronic Proceedings in Theoretical Computer Science, pages 3—15. Open Publishing Association, 2014.

K. Rustan M. Leino and Valentin Wiistholz. Fine-grained caching of verification results. In CAV, LNCS. Springer,
2015. To appear.

Aditya V. Nori, Sriram K. Rajamani, Saideep Tetali, and Aditya V. Thakur. The YOGI project: Software property
checking via static analysis and testing. In TACAS, volume 5505 of LNCS, pages 178-181. Springer, 2009.

Patrick Spettel. Delfy: Dynamic test generation for dafny. Master’s thesis, ETH Ziirich, Switzerland, September
2013.

Nikolai Tillmann and Jonathan de Halleux. Pex—White box test generation for .NET. In TAP, volume 4966 of
LNCS, pages 134—153. Springer, 2008.

Dries Vanoverberghe, Nikolaj Bjgrner, Jonathan Halleux, Wolfram Schulte, and Nikolai Tillmann. Using dynamic

symbolic execution to improve deductive verification. In Model Checking Software, volume 5156 of Lecture Notes in
Computer Science, pages 9—25. Springer, 2008.

25

ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Integrating dynamic test generation with sound verification

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):
Emmisberger Patrick

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Si/g\nature(s) :
$

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

	1 Introduction
	1.1 Dafny
	1.2 Dynamic Symbolic Execution
	1.3 Delfy
	1.4 Goals and Motivations

	2 The Delfy Engine
	2.1 Introduction
	2.2 Program Model (Intermediate Representation)
	2.2.1 Type System
	2.2.2 Terms
	2.2.3 Instructions

	2.3 Static Analysis
	2.4 Dynamic Analysis
	2.4.1 Exploration Engine
	2.4.2 Constraint Solving
	2.4.3 Exploration Extensions
	2.4.4 Handling input-dependent loops
	2.4.5 Execution Models
	2.4.6 Out-of-process exploration

	3 Integrating Delfy and Dafny
	3.1 Supported Language Features
	3.2 Translating Dafny to Delfy IR
	3.2.1 Specifications
	3.2.2 Quantifiers
	3.2.3 Sets
	3.2.4 Arrays

	4 Combining Verification and Dynamic Symbolic Execution
	4.1 Colour-coding of assertions
	4.2 Proving assertions by exhaustive search
	4.3 Rewriting proved assertion to strengthen verification
	4.4 Additional Features
	4.4.1 Debugging of counterexamples
	4.4.2 Visualising the control flow
	4.4.3 Exploration coverage information
	4.4.4 Auto-Exploration

	5 Related Work
	6 Conclusion

