
Interfacing TVLA and SAMPLE

Problem Description

Raphael Fuchs
fuchsra@student.ethz.ch

February 21, 2011

Background

TVLA 1 is a framework to deàne, implement and execute shape analyses. Shape
analysis allows to statically infer properties about heap-allocated data struc-
tures, such as reachability of heap cells through pointers. Over the past 10 years,
several shape analyses have been deàned and implemented in TVLA. The re-
sults of this scientiàc work have often been published at the best conferences.

Sample (Static Analysis of Multiple LanguagEs) is a generic static analyzer
based on the abstract interpretation theory, developed at the Chair of Program-
ming Methodology at ETH in the last 2 years. It supports and already contains
a wide range of different analyses and can be used for multiple programming
languages.

Core Task

The goal of this bachelor thesis is to extend Sample with more powerful heap
analysis capabilities. This will be achieved by interfacing it with TVLA.

The implementation will consist of an infrastructure to communicate with
the TVLA tool. In particular, this will mean to implement a parser for tvs àles
(these are the àles used byTVLA to represent the shape of the heap) and to repre-
sent these heap data structures in Sample. Furthermore, a set of update formulae
which describe the effect of executing program statements on heap structures
needs to be provided in order to fully exploit the power of the TVLA engine.
These formulae will represent the semantics of the operators required by Sam-
ple (e.g., àeld access and àeld update).

1Three-Valued-Logic Analyzer, http://www.cs.tau.ac.il/~tvla/

1

http://www.cs.tau.ac.il/~tvla/


Possible Extensions

Depending on the time left, possible extensions of this work may include the
following:

• TVLA’s abstraction of program semantics is guided by instrumentation pred-
icates. The right choice of these predicates is crucial in order to obtain pre-
cise results. Therefore, various predicates should be evaluated, possibly
balancing efàciency with precision.

• Apply the analysis to a wide set of benchmarks

• Develop a set of common predicates to specify more precise analyses of
the most common data structures (such as lists, trees and DAGs).

2


