
Advanced Counterexample Generation in
Viper

Bachelor’s Thesis Description
Raoul van Doren

Supervised by Dr. Marco Eilers and Aurel B́ılý
under Prof. Dr. Peter Müller

March 24, 2023

1 Introduction

Viper [1] is an automatic verifier for permission-based reasoning developed
at ETH Zurich. It checks the validity of pre- and postcondition, assertions,
and safety properties, focusing on permission-based reasoning [2]. Frontend
verifiers, such as the modular verifier for Python programs Nagini, can build
their verification infrastructure on top of Viper by translating their programs
to the Viper intermediate language.

Viper has two backends to verify the correctness of its programs, the
Symbolic Execution (SE) backend [3], internally called Silicon, and the Ver-
ification Condition Generation (VCG) backend [4], internally called Carbon.

Silicon is based on sound symbolic execution. It generates logical con-
straints for the state of the program at each point in the Viper program.
An automated theorem prover, the Z3 SMT solver, is then used to examine
whether the specifications are satisfied by the program to verify the correct-
ness of a program.

Carbon does not directly translate the input Viper program to SMT but
instead works by translating the program into Boogie, another verification
language. Boogie then generates logical expressions for the Viper program.
These verification conditions are then checked using the Z3 SMT solver to
determine the correctness of the Viper program.

1

A counterexample [5] is a set of inputs that violates the correctness of
a program during program verification. Counterexamples provide essential
information to the programmer as they offer feedback regarding the cause of
the verification failure. This information helps the programmer to identify
and correct errors more easily. Verification can fail for various reasons: unin-
tended behavior, overly strict specifications, or insufficient automation in the
verification backend. Without counterexamples, it can be hard to identify
the cause of the problem in the code, especially in complex programs. By
providing information about the input that caused the verification to fail,
counterexamples make it easier for programmers to correct their code.

Both Viper backends can generate counterexamples. However, the two
backends currently provide a different format for their counterexample rep-
resentation. Additionally, not all parts of the Viper language are supported
in the counterexample generation of both backends. In the following, we
will describe which parts of the language are included in the current state of
counterexample support of the backends:

• Basic / primitive types: These include types like integers, Booleans
and permission amounts. Permissions in Viper are rational numbers
used to specify which heap locations can be accessed by an operation.
Both backends support the representation of these types in their coun-
terexamples.

• References: References are built-in types that hold values pointing to
objects. The counterexamples of both backends support references.

• Sequences: Finite sequences of elements of a particular type are a built-
in type in Viper. Their representation in counterexamples is imple-
mented in Silicon but not in Carbon. However, a problem with the
representation of sequences in Silicon’s counterexamples is that it does
not output exact values for every index and the sequence length. In-
stead, it interpolates to construct values for all entries based on partial
knowledge, since SMT solvers typically provide partial models. This
means that the SMT solvers report values for a finite number of argu-
ment combinations rather than for all possible argument combinations.
Although an exact representation of every value in the sequence might
be unfavorable for long sequences, Silicon’s interpolation technique uses
the available information to provide a complete representation of the
sequence.

2

� �
method update(values: Seq[Int]) returns (updatedValues: Seq[

Int])

requires |values| > 3

ensures |values| == |updatedValues|

ensures updatedValues [0] != updatedValues [1]

ensures updatedValues [1] != updatedValues [2]

{

updatedValues := values [0 := 0]

updatedValues := updatedValues [1 := 42]

updatedValues := updatedValues [2 := 42]

}� �
Listing 1.1: The code defines a method “update” that takes a sequence of integers which
has at least length 3 and updates this sequence by replacing the first three elements with
the integers 0, 42 and 42, respectively. The postconditions ensure that the initial sequence
and the updated sequence have the same size and that the first and second, and the second
and third value of the updated sequence are not equal. As the method sets the second
and third value of the updated sequence to 42, the third postcondition is violated.

counterexample :
model at l a b e l o ld :
va lue s <− (Seq<Int >! va l ! 1) : [4 2 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42]
updatedValues <− (Seq<Int >! va l ! 4) : [0 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42]
on re turn :
va lue s <− (Seq<Int >! va l ! 1) : [4 2 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42]
updatedValues <− (Seq<Int >! va l ! 4) : [0 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 , 42 ,
42 , 42 , 42 , 42 , 42 , 42 , 42]

Listing 1.2: The counterexample generated by Silicon for the code from Listing 1.1 shows
the “values” and “updateValues” sequences with specific values for the old and return label.

3

Fai lureContextImpl (Some(va lue s −> T@U! va l ! 6
updatedValues −> T@U! va l ! 2 0))

Listing 1.3: The counterexample generated by Carbon for code from Listing 1.1 only gives
names for the “value” and “updatedValues” sequences, but no information about the in-
teger values in the sequence.

• Sets and Multisets: While sets are supported for the counterexamples
generated by Silicon, neither backend supports multisets. Due to the
partial model received from the SMT solver, Silicon’s counterexample
representation for sets has the same problem as its representation of
sequences.

• Heap: Viper has a built-in notion of a program heap and permissions
to memory locations. Accessing a heap location requires the corre-
sponding permission. Recursive predicates, magic wands, and quan-
tified permissions are the features supported by Viper to specify and
reason about unbounded heap structures.

– Silicon maintains a symbolic heap during symbolic execution, and
knows, at any point in the program, which fields and predicates are
accessible, as well as their receivers and permission amounts. Field
chunks map a field receiver to a location value and a permission
amount.

– Carbon, on the other hand, encodes the heap into a global vari-
able, a map from locations to values. Permissions are defined
using permission masks stored in the variable Mask, which map
locations to Booleans.

While Carbon does not provide any counterexample support for heaps,
Silicon processes field chunks and predicate chunks. However, the final
counterexample representation of the symbolic execution backend only
covers field chunks.

• Predicates: In Viper, recursive predicates are used to specify unbounded
data structures on the heap, such as linked lists and trees. Neither
backend shows predicates in its counterexample representations.

4

� �
field left: Int

field right: Int

predicate tuple(this: Ref) {

acc(this.left) && acc(this.right)

}

method setTuple(this: Ref , l: Int , r: Int)

requires tuple(this)

ensures tuple(this) && (unfolding tuple(this) in this.left

+ this.right) == old(unfolding tuple(this) in this.left

+ this.right + 1)

{

unfold tuple(this)

this.left := l

this.right := r

fold tuple(this)

}� �
Listing 2.1: The code implements a method “setTuple”. The postcondition of this method
ensures that the sum of the values of “this.left” and “this.right” is one more than the sum
of their old values, but this condition does not hold.

counterexample :
model at l a b e l o ld :
t h i s <− Ref ($Ref ! va l ! 0) {
}
l <− −410
r <− −410
on return :
t h i s <− Ref ($Ref ! va l ! 0) {
}
l <− −410
r <− −410

Listing 2.2: The counterexample generated from Silicon for the code from Listing 2.1
shows specific values for the fields, but has no representation of the predicate.

Fai lureContextImpl (Some(r −> (− 886)
t h i s −> T@U! va l ! 7
l −> 264))

Listing 2.3: The counterexample generated from Carbon for code from Listing 2.1 shows
the values of the local variables. However, it does not show the predicate or directly show
the values of the fields inside the predicate.

5

• Magic Wands: Magic wands are a binary connective that provides the
ability to express guarantees about future additions to the state by
promising that if combined with a state satisfying one assertion, it can
be exchanged for the other assertion. In Viper, magic wands are used
to represent permissions to partial data structures. Neither of the two
backends support this element in their counterexample representations.

• Quantified Permissions: Quantification permissions are used to specify
unbounded heap structures in Viper. Both Carbon and Silicon do not
yet provide counterexample support for this feature.

� �
field first : Ref

field second : Ref

method inc(nodes: Set[Ref], x: Ref)

requires forall n:Ref :: { n.first } n in nodes ==>

acc(n.first) &&

(n.first != null ==> n.first in nodes)

requires forall n:Ref :: { n.second } n in nodes ==>

acc(n.second) &&

(n.second != null ==> n.second in nodes)

requires x in nodes

{

var y : Ref

if(x.second != null) {

// permissions covered by preconditions

y := x.second.first

// violation of permissions

y.first := null

}

}� �
Listing 3.1: The code implements a method called “inc”: If the “second” field of the refer-
ence “x” is not null, the “first” field of “x” is assigned to “y”. The first assignment in the
“if” block is allowed as the preconditions ensure that the reference is accessible and that
the value is in the “nodes” set. However, the second assignment in the “if” block violates
the permissions as permission to “y.first” is not given in the case that node “y” is null.
Thus, we have a quantified permission violating correctness.

counterexample :
model at l a b e l o ld :
nodes <− (Set<$Ref>! va l ! 0) : {}
x <− Ref ($Ref ! va l ! 0) {
}

6

y <− Null ($Ref ! va l ! 2)
on return :
nodes <− (Set<$Ref>! va l ! 0) : {}
x <− Ref ($Ref ! va l ! 0) {
}
y <− Null ($Ref ! va l ! 2)

Listing 3.2: The counterexample generated from Silicon for the code from Listing 3.1 does
not show any values for the set of nodes, for the nodes and for their fields.

Fai lureContextImpl (Some(nodes −> T@U! va l ! 6
x −> T@U! va l ! 11
y −> T@U! va l ! 1 7))

Listing 3.3: The counterexample generated from Carbon for the code from Listing 3.1 only
shows names for the nodes, but it assigns no values to the fields of a node which prove the
violation of the permissions in the code.

• Domains: Domains are types that are defined by the programmer.
They consist of a type name and a block for newly defined function
declarations and axioms. Silicon outputs a value for all domain func-
tion instances of each domain and type instantiation in its counterex-
amples [6]. Carbon does not include domains in its counterexample
representation.

This thesis aims to make the quality and the representation of the gen-
erated counterexample independent of which Viper backend was used. That
will require: (1) creating a common format for counterexamples across the
two backends, (2) extending the verification condition generation backend’s
counterexample support to the current counterexample generation capabili-
ties of the symbolic execution backend, and (3) improving the capacities of
the counterexamples of the symbolic execution backend by adding support
for quantified permissions and possibly other features.

2 Goals

2.1 Core Goals

• First, create a common counterexample format for both backends, mak-
ing it easier for the programmer to use. To achieve this standard for-

7

mat for counterexample representations, the following points should be
worked on:

– Examine the existing counterexample representation of Silicon and
determine which elements are specialized to its counterexamples.
Those elements should be changed to the newly introduced con-
sistent counterexample format chosen for both backends.

– Identify the counterexample entries the two backends have in com-
mon and consolidate them into one general entry such that both
backends can use the standardized counterexample representation.

– Find a general representation for counterexamples with partial
knowledge.

• Add support to the existing counterexample representation of the ver-
ification condition generation backend such that it provides the same
functionality for counterexamples as the symbolic execution backend.
Design a syntax that represents those elements in the same counterex-
ample format as the symbolic execution backend does. This includes
analyzing how the symbolic execution backend provides counterexam-
ple support for the types and what information (e.g., fields, values,
permission amounts) it includes in its counterexamples for those types.
The elements which have to be inspected are:

– Sequences and Sets

– Domains functions

– Heap representations

• Add the representation of predicates to the support for heap counterex-
amples in both verifiers.

• Incorporate predicate snapshots into Silicon’s counterexample support,
which includes the representation of contained permissions and values
extracted from the predicate.

• Add the representation of quantified permissions into Silicon’s support
for counterexamples. To do so, support for quantified chunks needs to
be introduced to the current counterexample generation, which includes
extracting information from the quantified chunks and looking up the
values of inverse functions and permission expressions.

8

2.2 Extension Goals

• Include the support for magic wands into the counterexample represen-
tation generated by both Viper backends. First, explain what values
can be extracted from the feedback received from the Z3 and Boogie
verifier and the resulting heap changes. Identify the use of the previ-
ously derived information and determine which information would be
necessary for the counterexample presented to the user. While doing
so, magic wands should be treated the same as predicates.

• Improve the functionality of Silicon and Carbon to map the values of
heap-dependent functions to specific states in the shown counterexam-
ple. This includes developing a sound method for extracting informa-
tion about heap-dependent functions.

• Adapt Nagini [7] [8] to the new common counterexample format dis-
played by both backends so that it can be combined with both back-
ends. Additionally, identify which previously implemented features for
counterexamples are not included in Nagini (such as quantified permis-
sions and predicate snapshots) and add them, if practical, to Nagini’s
existing counterexample support.

• Extend the Visual Studio Code Extension, which provides interac-
tive IDE features for Viper, to display counterexamples in the pre-
viously discussed format for both backends to the user without using
the command-line.

References

[1] Viper Team. Viper tutorial. https://viper.ethz.ch/tutorial/. Accessed:
2023-03-20.

[2] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A ver-
ification infrastructure for permission-based reasoning. In Verification,
Model Checking, and Abstract Interpretation: 17th International Con-
ference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016.
Proceedings 17, pages 41–62. Springer, 2016.

[3] Malte H Schwerhoff. Advancing automated, permission-based program
verification using symbolic execution. PhD thesis, ETH Zurich, 2016.

9

[4] Stefan Heule, Ioannis T Kassios, Peter Müller, and Alexander J Sum-
mers. Verification condition generation for permission logics with abstract
predicates and abstraction functions. In ECOOP 2013–Object-Oriented
Programming: 27th European Conference, Montpellier, France, July 1-5,
2013. Proceedings 27, pages 451–476. Springer, 2013.

[5] Cedric Hegglin. Counterexamples for a rust verifier. Bachelor’s thesis,
ETH Zurich, 2021.

[6] Fabio Aliberti. Counterexample Generation in Gobra. Bachelor’s thesis,
ETH Zurich, 2021.

[7] Marco Eilers and Peter Müller. Nagini: a static verifier for python. In
Computer Aided Verification: 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part I 30, pages 596–603. Springer, 2018.

[8] Marco Eilers. Modular Specification and Verification of Security Proper-
ties for Mainstream Languages. PhD thesis, ETH Zurich, 2022.

10

