
Automated Checks of Implicit Assumptions on

Textual Data

Radwa Sherif Abdelbar
Supervisors: Dr. Caterina Urban, Alexandra Bugariu

March 2018

1 Introduction

In the field of data science, tremendous effort and time are invested in data
preparation and data cleaning. A recent survey [1] among data science profes-
sionals shows them to list “dirty data” among the most challenging problems
of the field. [2] presents a taxonomy of dirty data which classifies it into three
main categories: missing data, wrong data and unusable data.

Missing data includes null values where a no-null-allowed constraint is sup-
posed to be enforced. Wrong data can occur in the form of wrong data types,
out-of-range values and duplicate data that violates uniqueness constraints. Un-
usable data is neither missing nor wrong, but might yield incorrect results for
an analysis or query. For example, an inconsistency between the age and birth
date fields, including different values for the salary of an employee or different
representations of date values. Unusable data is usually a result of data main-
tained across different databases or non-standard representation of some values
(e.g. dates).

If programmers are not careful in the assumptions they make about the
input data (for example, assumptions about the absence of null values or specific
data formats) the program might crash. More dramatically, the program might
continue to run normally, but produce incorrect results. This is especially hard
to detect in the case of data science algorithms, where the influence of wrong
input data on the output of the algorithm cannot be quantified due to the
statistical nature of such algorithms.

In the next section, we present two code examples in which programmer
assumptions about input data might cause various problems.

2 Example

Listings 1 and 2 are excerpts from a program that performs genetic ancestry
analysis in Python.

1

In Listing 1, the programs reads input from the two files at the same time.
It extracts the reference and alternate base from the file yri.csv and uses this
information to translate the DNA representation in anon.csv from using letters
(A and G) to using numbers (0 and 1).

1 y r i = open (’ y r i . csv ’)
2 anon = open (’ anon . csv ’)
3

4 f o r l i n e in y r i :
5 row = l i n e . s p l i t (” , ”)
6 g = anon . next () . s t r i p () . s p l i t (” , ”) [4]
7 r e f = row [3]
8 a l t = row [4]
9

10 i f g == r e f+r e f :
11 pr in t (” 0 |0 ”)
12 e l i f (g == r e f+a l t) | (g == a l t+r e f) :
13 pr in t (” 0 |1 ”)
14 e l i f g == a l t+a l t :
15 pr in t (” 1 |1 ”)
16 e l s e :
17 r a i s e ValueError

Listing 1: Example of Assumptions on String Structure

From Lines 5 and 6, one can infer the assumption that the two lines contain
comma-separated rows, one data row per input file line. Lines 6 through 8 make
assumptions about the number of elements present in each row. For example,
if one line in the yri.csv file has less than five elements, an error will occur on
Line 8. The if-else statement starting on Line 10 makes the assumption that
the variable g is one of four combinations resulting from the concatenation of
the variables alt and ref. If that is not the case, a ValueError is thrown.

Listing 2 attempts to extract a subset of the information out of the file
yri.csv. Again, we have the assumption of the comma-separated values. Lines 4
and 5, however, make a more complex assumption. They assume that we have
at least ten values in the array and that all elements starting from index 9 are
separated by a colon.

1 i n f i l e = open (’ y r i . csv ’)
2 f o r l i n e in i n f i l e :
3 row = l i n e . s t r i p () . s p l i t (” , ”) #read from y r i
4 genotype = row [9 :]
5 genotype = [i . s p l i t (” : ”) [0] f o r i in genotype]
6 pr in t genotype

Listing 2: Example on More Complex Data Properties

We have observed, by inspection of code examples, several interesting types
of assumptions about textual data that are present in Python code. These types
are related to the properties listed below:

• The layout of the data in the input file. For example, a program could
assume that its input is a list of strings distributed one per line in the input
data file while in reality the strings are distributed in a more arbitrary
fashion. (Listing 1, lines 5 and 6).

2

• The composition of the textual data. This includes assumptions about the
alphabet composing the text, for example that it consists only of lower case
English alphabets, and assumptions about the structure of the text such
as that it matches a certain regular expression (Listing 2, line 5).

• Dictionary key assumptions, such as taking for granted the presence of a
certain set of strings as keys in a dictionary while in may be the fact that
those strings are missing.

• Relational assumptions between strings. For example, assuming that a
string is a concatenation of several others (Listing 1, lines 10 through 17).

3 Related Work

A variety of techniques and tools have been developed for the purpose of data
cleaning. [3] lists some data cleaning approaches and some of the tools which
implement them. Data profiling tools, for instance, are specialized in collecting
metadata about each attribute of the input data, this metadata is then used to
detect errors in the data. On the other hand, data mining tools are concerned
with inferring relationships between different data fields and checking integrity
constraints among attributes. Another category of tools are domain specific,
such as tools that focus on validating and formatting names and addresses, and
others that specialize in duplicate elimination.

Another input checking tool is CheckCell [4], an add-in for Microsoft Excel
and Google Spreadsheets, which presents an approach called data debugging.
CheckCell works by performing statistical analysis on the input data and point-
ing out input cells that have a disproportionately large impact on the output, the
underlying assumption being that the value of the output changes significantly
when an erroneous data value is corrected.

4 Contribution

All of the aforementioned approaches are characterized by the fact that they
require the input data itself to be available in order to validate its correctness.
In fields such as medicine and genetics, data may not be available due to privacy
issues and regulations.

In this thesis, we present an approach to ensure the correctness of input
data that functions independently of the data itself. Our approach uses static
analysis of programs to infer implicit assumptions made about the input data
such that if the data does not fulfill those assumptions the program crashes
or produces incorrect results. Then, these assumptions are fed into an input
checker, integrated in a text editor, which highlights to the user the input values
which do not fulfill the assumptions and are likely to cause failure or erroneous
output.

3

We build on the progress achieved in [5]. We extend the static analyzer which
currently infers assumptions on numerical values to also infer assumptions about
string values and textual data. It infers non-relational assumptions about the
type and possible ranges of numerical data, while supporting only a limited form
of relational assumptions. We will extend the analyzer to provide full support
for relational assumptions that can be represented using the octagon domain [6].
The input checker will also be extended to accommodate for the new features
added to the static analyzer and will be implemented as a text editor plugin for
a better user experience.

5 Core goals

• Collecting examples. We collect Python code samples from various sources
with the aim of finding interesting assumptions to account for in our static
analysis. Sources of code samples include Codeforces, an online competi-
tive programming platform which makes accepted solutions code available
for inspection. Online courses related to genomic data processing are also
an interesting source for code samples, such as that in Listing 2, due to
the variety of string processing operations carried out by those programs.

• Analysis design. Our analysis will be based on the Abstract Interpretation
framework [7], which aims to approximate program behaviour with regard
to certain properties using computer-representable objects. A design de-
cision will be made about which of the string abstract domains available
in the literature [8, 9] should be used, combined or adapted to suit our
problem. Building on the work of the previous thesis, we will implement
an over-approximation of the program semantics. We will infer the pre-
conditions necessary to make a program run correctly. Section 3 as well as
Listings 1, 2 and 3 refer to some of the assumption types we are interested
in.

• Support for octagon domain. Numerical analysis is indispensable for string
analysis. For example, we need to infer assumptions about string lengths
and indexes. The current analyzer supports relational assumptions on
numerical data by implementing only a subset of the octagon domain.
It supports order, join, meet and widening operators without a closure
algorithm and does not support the filter operator. The filtering operator
is limited to relations of the form x • y where • ∈ {>,<,≥,≤}. The
relational assumption on string lengths on Line 3 in Listing 3 would be
missed under the current analysis. We will extend the analyzer to support
relations that can be represented by octagon domains using the Python
interface of the Elina library [10].

• Input checker implementation. The input checker will be enhanced to
check for assumptions inferred by the new static analyzer. The current
input checker is implemented as a standalone tool with a graphical user

4

interface. A user study conducted in the previous thesis showed that the
tool would provide a better user experience if implemented as a plugin to
a text editor or an IDE. We will also implement this.

• Evaluation. The analysis and input checker will be evaluated using two
methods: comparison of assumptions produced by the analysis with the
assumptions produced by manual inspection of code examples and a user
study to test the usability of the input checker.

1 CHARS PER LINE = 100
2 s1 , s2 = raw input () , raw input ()
3 i f l en (s1) + len (s2) < CHARS PER LINE:
4 pr in t s1 , s2
5 e l s e :
6 r a i s e ValueError

Listing 3: Relational assumption on string lengths

6 Extension goals

• Analysis with under-approximation. [5] performs an over-approximation of
the program semantics, meaning that it does not allow for false positives.
It presents the user with the necessary errors to fix so that the program
may function correctly. As an extension goal, we would like to implement
an analyzer that uses under-approximation, meaning that it may wrongly
flag correct input data as erroneous, but in return guarantees that no
errors are missed. We would like to then combine the two approaches to
achieve as precise an approximation as possible.

• Locating missing input lines. So far the input checker provides no infor-
mation about the location of missing data lines, the assumption being that
they are located at the end of the file. We would like to implement an
algorithm that detects the possible location of missing data lines.

• Synthesis of data cleaning code. So far the input-checker lets the user
correct the problematic input values manually. We would like to generate
code that performs data cleaning for the user automatically.

• Support for function calls. The analyzer currently supports sequential
code execution inside one procedure. We would like to extend the analysis
to be inter-procedural.

References

[1] Kaggle: The state of data science and machine learning, 2017.

5

[2] Won Kim, Byoung-Ju Choi, Eui-Kyeong Hong, Soo-Kyung Kim, and Do-
heon Lee. A taxonomy of dirty data. Data Mining and Knowledge Discov-
ery, 7(1):81–99, Jan 2003.

[3] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[4] Daniel W Barowy, Dimitar Gochev, and Emery D Berger. Checkcell: data
debugging for spreadsheets. In ACM SIGPLAN Notices, volume 49, pages
507–523. ACM, 2014.

[5] Madelin Schumacher. Automated generation of data quality checks. Mas-
ter’s thesis, ETH Zurich, 2018.

[6] Antoine Miné. The octagon abstract domain. Higher-order and symbolic
computation, 19(1):31–100, 2006.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 238–252. ACM, 1977.

[8] Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. Static analysis of
string values. In Shengchao Qin and Zongyan Qiu, editors, Formal Meth-
ods and Software Engineering, pages 505–521, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[9] Roberto Amadini, Alexander Jordan, Graeme Gange, François Gauthier,
Peter Schachte, Harald Søndergaard, Peter J. Stuckey, and Chenyi Zhang.
Combining string abstract domains for javascript analysis: An evaluation.
In Axel Legay and Tiziana Margaria, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 41–57, Berlin, Heidelberg,
2017. Springer Berlin Heidelberg.

[10] Gagandeep Singh, Markus Püschel, and Martin Vechev. A practical con-
struction for decomposing numerical abstract domains. Proceedings of the
ACM on Programming Languages, 2(POPL):55, 2017.

6

