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Abstract

Automated program verification is an essential feature for the reliabil-
ity of code correctness. The Viper intermediate verification language
offers a verifier for permission-based reasoning. Still, its error identifi-
cation mechanism does not provide an exhaustive method for generat-
ing counterexamples if verification fails. This thesis addresses this lim-
itation by improving Viper’s counterexample generation of both Viper
backends and enhancing its debugging procedure.

Two main objectives drive this project. The first is to establish a com-
mon counterexample representation with all required features inde-
pendent of the backend. The second goal involves augmenting the
comprehensiveness of counterexamples by including various types cur-
rently absent from the Viper language, such as fields, predicates, wands,
and quantified permissions.

The anticipated outcome is a significant enhancement of Viper’s utility
as a program verification tool, offering developers a more intuitive and
efficient debugging process.
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Chapter 1

Introduction

Automated program verification has become essential to ensure code cor-
rectness and compliance with specified behaviors. Among the tools avail-
able for this process, Viper [11] has established itself as a robust verifier
for permission-based reasoning. Developed by the Programming Method-
ology Group at the Department of Computer Science at ETH Zurich, Viper
is an intermediate verification language that forms the foundation of auto-
matic verifiers for several programming languages, including Python (via
Nagini [4]), Rust (via Prusti [18]) and others. Viper uses two backends to
verify the correctness of programs: the Symbolic Execution backend [13],
internally called Silicon, and the Verification Condition Generation back-
end [6], internally called Carbon.

These tools can verify the validity of programs’ pre- and post-conditions,
assertions, and permission properties. When verification fails due to errors
in the program or annotations, it is often difficult to find the cause of the
error, especially in complex programs. This presents an obstacle for the
developer, who must often find the source of the error through a process of
deduction and trial and error.

Counterexamples – sets of inputs that result in verification errors – can sig-
nificantly accelerate the process of finding the error. By clearly pointing
out the problem, counterexamples provide insight into the conditions under
which the program behaves unexpectedly. This feature provides immediate
feedback to the developer and enables more efficient problem identification
and resolution.

Despite its potential, the current implementation of Viper lacks a compre-
hensive approach to generating counterexamples when verification fails.
This results in developers receiving only limited information in case of ver-
ification failures. This work addresses this gap by improving the counterex-
ample generation mechanism for Viper. The approach introduces a common
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1. Introduction

format for representing counterexamples, ensuring compatibility with both
the Silicon and Carbon backends. However, it is important to note that
the extraction mechanisms for generating these counterexamples are mostly
separate for each backend. By presenting explicit counterexamples in a com-
mon format, this feature promises to extend the functionality of Viper and
provide a more intuitive debugging process for developers.

This work stems from the existence of a relatively comprehensive counterex-
ample format that is specific to the Silicon backend [14] [5] [1] of Viper.
However, this format lacks some critical features. As a result of this pre-
vious work, there is an extraction mechanism for Silicon, but only a very
basic one for the Carbon backend. The purpose of this work is, therefore, to
bridge these gaps.

The primary goal is to define a common, backend-independent counterex-
ample representation that can incorporate all important features. This would
require extending the extraction process for Silicon, and building up an ex-
traction process for the Carbon backend from scratch.

The secondary goal, once this universal counterexample representation is
established, is to make the counterexamples more comprehensive. To this
end, we will extend counterexample support to types in the Viper language
that are not currently included. Specifically, we aim to include fields, pred-
icates, wands and quantified permissions in the counterexamples, features
that should greatly enhance the utility of Viper.

The methodological approach in this work is to identify the counterexample
values in the verification feedback received from the SMT solvers, imple-
ment the necessary features to compactly gather the information for the
counterexample, and represent them in a backend-independent counterex-
ample format.

By achieving these goals, this work should significantly increase the useful-
ness of Viper as a program verification tool and provide developers with a
more intuitive and efficient debugging process.

The next chapter provides the background on Viper, Silicon, Carbon, and
counterexamples. Chapter 3 presents the new common counterexample for-
mat. Chapter 4 explains the added features to improve Viper’s functionality.
Chapter 5 discusses the information extraction processes for these features.
In Chapter 6, we evaluate the accuracy and the overhead of the new sys-
tem. Finally, Chapter 7 summarizes the project and suggests areas for future
work.
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Chapter 2

Background

In this chapter, we will discuss the technical background of this thesis.
Firstly, we will introduce the Viper intermediate verification language along
with its two backends: Carbon and Silicon. When verifying a program in
Viper, we have the flexibility to select which backend, Carbon or Silicon,
should be used. Furthermore, we will explain the features previously sup-
ported for counterexamples generated in Viper 1.

Figure 1: Viper infrastructure with its two backends and their externally
used verification programs.
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2. Background

2.1 Viper

Viper, a verification infrastructure for permission-based reasoning, is a pro-
gramming language and toolkit developed at ETH Zurich for program veri-
fication. As a sequential, imperative intermediate verification language, it is
used to verify partial and total correctness of program statements. In other
words, it provides verification guarantees that the properties specified hold
in a particular program state when that state is reached.

Viper supports mathematical types, user-defined predicates, functions, and
several other unique features. In addition, Viper is designed to validate pre-
and post-conditions and assertions relying on permission-based reasoning.
Viper supports basic data types [15] such as integers (Int), Booleans (Bool),
sequences (Seq), sets (Set), multisets (Multiset) and maps (Map) and addi-
tionally allows users to define their own types using domains. A program
in this language contains global declarations for methods, fields, predicates,
functions and user-defined domains.

We will now explore a selection of the Viper features as they can occur in
a counterexample for specific verification failures. Note that the features
discussed here are a subset of Viper’s full capabilities, chosen for their rele-
vance to the updated counterexample generation.

Permissions in Viper control access to the program heap, allowing for sim-
pler framing (proving that an assertion is not affected by heap modification)
and reasoning about concurrency. This means permissions help manage ac-
cess to certain locations within a program during a method execution or a
loop iteration.

Predicates [11] [12] in Viper consist of a name, a list of parameters, and a
body. This body contains the assertion defining the predicate and can be op-
tional, resulting in an abstract predicate that hides implementation details.
The manipulation of predicates is handled via unfold and fold statements.

Viper, in addition to standard first-order logic and separation logic oper-
ations, utilizes a binary connective known as a Magic Wand [16]. Magic
wands denotes guarantees about future additions to the state. They can be
exchanged for another assertion when merged with a state that satisfies one
assertion. They are employed in Viper to represent permissions to partial
data structures.

Quantified permissions [11] are supported in Viper for specifying unbounded
heap structures. These allow pointwise specification of permissions. They
are especially useful for specifying data structures that are not strictly hier-
archical, such as cyclic lists, arrays, and general graphs.

A Viper function [2] [10] consists of a name, parameters, preconditions, post-
conditions, and a function body that is a single expression. Functions in
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2.2. Silicon

Viper can contain recursion and there cannot be any modifications to the
program state.

Viper domains [2] [10] serve as a flexible tool for introducing new types
and mathematical functions on these types. A domain consists of a name,
domain functions and axioms. Unlike conventional Viper functions, domain
functions lack preconditions, postconditions, or a body, making them total
functions. The output of domain function evaluations is established through
axioms.

Viper is intended to enable the development of new verification tools for
common programming languages. This is accomplished through the en-
coding of the semantics and specifications of front-end programming lan-
guages into the Viper intermediate language, which enables the develop-
ment of tools such as Gobra [17], Prusti [18], and Nagini [4] for Go, Rust,
and Python, respectively.

2.2 Silicon

We will now look at Silicon, one of the two backends of the intermediate
verification language Viper. Silicon is an automatic verifier for the Viper
language that uses symbolic execution-based reasoning.

The symbolic execution approach allows Silicon to examine the possible
states of a program by using symbolic variables that represent possible val-
ues. This way, multiple execution paths can be analyzed simultaneously.

To perform symbolic execution, Silicon maintains a symbolic store and a
heap. The symbolic store is a mapping of each local variable to a symbolic
value. This symbolic value represents embodies a collection of constraints
that the variable can satisfy. The heap, on the other hand, contains heap
chunks that represent the possible states of heap types in the program.

As Silicon symbolically executes the program, it traverses different paths in
the program. While traversing each path, it collects a series of conditions
known as path conditions. These conditions include all the facts that are
known to be true on the particular execution path.

Upon reaching an assertion in the program, Silicon uses these collected path
conditions to verify the assertion. It checks whether the known path con-
ditions logically imply that the assertion is true. This means that if all the
conditions collected along the path hold, the assertion should also hold true.

Silicon uses the Z3 SMT (satisfiability modulo theories) solver [3] to evaluate
the veracity of program assertions through logical queries resulting from
the symbolic execution of the program. It either confirms their validity or
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2. Background

points out possible errors in the program logic, based on the path conditions
collected and the assertions made in the program.

2.3 Carbon

As mentioned earlier, Carbon is one of the two available backends for the
Viper verification language. Carbon is a verification-condition-generation-
based verifier for Viper that provides a means for program verification.
Same as its counterpart Silicon, Carbon is based on modular verification
and works in several steps.

First, it takes a program written in the Viper language as input. Then, it
translates this program into a Boogie [8] file, which serves as an intermediate
form used for the verification process. Boogie encodes the Boogie program
into SMT form and passes it to the SMT solver. Finally, the SMT solver
evaluates this newly encoded form to verify the assertions’ truth against the
specified conditions.

2.4 Counterexamples

When a verification error occurs inside of a Viper program, it is because the
SMT solver finds a formula satisfiable when it is asked to prove the negation
of an assertion. That is, for an assertion ”assert X”, the SMT solver is tasked
with proving ”not X”. If it succeeds, it implies that the assertion does not
hold, and a verification error is reported. In such a case, the SMT solver pro-
vides a model that represents a counterexample at the SMT level. This model
can be traced back to the original Viper code where the error occurred, serv-
ing as a counterexample to the failed verification attempt. Consequently, if
the SMT solver returns ”unknown”, it signifies a successful assertion, where
the SMT solver could not prove the negation of the assertion.

In the case of verification with Carbon and Silicon, the Z3 SMT solver ex-
ecutes the verification of each method separately, which allows the gener-
ation of a distinct counterexample for each error. The counterexample is
comprised of three key objects: a list of store variables, a list of heap entries
(including fields, predicates, magic wands and quantified permissions), and
a list of all the function models.

With partial models, the SMT solver determines values for a subset of the
variables in the formula that make the entire formula true. However, it
might not assign values to all variables or function calls in the formula.
Instead, for the ones that are not explicitly assigned, Z3 returns ”unknown”.

For more detailed information about how SMT solvers generate counterex-
amples at a lower level, please refer to Cédric Stoll’s thesis [14].

6



Chapter 3

Common Counterexample View

This chapter examines the original and the new counterexample format. For
the new counterexample format we will show how the program’s counterex-
ample information is represented in an intermediate counterexample repre-
sentation and then in an extended counterexample representation, indepen-
dent of the backends used for program verification. As noted in Section 2.3,
the previous work on counterexamples generation for Silicon is much more
advanced than for Carbon. Thus, besides updating Carbon counterexamples
to support the same functionalities as Silicon’s counterexamples, finding a
common counterexample representation for both backends is essential.

3.1 Previous Counterexample Format

Firstly, let us examine the Viper program shown in Listing 2.1. The program
takes a reference and a sequence of integers as input parameters and assigns
the integer from the first index of the sequence to the field accessed through
the reference from the input parameters. The verification fails because the
assertion states that the field accessed through the reference “r” has to be
equal to “5”. While a programmer might find it relatively easy to determine
the reason for the verification error from this program, this might not be the
case for verification errors occurring in more complex programs.

Now let us look at how Carbon and Silicon originally handled the coun-
terexample generation of this program. When running the Viper program
with Carbon as the backend, it should be noted that prior to our project,
Carbon’s most advanced counterexample generation only reported values
for current variables, as shown in Listing 2.2. When run with the original
Silicon backend, the most advanced counterexample generation reported the
values for the variable, the sequence contents, and the specific field access,
including its permission status, as shown in Listing 2.3.
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3. Common Counterexample View

Identifiers like “T@U!val!8” and “$Ref!val!0” might occur in the coun-
terexamples, as can be seen in Listing 2.2 and 2.3. These are internal names
reported by Z3, the SMT solver used in Viper, and they denote specific val-
ues or states in the SMT solving process.

Listing 2.1: Viper program containing a field, a reference, and a sequence
failing verification due to an assertion.� �
field f: Int

method try (r: Ref , s: Seq[Int])

requires |s| > 2

requires acc(r.f)

{

var x: Int

x := s[0]

r.f := x

assert r.f == 5

}� �
Listing 2.2: Carbon’s counterexample generated for the program shown in
Listing 2.1.

FailureContextImpl(Some(r -> T@U!val!7

s -> T@U!val!8

x -> 13))

Listing 2.3: Silicon’s counterexample generated for the program shown in
Listing 2.1.

counterexample:

model at label old:

r <- Ref ($Ref!val !0) {

f(perm: 1/1) <- 0

}

s <- (Seq <Int >!val!1): [1, 1, 1]

x <- 1

on return:

r <- Ref ($Ref!val !0) {

f(perm: 1/1) <- 1

}

s <- (Seq <Int >!val!1): [1, 1, 1]

x <- 1

Some types and heap extraction for counterexamples in Silicon have already
been implemented before our work thanks to Cedric Hegglin’s work, de-
tailed in “Counterexamples for a Rust Verifier” [5]. His thesis centered
around extending Prusti, a verification tool for Rust program, by integrating
counterexample support into the verification. To do so, he mainly concen-
trated on developing Silicon’s counterexample support for fields.
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3.2. New Counterexample Format

Fabio Aliberti’s work, described in his thesis titled “Counterexample Gener-
ation in Gobra” [1], mainly focused on incorporating counterexample sup-
port, a verification tool for Go programs, but also played a crucial role in
adding counterexample support for functions and domains into Silicon.

3.2 New Counterexample Format

We have included two new counterexample formats: the intermediate and
extended counterexample formats. The main difference between these two
formats lies in how variables and values of the counterexample are pre-
sented. The decision to have two different versions was made to address the
specific needs of the programmer.

As opposed to the intermediate counterexample format, each variable from
the store or the heap is assigned to its corresponding AST nodes in the
extended format. The extracted counterexample heap entries are also sepa-
rated into their actual types, such as field, predicate, or magic wand.

Additionally, the way internal names are presented differs significantly be-
tween the two formats. In the intermediate counterexample, names of fields,
variables, functions, etc., are already translated into their corresponding
names from the Viper program. However, certain values, such as refer-
ences with internal names, remain untranslated. For values with internal
identifiers, the extended counterexample represents these using the name
of the variable that was given to them by the programmer. This translation
provides a more human-readable counterexample.

Nevertheless, it is crucial to note that the ability to translate an internal
value into the programmers’ variable name depends on the counterexample
model received from the SMT solver. As explained in the example for the
previous chapter, in some cases, certain internal identifiers cannot be trans-
lated because they are not defined or might be assigned to different names
in the model provided by the SMT solver.

The intermediate and extended counterexample formats allow us to balance
comprehensiveness and readability. The extended format helps developers
to comprehend the counterexample easily. In contrast, the intermediate for-
mat provides more detailed information, making it valuable for in-depth
analysis and understanding of the verification results.

To understand the accomplishments of the two new counterexample for-
mats and primarily point out the differences between the intermediate and
the extended counterexample generation, we look at a more complex pro-
gram variation of the previous example from section 2.3. The new example
program shown in Listing 3.1 defines the predicate “StructA” holding the
permission for references to the fields “this.x” and “this.y”. The method
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3. Common Counterexample View

“compare” unfolds the predicate and assigns the value of the first entry from
sequence “s” to the field reference “this.x”. After this, we assert that the
references to both fields are equivalent, which leads to a verification error.

Listing 3.1: Viper program containing predicates and fields failing verifica-
tion.� �
field x: Int

field y: Int

predicate StructA(this: Ref) {

acc(this.x) && acc(this.y)

}

method compare (this: Ref , s: Seq[Int])

requires |s| > 2

requires StructA(this)

{

unfold StructA(this)

this.x := s[0]

assert this.x == this.y

}� �
3.2.1 Intermediate Counterexample

The intermediate counterexample is generated in the IntermediateCounter-
exampleModel class for both backends. The counterexample is shown to the
user when the verification of a program is called with the
“--counterexample intermediate” flag.

We decided on adding an intermediate counterexample representation to
the extended counterexample view, as this allows the programmer to decide
which processing level they want to see the counterexample in.

Listing 3.2: Carbon’s intermediate counterexample representation for verifi-
cation error from the program in Listing 3.1.

Intermediate Counterexample:

Local Information:

Variable Name: null , Value: T@U!val!3, Type: Ref

Variable Name: this , Value: T@U!val!7, Type: Ref

Variable Name: s, Value: T@U!val!8, Type: Seq[Int]

T@U!val!8 with size 3 with entries:

11 at index 0

old Heap:

Heap entry: (T@U!val !7) + (T@U!val !1) --> (Value: T@U!val!23,

Permission: 0/1)

Heap entry: (T@U!val !7) + (T@U!val !2) --> (Value: 12, Permission:

0/1)

Heap entry: (T@U!val!3, T@U!val !12) + (T@U!val !7) --> (Value: T@U

!val!26, Permission: 1/1)

current Heap:

10



3.2. New Counterexample Format

Heap entry: (T@U!val !7) + (T@U!val !1) --> (Value: 11, Permission:

1/1)

Heap entry: (T@U!val!3, T@U!val !12) + (T@U!val !7) --> (Value: T@U

!val!11, Permission: 0/1)

Heap entry: (T@U!val !7) + (T@U!val !2) --> (Value: 12, Permission:

1/1)

Listing 3.3: Silicon’s intermediate counterexample representation for verifi-
cation error from the program in Listing 3.1.

Intermediate Counterexample:

Local Information:

Variable Name: null , Value: $Ref!val!1, Type: Ref

Variable Name: s, Value: Seq <Int >!val!1, Type: Seq[Int]

Variable Name: this , Value: $Ref!val!0, Type: Ref

Seq <Int >!val!0 with size 0 with entries:

Seq <Int >!val!1 with size 3 with entries:

1 at index 0

old Heap:

Heap entry: (StructA) + ($Ref!val !0) --> (Value: List(),

Permission: 1/1)

return Heap:

Heap entry: ($Ref!val !0) + (x) --> (Value: 1,

Permission: 1/1)

Heap entry: ($Ref!val !0) + (y) --> (Value: 2,

Permission: 1/1)

Listing 3.2 and 3.3 show us the generated intermediate counterexamples by
the two backends, Carbon and Silicon, respectively, for the verification error
from the program shown in Listing 3.1. The intermediate counterexample
builds the structure for the extended counterexample. Still, it distinguishes
itself by not evaluating the internal names to their names defined in the
program. The most significant difference between both backends in their in-
termediate counterexample representation is their internal name generation.
While Carbon uses the prefix “T@U!val!” concatenated with an integer for
an internal value name independent of its type, Silicon provides different
internal name structures such as “$Ref!val!” concatenated with an inte-
ger for its references, “Seq<Int>!val!” concatenated with an integer for
sequences of integers or no internal name at all for fields and predicates.
This leads to the intermediate counterexample format having a consistent
structure across both backends. However, the value names are still bound to
the backend-specific internal names.

Additionally, as shown in the Silicon counterexample in Listing 3.3, multi-
ple sequences are defined even though the Viper program only defines one
sequence. This can occur for every collection type in the intermediate coun-
terexample representations of both backends. It happens when the model
received by the SMT solver defines multiple instances of a collection type.
We decided to present all defined instances of a collection type to give the
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3. Common Counterexample View

programmer as much internal information in the intermediate counterex-
ample as possible.

In order to balance clarity and completeness in the representations of collec-
tions, we made a critical decision not to show collections as literals. Instead,
we decided to list the elements of the collection that clearly specified in the
counterexample model given by the SMT solver. This approach eliminates
the issue of articulating extensive sequences or sets, in which only a subset
of elements are specifically defined. A more thorough discussion on the
representation of sequence/set/multiset and the reasons behind this choice
will be covered in the following chapter.

Figure 3: The figure shows the structure of a Viper counterexample.

The primary structures of the common intermediate counterexample repre-
sentation consist of the local information, the heaps, the functions, and the
domains:

• The local information can be separated into two parts: the basic vari-
ables, such as integers and Booleans, and the collection types, such as
sequences, sets, and multisets.

• Each heap belongs to a specific state in the program. The intermediate
counterexample provides a view of each heap by showcasing:

– Its fields with receivers, along with their permission amounts and
values.

– The predicates accessed inside of a heap, with details on their
permissions.

– Magic wands, including the variables and their corresponding
values derived from the assertions.

• The intermediate counterexample also includes a view of the func-
tions, clearly outlining those that are defined inside and outside of a
user-defined domain.

3.2.2 Extended Counterexample

The CounterexampleGenerator class extends the intermediate counterex-
ample. The generated counterexample can be accessed by executing the
program verification with the flag “--counterexample extended.”

The extended counterexample representation is generated after the inter-
mediate representation is assembled and follows the same structure, inde-
pendent from which backend is used. It is a human-readable form of the
program state at a point where an assertion has failed and helps to under-
stand the causes of the failure.
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3.2. New Counterexample Format

Listing 3.4: Carbon’s extended counterexample representation for verifica-
tion error from the program in Listing 3.1.

Extended Counterexample:

Store:

Collection variable "s" of type Seq[Int] with 3 entries:

11 at index 0

Variable Name: this , Value: T@U!val!7, Type: Ref

old Heap:

Predicate Entry: StructA(this) --> (Perm: 1/1)

Field Entry: this.y --> (Value: 12, Type: Int , Perm: 0/1)

Field Entry: this.x --> (Value: T@U!val!23, Type: Int , Perm: 0/1)

current Heap:

Field Entry: this.y --> (Value: 12, Type: Int , Perm: 1/1)

Predicate Entry: StructA(this) --> (Perm: 0/1)

Field Entry: this.x --> (Value: 11, Type: Int , Perm: 1/1)

Listing 3.4 shows the extended counterexample for the verification error
from the program shown in Listing 3.1. When comparing the extended
counterexample from Listing 3.4 with the backend-specific intermediate coun-
terexamples in Listing 3.2 and Listing 3.3, we can see that all internal names
have been translated to the program-specific names and that heap entries
are given a specific heap type.

When the heap does not uniquely map a specific identifier to a value, an
internal identifier associated with a value may persist. To provide a specific
example, consider a scenario where both x and y are assigned to the iden-
tifier Ref!val!3. In this case, we don’t designate this identifier as x or y.
Instead, the identifier Ref!val!3 is left unchanged. The decision to keep the
identifier Ref!val!3 intact despite its presence in both x and y stems from
the fact that replacing it could lead to misinterpretation. Therefore, certain
identifiers remain untranslated under specific circumstances to maintain the
integrity and clarity of the code.
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Chapter 4

Added Features

Prior to this work, both Carbon and Silicon offered counterexample genera-
tion capabilities, but with different formats and encompassing varying ele-
ments of the Viper language. Hence, the goal of achieving interchangeability
between the two backends is yet to be fulfilled. The limitations in the repre-
sentation of counterexamples complicate the process of debugging program
verification failures. This chapter introduces the newly added counterexam-
ple support of both backends for specific types in Viper.

In the following sections, the “initial implementation” or “original imple-
mentation” primarily refers (unless stated otherwise) to Silicon’s previous
counterexample generation, which is further described in Cedric Hegglin’s [5]
and Fabio Aliberti’s [1] theses.

4.1 Basic Types

The representation of basic or primitive types, such as integers, Booleans,
and references, was noticeably constrained in Viper’s initial counterexample
implementation. While a variable’s actual value is usually captured, the
representation lacks potentially relevant information for the programmer.

The new format has the internal name, the type, and the AST node, all of
which were not present before. The internal name of variables is an essential
information component since it provides the developer with a clear and di-
rect relationship between the counterexample and the corresponding code in
the original program. Moreover, a variable’s type plays a significant part in
future programming projects that build on top of the generated counterex-
ample. Lastly, with the relation to the AST node, the programmer does not
have to track where and how a variable was set. With these enhancements,
the counterexamples are not only more comprehensible for programmers
but also facilitate frontend code information extraction.
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As a result, the internal name of the value assigned by the backend, the
value’s type, and the association of the value with its corresponding node in
the Viper intermediate language were all incorporated in the intermediate
and the extended counterexample version.

4.2 Collections

4.2.1 Sequences

While Silicon did support sequences in its original counterexample repre-
sentation, Carbon did not. Nevertheless, there were several issues with the
counterexample generation for sequences when using Silicon.

A key issue with Silicon’s sequence generation is that it can sometimes yield
sequences with elements based on default values. This issue stems from its
dependence on SMT solvers, such as Z3, which often fill their models with
default values.

For example, let us consider the Z3 model level function “Seq index”. If
we request Z3 to generate a sequence of length three, with the specification
that the first element must be 42, the function might return the sequence
[42, 42, 42]. The “Seq index” function’s entries could then be presented
as {else -> 42}, implying that for any index, the solver will provide 42 as
the default value. However, this sequence could be misleading. The second
and third elements were filled with default values and were not derived
from explicit instructions in the code. Therefore, their actual values are
undefined and could very well be different from 42. In this case, 42 might
not be a relevant value for the second and third elements.

Although using these default values aids in providing a complete repre-
sentation of sequences, it also introduces a risk of causing misconceptions
about the actual values in the sequence. A different setting in Z3 allows
for partial models, which yield sequences like [42, “#unspecified”, “#un-
specified”] due the “Seq index” function’s entries being {0 -> 42, else

-> #unspecified}. Here, “#unspecified” stands for an undefined value,
providing a clearer indication of unspecified sequence indices. An example
showing this difference between the original and the new counterexample
format is stated later in this chapter.

Recognizing these limitations, we introduced several improvements in this
thesis, as can be seen in comparing the original and updated counterexam-
ples from both Silicon and Carbon.

First, sequences were added to Carbon’s counterexample support, unifying
the representation across both backends.
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Second, both backends’ counterexample representations were expanded to
provide more detailed information on each sequence, such as the specific
type of the sequence and the internal name of values assigned by the back-
end.

Third, an issue with Silicon’s original implementation was filling unde-
termined values in a sequence with a default value. This issue was ad-
dressed by utilizing a different Z3 setting – specifically, by requesting a par-
tial model. As a result, unclear values are now marked as “#unspecified”,
providing an honest indication of the limitations of the counterexample.

Fourth, the new representation also changes how sequences are printed in
the counterexample. Instead of displaying the entirety of a sequence, only
the clearly determinable values are shown. For instance, consider a sequence
of length 20,000. Presenting the entire sequence would be overwhelming for
developers and not a practical method to express relevant information.

Listing 4.1: Viper program which contains sequences producing a verifica-
tion error.� �
method update(values: Seq[Int], x: Int , y: Bool) returns (

updatedValues: Seq[Int])

requires |values| > 3

requires values [0] == 2

ensures |values| == |updatedValues|

ensures updatedValues [0] != updatedValues [1]

ensures updatedValues [1] != updatedValues [2]

{

updatedValues := values

updatedValues := updatedValues [1 := 42]

updatedValues := updatedValues [2 := 42]

}� �
Listing 4.2: Original counterexample generated by Silicon for the verification
failure of the program shown in Listing 4.1.

counterexample:

model at label old:

values <- (Seq <Int >!val !1): [2, 2, 2, 2]

x <- 0

y <- false

updatedValues <- (Seq <Int >!val!3): [2, 42, 42, 2]

on return:

values <- (Seq <Int >!val !1): [2, 2, 2, 2]

x <- 0

y <- false

updatedValues <- (Seq <Int >!val!3): [2, 42, 42, 2]
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Listing 4.3: New counterexample generated by Carbon and Silicon for the
verification failure of the program shown in Listing 4.1.

Extended Counterexample:

Store:

Collection variable "updatedValues" of type Seq[Int]

with 853 entries:

2 at index 0

42 at index 1

42 at index 2

Variable Name: y, Value: #unspecified , Type: Bool

Variable Name: x, Value: #unspecified , Type: Int

Collection variable "values" of type Seq[Int] with 853 entries:

2 at index 0

We will now illustrate the new representation using the example program
with the method “update” shown in Listing 4.1. The method takes a se-
quence of integers that has at least length 3 and updates this sequence by
replacing the first three elements with the integers 0, 42, and 42, respec-
tively. The postconditions ensure that the initial sequence and the updated
sequence have the same size and that the first and second, and the second
and third values of the updated sequence are not equal. As the method
sets the second and third values of the updated sequence to 42, the third
postcondition is violated.

The original counterexample produced by Silicon shown in Listing 4.2 shows
the values and sequences for the variables used in the method. The updated
counterexample from the Silicon and Carbon backends shown in Listing 4.3
only lists the values of a sequence that could be determined from the partial
model received from the SMT solver. The values for x and y are not spec-
ified in the counterexample, as they are irrelevant to the verification error.
Thus, the counterexample given by the SMT solver does not contain any
information about them.

4.2.2 Sets & Multisets

Prior to the extension of Viper’s counterexample introduced with this the-
sis, Viper’s counterexamples had a limited and problematic representation
of sets and multisets. The Silicon backend was capable of handling sets, but
neither backend could support multisets. Silicon’s counterexample repre-
sentation of sets was problematic, resembling the issues present in its rep-
resentation of sequences. The counterexamples for sets showed values that
might not be correct due to the partial models provided by SMT solvers.
This could result in erroneous understandings of the sets included in the
counterexample.

We addressed these problems by making several changes. Firstly, we inte-
grated the ability to represent sets and multisets in Carbon’s counterexam-
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ples and added multisets to Silicon’s counterexample features, thus, aligning
the functionalities of both backends. Furthermore, Silicon’s counterexam-
ple representation of sets was enhanced, in the same way as previously ex-
plained for its sequences, to provide more values (different from “#unspecified”)
for the contents of the sets. We achieved this by extracting more details from
the internal functions of the counterexample model received from the SMT
solver.

As not all values of the sets and multisets might be given in the counterex-
ample model received by the SMT solver, the typical set representation for-
mat using “{”and “}” can lead to false visualizations of the sets and mul-
tistep. We addressed this problem in the updated counterexample format
by listing all the identifiable elements of the set or multiset and stating its
cardinality. This prevents the creation of inaccurate representations.

Listing 4.4: Viper program which contains sets producing a verification er-
ror.� �
method t2(a: Set[Int]) {

var b: Set[Int] := Set (2)

assert (a union b) == Set(1, 2)

}� �
Listing 4.5: Original counterexample generated by Silicon for the verification
failure of the program shown in Listing 4.4.

counterexample:

model at label old:

a <- (Set <Int >!val!1): {}

b <- (Set <Int >!val!0): {}

on return:

a <- (Set <Int >!val!1): {}

b <- (Set <Int >!val!0): {}

Listing 4.6: New counterexample generated by Carbon and Silicon for the
verification failure of the program shown in Listing 4.4.

Extended Counterexample:

Store:

Collection variable "b" of type Set[Int] with 1 entries:

2

Collection variable "a" of type Set[Int] with 0 entries:

The Viper program “t2” shown in Listing 4.4 takes a set of integers a as
an argument. In this method, a new set b is declared and initialized with
a set that only contains the integer 2. The method then asserts that the
union of a and b equals a set containing the integers 1 and 2, which might
be false in some cases and therefore fails verification. The original coun-
terexample produced by Silicon shown in Listing 4.5 provides the internal
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names Set<Int>!val!1 and Set<Int>!val!0 and states that both a and b

are empty.

The updated counterexample, provides a much more detailed view. It lists
the variable names, their types (i.e., Set[Int]), and the number of elements
they contain. Additionally, it lists all the elements that could safely be de-
termined in each set.

The improvements in the counterexample representation for sets are impor-
tant because the counterexample model from the SMT solver might include
only some values in the set or multiset. Hence, the previous approach us-
ing {} brackets and inserting the identifiable elements could lead to faulty
counterexamples. By listing all identifiable elements and the cardinality of
the set, the new counterexample format provides clear information for de-
bugging.

4.3 Fields

The original counterexample representation of fields in Viper using the Sili-
con backend was already advanced compared to Carbon’s initial counterex-
ample support for fields, which did not show any heap information at all.
Therefore, we aligned Carbon’s counterexample generation for fields with
Silicon’s counterexample support and made minor improvements and ad-
justments to Silicon’s counterexample representation of fields.

We implemented enhancements to the intermediate and extended coun-
terexample representations to increase clarity for the verification failure. The
revised representations include the permission, the value, and the assigned
value type.

In the extended counterexample, the internal identifier of references are
only translated to real names when they occur once, mitigating potential
confusion when different references share the same internal names in the
implementation. To illustrate this, let us consider a Viper program that in-
cludes three reference arguments this, that and other. When Silicon veri-
fies the program, the Z3 counterexample model may assign internal identi-
fiers $Ref!val!0, $Ref!val!0 and $Ref!val!1 to these three references re-
spectively. This assignment can occur when this and that are semantically
equivalent, leading to the same internal identifier. In this case, the extended
counterexample would not translate $Ref!val!0 back to either this or that.
However, it would translate $Ref!val!1 back to its real name other.

Beyond the printed representation, we made certain information accessible
to programmers, such as grouping a field with the node it gets assigned to
in the program. This can help programmers work with the counterexam-
ple on a code level. Coherent with counterexample values of other types,
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another modification involved marking field values as “#unspecified” when
their values could not be reliably determined, rather than using a default
value from the counterexample model by the SMT solver as was the case in
Silicon’s original representation.

The adjusted format of Silicon’s previous counterexample representation of
fields is the new counterexample format of fields that both Carbon and Sili-
con use.

Listing 4.7: Viper program which contains fields producing a verification
error.� �
field next: Bool

method foo(x: Ref) returns (value: Bool)

requires acc(x.next) && x.next

ensures value != true

{

value := x.next

x.next := false

assert !value

}� �
Listing 4.8: Original counterexample generated by Silicon for the verification
failure of the program shown in Listing 4.7.

counterexample:

model at label old:

x <- Ref ($Ref!val !0) {

next(perm: 1/1) <- true

}

value <- true

on return:

x <- Ref ($Ref!val !0) {

next(perm: 1/1) <- false

}

Listing 4.9: New counterexample generated by Carbon and Silicon for the
verification failure of the program shown in Listing 4.7.

Extended Counterexample:

Store:

Variable Name: value , Value: true , Type: Bool

Variable Name: x, Value: T@U!val!6, Type: Ref

old Heap:

Field Entry: x.next --> (Value: true , Type: Bool , Perm: 1/1)

current Heap:

Field Entry: x.next --> (Value: false , Type: Bool , Perm: 1/1)

The Viper program shown in Listing 4.7 consists of a field next of type
Boolean and a method “foo” that returns a Boolean value. The method
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takes as input a reference x, requiring that we have access to the next field
of x and that x.next is true. The method sets value to x.next and then sets
x.next to false. The method also contains an assertion stating the negation
of value that value is true, which leads to a verification error.

The original counterexample generated by Silicon shown in Listing 4.8 presents
the values and permissions of x.next in the old and current states.

The updated counterexample shown in Listing 4.9 displays the state of the
variables in the Store section. In each heap section, the value, type, and
permission of a field access are denoted.

4.4 Predicates

Neither backend presents predicates in their original counterexample rep-
resentations. As a result, programmers neither see to which predicates per-
missions are held nor obtain any information about the values of the heap
locations contained within the predicate.

The new counterexample implementation for both backends displays all
predicates in a heap state along with their permissions. It also shows the
contents of folded predicates with its assigned values. Additionally, it also
provides additional information to the programmer through the intermedi-
ate counterexample, thus offering greater insight into the predicate.

Listing 4.10: Viper program which contains fields and predicates producing
a verification error.� �
field left: Int

field right: Int

predicate tuple(this: Ref) {

acc(this.left) && acc(this.right)

}

method setTuple(this: Ref , l: Int , r: Int)

requires tuple(this)

ensures tuple(this) && (unfolding tuple(this) in this.left +

this.right) == old(unfolding tuple(this) in this.left + this.

right + 1)

{

unfold tuple(this)

this.left := l

this.right := r

fold tuple(this)

}� �
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Listing 4.11: Original counterexample generated by Silicon for the verifica-
tion failure of the program shown in Listing 4.10.

counterexample:

model at label old:

this <- Ref ($Ref!val !0) {

}

l <- 0

r <- 0

on return:

this <- Ref ($Ref!val !0) {

}

l <- 0

r <- 0

Listing 4.12: New counterexample generated by Carbon and Silicon for the
verification failure of the program shown in Listing 4.10.

Extended Counterexample:

Store:

Variable Name: r, Value: (- 669), Type: Int

Variable Name: l, Value: 176, Type: Int

Variable Name: this , Value: T@U!val!7, Type: Ref

old Heap:

Predicate Entry: tuple(this) --> (Perm: 1/1) {

this.left --> 264

this.right --> (- 864)

}

Field Entry: this.left --> (Value: 264, Type: Int , Perm: 0/1)

Field Entry: this.right --> (Value: (- 864), Type: Int , Perm:

0/1)

current Heap:

Predicate Entry: tuple(this) --> (Perm: 1/1) {

this.left --> 176

this.right --> (- 669)

}

Field Entry: this.left --> (Value: 176, Type: Int , Perm: 0/1)

Field Entry: this.right --> (Value: (- 669), Type: Int , Perm:

0/1)

The Viper program shown in Listing 4.10 defines a field left and right of
type integer, and a predicate tuple that represents the ownership of these
fields. The method “setTuple” requires the tuple predicate with an input
this (of type reference), and it updates the left and right fields of this
with the given integer variables l and r, respectively. It ensures that after
the update, the sum of the left and right fields equals the old sum plus
one, which might not be true. Thus, verification fails. The original Silicon
counterexample shown in Listing 4.11 presents the integer values of the
variables l and r. However, it does not provide any information on the
tuple(this) predicate instance. We can only see the internal name of the
reference this. The updated counterexample for Carbon and Silicon shown
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in Listing 4.12, provides more detailed information. It adds information
about the permissions to the tuple predicate in the old and current heap.
Additionally, it presents the values of the two field accesses inside the folded
predicate tuple. Therefore, we can see that this.left and this.right have
the same values in the “current” heap as l and r, respectively.

4.5 Magic Wands

Neither backend supports magic wands in their counterexample represen-
tations.

Listing 4.14: Viper program which contains a magic wand producing a ver-
ification error.� �
field f: Int

field g: Int

predicate P(r: Ref) { acc(r.f) }

method m1(x: Ref)

requires acc(x.f) --* P(x)

{

assert acc(x.g) --* P(x)

}� �
Listing 4.15: New counterexample generated by Carbon and Silicon for the
verification failure of the program shown in Listing 4.14.

Extended Counterexample:

Store:

Variable Name: x, Value: $Ref!val!0, Type: Ref

old Heap:

Magic Wand Entry: wand@0 --> (Left: acc(x.f, 1/1), Right: acc(P(x

), 1/1), Perm: 1/1)

current Heap:

Magic Wand Entry: wand@0 --> (Left: acc(x.f, 1/1), Right: acc(P(x

), 1/1), Perm: 1/1)

Consider the Viper program shown in Listing 4.14, which fails verification
due to the usage of a nonexistent magic wand. The new counterexample for
both backends shown in Listing 4.15 clarifies that we only have permission
for a magic wand using x.f as field access.

4.6 Quantified Permissions

Quantified permissions offer the advantage of providing point-wise speci-
fications instead of recursive ones. They play a crucial role in specifying
unbounded heap structures in Viper.
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In the original representations of both Carbon and Silicon, no support was
implemented for quantified permissions of heap resources in counterexam-
ples. We identified that, similar to sequences where not all values might be
retrievable, we faced incomplete information regarding the heap resources
that quantified permissions accessed. This incompleteness in the coun-
terexample can lead to the misconception that certain heap resources, to
which permissions might be granted, are absent, even though they might be
present in the underlying program.

To address this, the generated counterexample explicitly states that permis-
sion to other heap resources might be granted when quantified permissions
occur in the verified program. Besides that, quantified permissions related to
heap resources, such as fields, predicates, or magic wands, are represented
in the counterexample similarly to their non-quantified versions.

4.7 Functions & Domains

In Chapter 2.4, we mentioned that the current support of functions, both
those defined inside and outside of user-defined domains (the latter known
as heap-dependent functions), in Silicon’s counterexamples was already ad-
vanced. Some minor adjustments to the representation of functions and
domains had to be made such that the format could be coherent with the
newly added representation of functions and domains in Carbon’s coun-
terexamples.

The objective of the new counterexample format tries to give the same coun-
terexample for both backends. However, minor differences might still arise,
primarily in the way heap identifiers are translated in heap-dependent func-
tions. As their name suggests, heap-dependent functions rely on specific
instances of the heap. Therefore, it is necessary to establish a mechanism
that assigns unique names to each heap instance. Carbon converts heap
identifiers to heap state labels when possible, and retains the heap identifier
when it is not. This process is based on Silicon’s original method of function
extraction, but in Silicon every heap identifier is converted to a heap state
label.

The updated representation of the counterexample aims to maximize the
independence from the backend, resulting in a more coherent presentation.
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Listing 4.16: Viper program which contains domains and functions produc-
ing a verification error.� �
field f: Int

domain List[T] {

function nil(): List[T]

function cons(x: T, xs: List[T]): List[T]

axiom nil_cons {

forall z: T, zs: List[T] :: cons(z, zs) != nil()

}

}

function foo(r: Ref): Int

requires acc(r.f)

{

r.f

}

method test(x: Ref , xs: List[Int], n: List[Int])

requires n == nil()

requires acc(x.f)

{

assert n != cons(5, xs)

assert foo(x) == 5

}� �
Listing 4.17: Original counterexample generated by Silicon for the verifica-
tion failure of the program shown in Listing 4.13.

counterexample:

model at label old:

x <- Ref ($Ref!val !0) {

f(perm: 1/1) <- 0

}

xs <- List[Int]_1 where {

}

n <- List[Int]_0 where {

}

on return:

x <- Ref ($Ref!val !0) {

f(perm: 1/1) <- 0

}

xs <- List[Int]_1 where {

}

n <- List[Int]_0 where {

}

Domain:

domain List[Int]{

nil{
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List[Int]_0

}

cons{

List[Int]_2

}

}

Functions:

foo{

0

}

Listing 4.18: New counterexample generated by Carbon and Silicon for the
verification failure of the program shown in Listing 4.13.

Extended Counterexample:

Store:

Variable Name: n, Value: T@U!val!11, Type: List[Int]

Variable Name: xs, Value: T@U!val!8, Type: List[Int]

Variable Name: x, Value: T@U!val!7, Type: Ref

old Heap:

Field Entry: x.f --> (Value: 10, Type: Int , Perm: 1/1)

current Heap:

Field Entry: x.f --> (Value: 10, Type: Int , Perm: 1/1)

Domains:

domain List[Int]{

nil():List[T]{

T@T!val!2 -> n

else -> #unspecified

}

cons(T,List[T]):List[T]{

5 xs -> T@U!val!10

else -> #unspecified

}

}

foo(Ref):Int{

Heap@@13 x -> 10

else -> #unspecified

}

The Viper program shown in Listing 4.16 declares a generic domain List[T],
which is essentially a linked list structure with two functions: nil constructs
an empty list, and cons builds a non-empty list by prepending an element
to an existing list. The nil cons axiom states that a non-empty list is not
equal to an empty list. Additionally, a non-domain function foo returns the
integer responding to the field access r.f, and a method “test” checks if a
fresh list n equals a list constructed by cons.

The original Silicon counterexample shown in Listing 4.17 demonstrates the
failure of the assertion foo(x) == 5 in the “test” method. This is shown
through the counterexample model (which presents the state of the variables
at the point of failure), where the integer of the field access x.f is 0. The
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terms List[Int] 0 and List[Int] 2 represent specific list instances. The
function foo always returns x.f, which is 0 in this case.

In the updated Silicon and Carbon counterexample, each instance of the
List[Int] domain is associated with a unique identifier in the Domains sec-
tion. The heap state is stated as the first parameter for the function foo. For
any other input or heap state, the function results in “#unspecified”.
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Chapter 5

Information Extraction

In this chapter, we will discuss the technical details of the feature extraction
from the counterexample model received from the SMT solver. We will split
this chapter into three parts: First, explaining the extraction of basic types
and collection types, such as sequences or sets. Secondly, we will focus
on the extraction of heap information. This includes extracting information
about heap resources, such as fields, predicates, or magic wands. Lastly, we
will explain the counterexample generation of functions and domains.

5.1 Basic & Collection Types

The following section explains how basic and collection types are retrieved
from the counterexample model provided by the SMT solver in both back-
ends. We will demonstrate this process on the program shown in Listing
5.1.1. The program consists of a method that accepts a Boolean b, an integer
i, and a set of integers n as input. It has three preconditions: i must be less
than 6, b must be true, and n must be an empty set. The method begins by
initializing n with an empty set of integers. The first assertion checks that
b is true, and the second assertion checks whether a set containing only i

equals n. Since n is an empty set, the second assertion fails. Thus, in the
ideal counterexample, we would like to obtain counterexample values for
the integer i, the Boolean b, and the set of integers n.

Retrieving basic types from the counterexample model works similarly in
both backends. Basic types, like integers, Booleans, or references, can be
directly accessed in the counterexample model once their internal identifiers
are known.
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Listing 5.1.1: Viper program containing an integer, a Boolean and a set of
integers.� �
method basicMethod(b: Bool , i: Int , n: Set[Int])

requires i < 6

requires b == true

requires n == Set()

{

assert b

assert Set(i) == n

}� �
In Carbon, the internal identifier of a value consistently follows a structure
consisting of either the value’s name alone or the value’s name accompanied
by an underscore or an @ symbol, followed by an integer. The reasoning
behind this structure can be better understood when considering the trans-
formation from Viper to Boogie, especially in the context of the SSA (Static
Single Assignment) form. SSA form ensures that each value is assigned
exactly once. In Viper, subsequent assignments to a value, such as {x:=0;
x:=1} are translated in Boogie to {x@0:=0; x@1:=1}. This transformation
highlights why Carbon employs the described internal identifier structure.
If a value has multiple internal identifier instances in the model, the latest
instance is determined by the integer in the internal identifier: the larger the
integer, the more recent is the value instance. Thus, to look up the value of
a value in the counterexample model, we use the internal identifier with the
highest integer. Listing 5.1.2 shows the basic values’ internal identifiers and
how they map to their values as found in the model provided by the SMT
solver.

Listing 5.1.2: Mapping of Carbon internal value names to their counterex-
ample values.

b_2 -> true

i -> (- 900)

In Silicon, we directly get the symbolic value, which we refer to as internal
identifier of a value in the Store. The Store maps the program’s value
names to the internal identifiers from the model. Listing 5.1.3 shows the
mapping from the internal value name to its corresponding counterexample
value as represented in the counterexample model.

Listing 5.1.3: Mapping of Silicon internal value names to their counterexam-
ple values.

b@3@04 -> true

i@4@04 -> 0

For collection types, such as sequences, sets, or multisets, we first deter-
mine the internal identifiers of the values, as previously explained for both
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backends. Next, we extract their content by compiling data from specific
functions in the counterexample model associated with each collection type.

Listing 5.1.4: Internal functions defining the counterexample content of a set
in Carbon.

n -> T@U!val!6

Set#Empty -> {

T@T!val!2 -> T@U!val!6

else -> #unspecified

}

For the method “basicMethod”, the functions as they would appear in the
Carbon backend’s counterexample model are illustrated in Listing 5.1.4. The
internal functions have the same structure in Silicon, besides their names,
which change slightly.

Since the variable n in the program is only defined as an empty set, we
can gather all the information for our set through the internal function that
defines empty sets. This function maps the identifier of the set type (in this
case integers) to the identifier of the corresponding empty set.

5.2 Heap Resources

In this section, we must distinguish how heap information is extracted for
the two backends. The counterexample heap models received from the SMT
solver significantly differ for both backends. Hence, we will begin by focus-
ing on extracting heap resources in Carbon and later in Silicon.

To understand how the heap features are extracted, we will illustrate the
information extraction process using a Viper program shown in Listing 5.2.1.
The program includes a field, a predicate, and a magic wand.

Listing 5.2.1: Viper program failing verification due to wrong wand argu-
ments in the second assertion.� �
field x: Int

field y: Int

field next: Int

predicate Struct(this: Ref) {

acc(this.x) && acc(this.y)

}

method foo(a: Ref , b: Ref)

requires acc(a.next) --* Struct(b)

requires acc(a.next)

requires Struct(b)

{

a.next := 5
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unfold Struct(b)

b.x := 7

b.y := 11

fold Struct(b)

assert acc(a.next) --* Struct(b)

assert acc(b.next) --* Struct(b)

}� �
5.2.1 Carbon Heap Extraction

In Carbon, each heap instance consists of two components - a heap state and
a mask state. For example, in the program shown in Listing 5.2.1, the “old”
label (which signifies the initial instance of the heap for the “foo” method)
consists of a heap state identifier, Heap@@10 -> T@U!val!9, and a mask state
identifier, Mask@@9 -> T@U!val!18. These different heap and mask state
identifiers can be identified within the counterexample model received from
the SMT solver. The first heap and mask states are internally named, begin-
ning with Heap@@ or Mask@@, succeeded by a number. This forms the starting
point for the different heap instances of the counterexample.

Listing 5.2.1.1: Mapping showing the order of heap states.

succHeap -> {

T@U!val!13 T@U!val !15 -> true

T@U!val!8 T@U!val !13 -> true

T@U!val!9 T@U!val!8 -> true

else -> #unspecified

}

Listing 5.2.1.2: Mapping showing the combinations of heap states and mask
states resulting in one heap instance of the program.

state -> {

T@U!val!13 T@U!val !17 -> true

T@U!val!9 T@U!val !18 -> true

T@U!val!8 T@U!val !17 -> true

[...]

else -> #unspecified

}

We use the function “succHeap”, as shown in Listing 5.2.1.1, to determine
the occurrence order of heap instances. This function contains a mapping
where the second entry represents the succeeding heap state identifier to
the first entry (also representing a heap state identifier). The corresponding
mask state for each heap state can be determined using the “state” function
from the model, shown in Listing 5.2.1.2. Each mapping corresponds to
one heap instance in this function, represented by the first (a heap state
identifier) and second entry (a mask state identifier) in a specific mapping.
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After identifying all heap instances, we must now determine the heap re-
sources and their associated permissions for each heap instance. To achieve
this, we utilize the “MapType0Select” and “MapType1Select” functions.
Specifically, the “MapType0Select” function serves as the map lookup for
heap values, while “MapType1Select” is used for looking up permissions,
given that both heap and mask are structured as maps.

Field Accesses We will now see how to determine the value and permis-
sion of a specific field access within a heap instance. To do so, we will use
the example program detailed in Listing 5.2.1. Within the model’s func-
tion titled “MapType0Select”, there is a mapping T@U!val!14 T@U!val!7

T@U!val!1 -> 5. The sequence key’s first input refers to the heap state, the
second represents the reference, and the third identifies the specific field
being accessed. The output (“5”) signifies the value assigned to that field
access. To determine the permission of the field access, we refer to another
mapping titled “MapType1Select”. We look for a key that combines the
mask state identifier (which, in conjunction with the heap state identifier
T@U!val!14, constitutes a heap instance) and the identifiers T@U!val!7 and
T@U!val!1. This key reveals the specific field access’s permission.

In the counterexample provided by Z3, the “MapType Select” function only
contains entries for each heap instance that were explicitly referenced in the
program. Consequently, Carbon separates the changes of heap resources
across different heap instances. To gather the heap resources that have not
been assigned, it is necessary to backtrack through the heaps sequentially.
During this backtracking, the states of heap resources are incorporated into
the heap state only if a state for that particular heap resource hasn’t already
been included.

To demonstrate this, consider the Viper program shown in Listing 5.2.1.3.
The program compares two integers accessed via this.first and this.second.
As these were previously assigned the integers 1 and 2, the assertion that
these two are equal is incorrect. To determine the counterexample for the
heap at the point of failure, it is necessary to backtrace through all heap
instances. This is because the “MapType Select” function in the counterex-
ample received from the SMT solver only states that we have full permis-
sion for the field access this.second, and that this.second is 2 for the last
heap instance. By incorporating the previous heap instance, we get addi-
tional information from the “MapType Select” function that we also have
full permission for the field access this.first and that this.first is 1.
This information is essential for a complete counterexample.
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Listing 5.2.1.3: Viper program failing verification due to wrong assertion.� �
field first: Int

field second: Int

method foo(this: Ref)

requires acc(this.first)

requires acc(this.second)

{

this.first := 1

this.second := 2

assert this.first == this.second

}� �

Predicate Accesses We determine predicate accesses in a manner similar
to how we approach field accesses. The only distinction is that, in the input
sequences of the “MapType0Select” and “MapType1Select” functions, the
second identifier always signifies null. The third identifier consequently
represents the actual predicate.

To determine that the mappings within the functions indicate a predicate
access, we refer to the “IsPredicateField” function, as demonstrated in
Listing 5.2.1.3. If the resource identifier is a predicate identifier, this map-
ping will assign ’true’ to it.

Listing 5.2.1.4: Mapping showing the identifiers that represent a predicate.

IsPredicateField -> {

T@U!val!1 -> false

T@U!val!11 -> true

T@U!val!15 -> false

T@U!val!17 -> false

else -> #unspecified

}

Every predicate has its own function within the counterexample model pro-
vided by the SMT solver. These function names are derived from the re-
spective predicate names. The methodology used to generate these function
names is the same as the one previously detailed for creating internal iden-
tifiers for values. For instance, in the Viper program presented in Listing
5.2.1, the function for the predicate named Struct is simply named after the
predicate itself. This function can be seen in Listing 5.2.1.4. These specific
functions perform a single mapping: They map the internal identifiers of
the arguments associated with a predicate to the predicate’s own identifier.
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Listing 5.2.1.5: Mapping from the identifiers of the arguments the Struct

predicate has to the predicate identifier.

Struct -> {

T@U!val!6 -> T@U!val !11

else -> #unspecified

}

To determine the counterexample state of a predicate we back-translate
the internal identifiers of the arguments that were previously identified.
The predicate identifier, along with the “MapType1Select” function, helps
us figure out the permission we hold for a specific instance of the pred-
icate in the mask. Additionally, using this predicate identifier and the
“MapType0Select” function, we can ascertain the value assigned to the pred-
icate in the heap. This heap value represents the values of the heap re-
sources enclosed within the predicate, provided it has ever been folded or
unfolded. It corresponds to a frame, which can consist of one part or multi-
ple parts combined using the “CombineFrames” function. Each part is either
an empty frame or a specific frame fragment. For example, for a predicate
with acc(this.x) && acc(this.y) as a body (where this is a reference and
x and y are fields), it would resemble CombineFrames(FrameFragment(v1),

FrameFragment(v2)). However, since we currently only have the name of
the value, it is necessary to determine how it was constructed.

We now examine the “MapType0Select” function. Each mapping inside
the function points to an identifier, which can used to determine the val-
ues inside of a predicate. To do so, we recursively traverse through the
“CombineFrames” function within the counterexample model. We lookup
which sequence consisting of two identifiers points to the identifier identi-
fying the inside of the predicate. Then, we save the first identifier of the
sequence and we recursively do the same for the second identifier in the se-
quence until no sequence points to the current identifier we want to lookup.
The resulting sequence of identifiers denotes the frames for the values inside
of a predicate.

For example, the “CombineFrames” function for the program in Listing 5.2.1
is shown in Listing 5.2.1.5. For the predicate access Struct(b) we start
the recursive lookup with the identifier T@U!val!38. This gives us the se-
quence of identifiers consisting of T@U!val!35 and T@U!val!37. Since we
can’t find another sequence for the identifier T@U!val!37, we stop the recur-
sive lookup. Thus, the final combination of frame identifiers for the values
inside of the predicate Struct(b) is T@U!val!35 and T@U!val!37.
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Listing 5.2.1.6: Mapping from sequences of two identifiers to a single iden-
tifier.

CombineFrames -> {

T@U!val!19 T@U!val !21 -> T@U!val !22

T@U!val!35 T@U!val !37 -> T@U!val !38

else -> #unspecified

}

We can lookup the value of a certain frame in the “FrameFragment” function
within the counterexample model provided by the SMT solver. The “Frame-
Fragment” function for the program presented in Listing 5.2.1 is shown in
Listing 5.2.1.6. As previously determined, the first and second frame of the
predicate access Struct(b) are assigned to the identifiers T@U!val!35 and
T@U!val!37, respectively. Therefore, we can determine that the first frame
has value 7 and the second frame has the value 11.

Finally, we can compare the structure of a predicate to the frames. From the
program in Listing 5.2.1, it is easily visible that the structure acc(this.x)

&& acc(this.y) of the predicate Struct consists of two fields. Thus, we
assign the value 7 of the first frame to this.x and the value 11 of the second
frame to this.y.

Listing 5.2.1.7: Mapping from the values to a specific frame identifying the
values of the arguments contained inside a predicate.

FrameFragment -> {

11 -> T@U!val !37

7 -> T@U!val!35

T@U!val!18 -> T@U!val !19

T@U!val!20 -> T@U!val !21

else -> #unspecified

}

Magic Wands The process of determining magic wands resembles the pro-
cedure for establishing predicate accesses, with one key difference: the third
identifier now signifies the magic wand identifier. To ascertain whether the
resource identifier is a magic wand, we look at the “IsWandField” function,
similar to what we did with predicates. We need to use this identifier to
locate the arguments involved in the assertion of the magic wand. As illus-
trated in Listing 5.2.1.4, the input sequence of the mapping consists of the
values and permissions utilized in the magic wand’s assertion. The output
represents the identifier from the utilized magic wand. Translating these
values provides us with the information for the final counterexample repre-
sentation of the magic wand.
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Listing 5.2.1.8: Mapping showing the mapping from the values used in the
assertion to the magic wand identifier.

wand -> {

T@U!val!6 1.0 T@U!val!6 1.0 -> T@U!val !17

T@U!val!7 1.0 T@U!val!6 1.0 -> T@U!val !15

else -> #unspecified

}

Quantified Permissions Determining the values and permissions of heap
resources with quantified permissions does not differ from the previously
explained process. The only variation is that when looking up the permis-
sion in the “MapType1Select” function, the mask identifiers used are labeled
as quantified permission masks.

5.2.2 Silicon Heap Extraction

In Silicon, each heap instance consists of a list of chunks. A chunk can
represent field accesses, predicate, magic wands, or heap resources with
quantified permissions.

Field Chunk In a field chunk, the accessed field’s name is directly given.
Therefore, we only need to evaluate the given expressions in the chunk to
receive the internal name of the receiver and the value assigned to the field
reference. Details on how to evaluate both of these expressions can be found
in chapter 4.1 of Cedric Hegglin’s Thesis, “Counterexample for a Rust Veri-
fier” [5]. The permission accesses can be determined similarly.

Predicate Chunk The name of a predicate is directly given inside its heap
chunk. The internal names of the predicate arguments can be determined
by independently evaluating the expressions given in the chunk. The per-
missions can, again, like for field chunks, be determined by evaluating the
perm expression of a field chunk.

To ascertain the values contained within a predicate, we evaluate its “snapshot”.
This “snapshot” follows the same structure as “frame combinations” in
Carbon. The keyword $Snap.combine, similar to the “CombineFrames” func-
tion in Carbon, combines the different snapshot arguments. In Silicon,
the Carbon equivalent of an empty frame is denoted as “$Snap.unit”. A
“snapshot” can be evaluated by employing the “$SortWrappers. To$Snap”
functions found in the counterexample model received from the SMT solver.
These functions are comparable to “FrameFragment” function in Carbon.

Silicon’s “snapshot” can consist of values and terms. As an example, a pos-
sible term inside of a “snapshot” could be “Second:(Second:($t@4@04))”.
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When looking up the identifier $t@4@04 in the model received from the SMT
solver, we will get ($Snap.combine $Snap.unit ($Snap.combine $Snap.unit
($Snap.combine $Snap.unit $Snap.unit))). Thus, from “Second:(Second:
($t@4@04))”, we know that we only need to evaluate the second “snapshot”
identifier of the second “$Snap.combine”. This leaves us with the “$Snap.unit”
identifier. We then lookup the value for “$Snap.unit” within the model,
which gives us the value of the inside of a predicate.

Wand Chunk As discussed earlier, when retrieving magic wands within
Carbon, we evaluate the values present within the two assertions of a magic
wand. This involves examining each value within both assertions and eval-
uating them. This evaluation is based on the same processes as previously
defined for the other counterexample types.

Quantified Permissions The extraction process for heap resources with
quantified permissions is similar to that of their non-quantified counter-
parts, with a slight difference in the evaluation of permissions.

For quantified fields, we have specific functions within the counterexample
model produced by the SMT model. Each function’s name is the combina-
tion of “$FVF.lookup ” and the field’s name. This function is a mapping
pointing from an identifier denoting the instance of the quantified field and
the identifier denoting the reference to the value of the quantified field ac-
cess. To determine the permission, we evaluate the quantified permission of
the field for the previously determined reference used in the field access.

A quantified predicate is determined through its permissions. That means,
that we fist evaluate the quantified permissions for each combination of ref-
erence arguments of the quantified predicate and then add all the predicate
instances corresponding to specific argument combinations which have a
valid permission.

As an example, we consider a predicate P1 with the quantified permis-
sion “requires forall i: Int :: 0 <= i && i < 10 ==> P1(i)”. The
goal is to identify all potential predicate arguments that satisfy the condition
“0 <= inv@0@1(i) && inv@0@2(i) < 10” specified in the quantified predi-
cate chunk. The permission term includes two inverse functions: “inv@0@1(i)”
and “inv@0@2(i)”. Each of these inverse functions encompasses several pos-
sible arguments for the permission term. Therefore, it is necessary to check
the validity of the permission term across all potential combinations of ar-
guments from the two inverse functions. After identifying the argument
combinations that yield a valid permission term, we narrow down to the
subset where both arguments are identical, as both inverse functions must
represent the same argument for the variable i. This subset of arguments
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for the predicate P1 reveals all possible quantified predicate instances that
are relevant for the program that fails verification.

5.3 Functions & Domains

We will now describe the process of extracting functions and domains from
the counterexample model generated by the SMT solver. To better under-
stand this extraction process, we will begin by discussing how domains and
functions are represented.

The domain is represented by its type, followed by a listing of the domain-
functions instances in the program. Functions and domain-functions in the
counterexample model describe the mappings of inputs to outputs. In both
Carbon and Silicon, functions are described through a set of options. Each
option in the function definition corresponds to a specific sequence of argu-
ments and defines the value the function returns for that input. Additionally,
default cases exist for handling inputs not covered by any option, but due to
the partial model of the SMT solver, the option is marked as “#unspecified”.

To illustrate the extraction process, let’s consider a program example involv-
ing a domain called “List[T]” and a function “foo” as shown in Listing
5.3.1.

Listing 5.3.1: Viper program consistings of domains and functions.� �
field f: Int

domain List[T] {

function nil(): List[T]

function cons(x: T, xs: List[T]): List[T]

axiom nil_cons {

forall z: T, zs: List[T] :: cons(z, zs) != nil()

}

}

function foo(r: Ref): Int

requires acc(r.f)

{

r.f

}

method test(x: Ref , xs: List[Int], n: List[Int])

requires n == nil()

requires acc(x.f)

{

assert n != cons(5, xs)

assert foo(x) == 5

}� �
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Listing 5.3.2: Information received from the SMT solver in Carbon regarding
the functions and domains.

Heap@@13 -> T@U!val!4

n -> T@U!val!8

xs_1 -> T@U!val!5

foo -> {

T@U!val!4 10 -> 12

else -> #unspecified

}

nil -> {

T@T!val!2 -> T@U!val!8

else -> #unspecified

}

cons -> {

5 T@U!val!5 -> T@U!val!7

else -> #unspecified

}

Listing 5.3.3: Information received from the SMT solver in Silicon regarding
the functions and domains.

foo -> {

$Snap.unit 10 -> 12

else -> #unspecified

}

cons <List <Int >> -> {

5 List <Int >!val!1 -> List <Int >!val!2

else -> #unspecified

}

nil <List <Int >> -> List <Int >!val!0

In Listings 5.3.2 and 5.3.3, we have mappings for the function “foo”: “T@U!val!4
10” for Carbon and “$Snap.unit 10” for Silicon, both of which point to the
integer 12. Since “foo” is a heap-dependent function, the first argument is
an identifier for the heap instance, while the second one signifies the input
argument of the function for the reference r. The output of the “foo” func-
tion for this argument in this heap instance is the integer 12, as indicated by
the mapping. For all other inputs, the function’s output is “#unspecified”.

The counterexample for the “cons” function is determined similarly. The
key distinction is that the first argument in the mapping does not symbol-
ize the heap instance but directly represents the function’s first argument.
Consequently, the mappings in the counterexample received from the SMT
solver for each backend comprise two arguments pointing to another one.
It is evident that the only feasible arguments are “5 T@U!val!5” for Car-
bon and “5 List<Int>!val!1” for Silicon, where the two arguments denote
the integer and the identifier for a List[Int] value that the “cons” func-
tion accepts as input. The result is then an identifier for a variable of type
List[Int].
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The procedure for extracting counterexample information for the “nil” func-
tion is the same as for the “cons” function. After extracting the counterex-
ample information for all three functions as described and translating all
identifiers to their actual values, we obtain the counterexample shown in
Listing 5.3.4 for the program in Listing 5.3.1.

Listing 5.3.4: Counterexample produced in Silicon for the program failing
verification shown in Listing 5.3.1.

counterexample:

Extended Counterexample:

Store:

Variable Name: n, Value: List <Int >!val!0, Type: List[Int]

Variable Name: xs, Value: List <Int >!val!1, Type: List[Int]

Variable Name: x, Value: $Ref!val!0, Type: Ref

current Heap:

Field Entry: x.f --> (Value: 0, Type: Int , Perm: 1/1)

old Heap:

Field Entry: x.f --> (Value: 0, Type: Int , Perm: 1/1)

Domains:

domain List[Int]{

nil{

List <Int >!val!0

}

cons(T,List[T]):List[T]{

List <Int >!val!1 -> List <Int >!val!2

else -> #unspecified

}

}

foo(Ref):Int{

Heap@0 x -> 0

else -> #unspecified

}

5.4 Limitations

Unfortunately, there certain limitations in the previously described genera-
tion of counterexamples:

• For both backends generating counterexamples for predicate snap-
shots involves comparing the snapshot to the actual predicate body.
However, the predicate body can be exceedingly complex, making the
comparison sometimes unfeasible. As an example, the comparison is
not possible when the predicate body references another predicate. In
such scenarios, the counterexample will label the predicate body as
“unspecified”.

• In Silicon, generating counterexamples for quantified permissions re-
quires evaluating the permission term for various arguments. How-
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ever, this permission term may include expressions that are currently
unsupported, such as conditional expressions (i.e., exp1 ? exp2 : exp3).
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Chapter 6

Evaluation

In order to determine the effectiveness of newly implemented features, we
performed a number of experiments evaluating the runtime impact of our
counterexample generation process. Specifically, we compared the runtime
of tests conducted without counterexample generation to those with the in-
clusion of the intermediate counterexample and the extended counterexam-
ple, separately. We evaluate the produced overhead for Silicon and Carbon,
resulting in a total of four quantitative analyses. Figures 6.1, 6.2, 6.3, and 6.4
illustrate our results.

The tests used for our comparative study comprised 883 tests from the Viper
test suite. It is important to note that all these tests failed verification due to
various Viper language features and that we ran each test twice, taking the
mean runtime as a result to reduce inconsistencies in the results.

All our evaluations were conducted on a specific hardware setup to ensure
uniformity. The tests were performed on a MacBook Pro, with the following
specifications: Model Identifier - MacBookPro 14,2; Processor - Dual-Core
Intel Core i5 operating at 3.1 GHz; Memory - 8 GB; Total Number of Cores -
2, with L2 Cache of 256 KB per core and L3 Cache of 4 MB; Hyper-Threading
Technology was enabled. It’s essential to note that the experiments’ consis-
tency and reliability are influenced by this specific hardware configuration,
and variations in hardware might lead to different outcomes.

Figures 6.1 and 6.2 demonstrate that the overhead caused by the production
of both the intermediate and extended counterexamples is negligible for a
large number of tests. The observed runtime difference for the majority of
the remaining tests was as much as 50% relative to the tests that were run
without generating counterexamples. Note that this difference occasionally
appears to be decreasing, which might occur due to random noise. However,
a few individual tests produced an overhead of more than 100%. A more
thorough examination revealed that these programs typically incorporated
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complex quantified permission structures.

Similar to Silicon, numerous tests demonstrated low overhead, and a sizable
portion even ran more quickly when counterexample creation was used,
as shown Figures 6.3 and 6.4. However, for a small amount of tests, the
runtime was doubled while producing a counterexample. Unfortunately,
we were unable to identify the precise Viper language features that caused
this unusual overhead.

In addition to the timing analysis, we conducted a qualitative examination
of the generated counterexamples. For this purpose, we used test files that
went beyond simple Viper language feature testing in order to simulate real-
world applications. These included algorithms like ”Quickselect” [9] and
”Binary Search” [7]. Both backends succeeded in generating the anticipated
counterexamples for both, the intermediate and the extended representa-
tions, making a more in-depth qualitative analysis unnecessary.

Figure 6.1: Graph illustrates the runtime difference between the new inter-
mediate counterexample representation feature and running the test files
without any counterexample generation in Silicon.
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Figure 6.2: Graph illustrates the runtime difference between the new ex-
tended counterexample representation feature and running the test files
without any counterexample generation in Silicon.
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Figure 6.3: Graph illustrates the runtime difference between the new inter-
mediate counterexample representation feature and running the test files
without any counterexample generation in Carbon.
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6. Evaluation

Figure 6.4: Graph illustrates the runtime difference between the new ex-
tended counterexample representation feature and running the test files
without any counterexample generation in Carbon.
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Chapter 7

Conclusion

This thesis aimed to improve the quality and presentation of the generated
counterexamples in Viper and make them backend independent. The work
can be divided into three main goals:

• Establishing a standard format for counterexamples that could be used
across both backends.

• Enhancing Carbon’s ability to support counterexamples to match the
existing capabilities of Silicon.

• Augmenting the capabilities of both backend’s counterexamples by in-
tegrating support for additional program structures, such as predi-
cates, magic wands, and quantified permissions.

Our implementation enhances the usability of the Viper intermediate lan-
guage by providing advanced feedback in case of verification errors. Fur-
ther, by separating the counterexample into two evaluation stages, we offer
the programmer to choose between a intermediate counterexample and a
more comprehensible extended version.

Compared to previous Viper counterexample implementations, our approach
provides backend independence for counterexample features, a significant
shift from the prior dependence on the Silicon backend. Moreover, we have
introduced counterexample support for previously missing Viper types. As
a result, our implementation improves the counterexample support in future
Viper-based front-ends that rely on Viper.

7.1 Future Work

We will now outline possible next steps extending on our work. Some areas
to explore include improving the current generation of counterexamples and
using counterexamples of the Viper intermediate language to introduce or
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enhance counterexamples in other verification languages based on Viper.
Some future projects could include:

• Further decrease the sparsity of counterexamples. That is, increase the
number of terms that can be evaluated.

• Extend the Viper Visual Studio Code Extension, to display counterex-
amples in an interactive way based on the newly created common
counterexample format without using a command-line operation.

• Adapt other front-ends such as Nagini [4] or Prusti [18] to the new
common counterexample format displayed by both backends.
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