
I TVLA  S

Raphael Fuchs

Bachelor Thesis Report

Chair of Programming Methodology
Department of Computer Science

ETH Zurich

August 11, 2011

Supervised by:
Dr. Pietro Ferrara
Prof. Dr. Peter Müller

Chair of Programming Methodology

Abstract

In this bachelor thesis we plug shape analysis into the generic static analyzer Sample,
providing an interface to the tool TVLA. Our approach integrates the new domain with
the existing semantic domains such that other information about the content of heap
locations can be combined with TVLA.

Acknowledgements

Iwould like to thankmy supervisorDr. Pietro Ferrara for all his helpful support through-
out this bachelor thesis, and Prof. Dr. PeterMüller for givingme the opportunity to gain
interesting insights into the àeld of static analysis.

Furthermore, I would like to thank Uri Juhasz for all the helpful discussions we had
regarding both practical and theoretical aspects of TVLA. I am also very grateful to
Roman Manevich who provided us with a customized TVLA version according to our
needs and who was very responsive in àxing any bugs we encountered.

CONTENTS 4

Contents

1 Introduction 6
1.1 Overview . 6
1.2 Shape Analysis: Motivation . 6
1.3 TVLA . 7

1.3.1 Representing Concrete Heaps . 7
1.3.2 Heap Abstraction . 8
1.3.3 Expressing Semantics and Programs 8
1.3.4 Reàning the Abstraction . 9

1.4 Sample . 10

2 Design 12
2.1 Approach . 12
2.2 Structure of Heap Domains in Sample . 12
2.3 Heap State and Encoding . 13

2.3.1 Program Variable Predicates . 14
2.3.2 Field Predicates . 14
2.3.3 Summarization Predicate . 15
2.3.4 Name Predicates . 15
2.3.5 Instrumentation Predicates . 15

2.4 Graphical Notation for Three-Valued Heap Structures 15
2.5 Translation of Simple Statements . 16

2.5.1 Program Variable Management . 17
2.5.2 Object Creation . 17
2.5.3 Variable Assignment . 18
2.5.4 Field Access . 18
2.5.5 Field Assignment . 19
2.5.6 Assumptions . 20
2.5.7 Heap Equality and Least Upper Bound 21

2.6 Heap Identiàers . 22
2.6.1 Preserving Names . 22
2.6.2 A Naming Scheme for Heap Identiàers 23
2.6.3 Updating the Identiàer Space: Replacements 25

2.7 Getting More Precise: Instrumentation . 26

3 Evaluation and Results 27
3.1 Visualization . 27
3.2 Performance and Optimization . 27
3.3 Testing . 30
3.4 Representative Testcases . 32

3.4.1 Multiple Structures . 32
3.4.2 Abstraction: Creation of a List . 32
3.4.3 Traversing Lists . 33
3.4.4 Integer Fields and the Numerical Domain 34
3.4.5 Replacements in Action . 35
3.4.6 Initialize and Sum Lists . 35

CONTENTS 5

4 Conclusions 39
4.1 Known Issues . 39
4.2 Future Work . 39

A Detailed List of TVLA Actions 41

6

1 Introduction

1.1 Overview

The goal of this thesis is to enhance the static analyzer Samplewith shape analysis capabil-
ities by interfacing it with TVLA. In this introduction, we brieáy present the motivation
of our work as well as a brief description of TVLA and Sample.

1.2 Shape Analysis: Motivation

Shape analysis is concernedwith statically and automatically inferring properties about
the heap of a program, also called store. A state of the program heap can be thought of
as a graphwhere the nodes represent blocks of allocatedmemory and the edges pointers
between those blocks, together with a set of program variables (called the environment)
which may also point to heap nodes.

One possible question is about the reachability of heap nodes. Given two nodes and
starting from the àrst one, is it possible to reach the second one by following point-
ers? Other important properties include cyclicity, sharing, may-aliasing and disjoint-
ness [WSR00]. More generally, one may be interested in the “shape” of a heap, that is a
characterization of its data structures. For a program which manipulates singly linked
lists, this would mean that we could statically determine that its heap contains lists,
and also whether they contain cycles or not. Other common data structures of interest
include doubly linked lists, trees and DAGs.

The results of a shape analysis have many applications. They are helpful or even nec-
essary for certain forms of program veriàcation (e.g. freedom from null-pointer deref-
erences), optimization and automatic parallelization (disjoint data structures may be
processed in parallel) etc.

Unfortunately, one can not give precise answers to all of the above questions for all
possible programs. It is well-known that many interesting properties such as program
termination are undecidable. Even decidable properties are often too expensive to be
analyzed as the problem at hand suffers from state space explosion. Therefore we need
to introduce approximation: The program semantics is approximated so that the answer
is not wrong but less precise. Roughly, if we prove a property on the approximation,
then this property is respected by all possible executions. Instead, if the property is not
proven, this could be a false alarm because of a too rough approximation.

In the case of heap analysis, we often have programs that manipulate structures of un-
bounded size. For example, the length of lists is unbounded. However, we need a
bounded representation in our analysis. This usually implies the need for a conserva-
tive approximation.

Heap abstraction has proven to be a particularly hard problem in static analysis. During
the last decade, TVLA has been the most effective and popular approach to deal with
this issue.

1.3 TVLA 7

1.3 TVLA

Parametric shape analysis via 3-valued logic is a technique introduced by Sagiv et al. [SRW02]
and to date remains the most promising approach to heap analysis. Lev-Ami imple-
mented these ideas in a tool calledTVLA (Three-valuedLogicAnalysis Engine) [LAS00],
which we are going to use in this thesis.

In the following, we outline some of the ideas behind this static analysis and how the
theoretical concepts translate to TVLA. We try to keep the explanation general and fo-
cused on the logic for now.

1.3.1 Representing Concrete Heaps

Heaps in TVLA are represented using logical structures. A structure S consists of a
tuple (US , IS) where US is the universe with elements called individuals and IS is an
interpretation of a vocabulary of predicate symbols over US .

A structure describes a particular instance of the heap: We can interpret the individuals
to be the set of nodes in the heap graph, i.e. the set of allocated memory blocks. The
valuation of the predicates encodes all the information that makes up the heap. Unary
predicates can for instance encode that a program variable points to a heap node: If vari-
able x references node n1, we create a unary predicate x such that x(n1) = 1. Binary
predicates on the other hand can express which objects a àeld references (deàning the
edges between nodes if the heap is thought to be a graph).

Example: Figure 1 shows our running example with a structure that consists of three
heap nodes as it is encoded in the TVS format used by TVLA. We see that the unary
predicate x holds for n1, i.e. x(n1) = 1, and n1 is related to n2 by the binary predicate f,
i.e. f(n1, n2) = 1.

1 // individuals
2 %n = {n1, n2, n3}
3 // interpretation of predicates
4 %p = {
5 x = {n1}
6 f = {n1 -> n2, n2 -> n3}
7 }

(a) TVS encoding

..n1.

x

. n2. f. n3. f

(b) Visualization

Figure 1: A 2-valued heap structure

To extract information from such a heap, one may simply evaluate a formula of àrst-
order logic (with transitive closure) over the structure.

1.3 TVLA 8

1.3.2 Heap Abstraction

Instead of 2-valued logical structures, Kleene’s 3-valued logic is used to describe ab-
stract heaps with 3-valued structures: In addition to ’true’ and ’false’, there is a third
’unknown’ (also written 1/2) truth value.

When considered ’equivalent‘ in some sense, several heap nodes can be combined into
a single one, called a summary node, representing one or more concrete nodes. A given
3-valued structure can (conservatively) represent inànitely many concrete ones.

The decision when to apply summarization is based on the notion of canonical abstrac-
tion: All nodes that agree on the values of a chosen set of unary abstraction predicates are
considered to be equivalent and therefore mapped to the same individual in the output
structure.

1 // individuals
2 %n = {n1, n2}
3 // interpretation of predicates
4 %p = { x = {n1}
5 f = {n1 -> n2: 1/2, n2 -> n2: 1/2}
6 sm = {n2: 1/2} // n2 is summarized
7 }

(a) TVS encoding

..n1.

x

. n2.
f

.

f

(b) Visualization

Figure 2: Abstracted structure (3-valued)

Example: Figure 2 displays the same structure as in the previous example, but this time
after abstraction was applied (with x as abstraction predicate). Since x(n2) = x(n3) = 0
in the original structure, n1 and n2 were summarized in the 3-valued structure.

1.3.3 Expressing Semantics and Programs

In TVLA, the semantics of statements are deàned by actions. Actions can take parame-
ters and describe how to transform a given state into a new one using predicate logic.
In particular, this is done using a set of predicate-update formulae. For each predicate in
the vocabulary, a logical formula, the update predicate, speciàes the new interpretation
in terms of the pre-state.

As input, a TVP (Three-Valued Program) àle declares the predicates used, the available
actions, and speciàes a control áow graph where the edges are instantiations of the
actions.

Example: Let the abstract heap in Figure 2 be our pre-state and assume we want to set
the f -àeld of node n1 to null. In a programming language this could be expressed as
x.f = null. To encode this as TVP, we introduce a general action setFieldNull(c,n)
which can be used to set a particular àeld of a node pointed by a program variable to
null. We then instantiate this action with x (to denote n1) and our àeld predicate f

1.3 TVLA 9

as parameter. Listing 1 shows the complete TVP and Figure 3 displays the resulting
abstract heap after TVLA was invoked.

1 // predicate declaration
2 %p x(v_1) unique
3 %p f(v_1,v_2) function
4 %%
5 // action declaration
6 %action setFieldNull(c,n) {
7 { n(v_1,v_2) = n(v_1,v_2) & !c(v_1) }
8 }
9 %%

10 // control flow graph
11 start setNextNull(x,f) end

Listing 1: TVP for example

1 // individuals
2 %n = {n1, n2}
3 // interpretation of predicates
4 %p = { x = {n1}
5 f = {n2 -> n2: 1/2}
6 sm = {n2: 1/2} // n2 is summarized
7 }

(a) TVS encoding

..n1.

x

. n2.

f

(b) Visualization

Figure 3: Result after execution

1.3.4 Reàning the Abstraction

To improve the precision of the analysis, instrumentation predicates can be added. They
express properties of interest in terms of basic core predicates. They often lead to àner
distinctions among the concrete structures represented by the abstract heap and can be
used to tune the shape analysis for certain data structures.

Summary nodes can also be split into separate nodes again in a process called material-
ization: Certain ’unknown’ (1/2) values in the heap structures may be forced to take on
deànite (’true’/’false’) truth values. Focus formulas are used to characterize the parts of
the heap that need to assume deànite values, i.e. that we are focusing on.

Finally, integrity constraints (also called compatibility constraints) ensure that the ab-
stracted structures satisfy some consistency rules (e.g. global invariants). Sometimes,
a 3-valued structure created does not represent any legal concrete structure and may
therefore be dropped.

Example: Consider our running example again. Assumewe start with the abstract state
depicted in Figure 2 and want to access the node that the àrst node n1 references with

1.4 Sample 10

..n1.

x

. n2.
f

.

p

(a) Structure 1

..n1.

x

. n2.
f

.

p

. n3.
f

.

f

(b) Structure 2

..n1.

x

. n2.

f

(c) Structure 3

Figure 4: Result of accessing àeld f

its àeld f , i.e. to execute p = x.f. The resulting heap structures are shown in Figure 4.
In the àrst and second structure we see that a node was successfully materialized out of
the summary node again and is now referenced by p. The information howmany nodes
there were exactly in the original structure is lost as part of the abstraction. However,
this failed for the third structure c: The abstraction also did not preserve the factwhether
the concrete nodes represented by n2 are actually reachable from n1. Therefore, the
case where this is not the case was also considered. We can improve the analysis and
eliminate this case by adding an instrumentation predicate for reachability.

1.4 Sample

Sample (Static Analysis of Multiple LanguagEs) is a generic static analyzer. It is based
on the theory of abstract interpretation [CC77, CC79] and was developed at the Chair
of Programming Methodology at ETH over the last 2 years.

Different languages can be translated to an intermediate representation (Simple) which
is then analyzed by Sample. Currently, there are back-ends for Scala and JVM byte-
code.

It supports and already contains awide range of different analyses. It has non-relational
numerical domains for intervals, aswell as relational domains like octagons andpolyhe-
dra. Recently, a new string analysis described in [CFC11] was implemented in Sample.
Former work also includes a domain for the static type analysis of pattern matching
[Fer10].

A few simple heap domains exist already in Sample. One of them approximates all
heap references with exactly one abstract location. Other variants use program points
as the abstract locations to keep the heap bounded. This thesis seeks to improve the

1.4 Sample 11

heap abstraction with the power of TVLA.

12

2 Design

This section outlines the design of our heap domain. We start by explaining the general
ideas of our approach and then move on to give the detailed translation of Sample heap
domain concepts to TVLA concepts.

2.1 Approach

The ideas behind TVLA are very general and could be implemented in Sample. We
chose to use the binary distribution of TVLA 3.0 đ as an external tool and interface it to
Sample. This decision has the following reasons: On one hand, it would be a tremen-
dous effort to replicate all the needed functionality and exceed the scope of this thesis.
On the other hand, TVLA is already heavily optimized and proved to be reliable.

The structure of Sample implies that we cannot simply encode the whole Simple pro-
gram as a three-valued program (TVP) and let TVLA perform the analysis of that whole
program. Instead, we have to invoke TVLA for every statement which modiàes the
structure of the heap. This is because Sample not only tracks the effect of a statement
on the heap domain, but also on a separate semantic domain.

Theprocedure therefore is as follows for every operationwhichmodiàes the heap:

1. Write a TVP àle that declares the actions to execute.

2. Encode the valuations of all predicates of the current heap as a TVS àle

3. Run TVLA on the given TVP and TVS

4. Parse the resulting TVS output.

5. Update our heap representation and produce a new state of the heap domain.

2.2 Structure of Heap Domains in Sample

One of the requirements was to integrate our new heap analysis into the existing infras-
tructure provided by Sample. In particular, it must implement the trait HeapDomain,
the relevant parts of which are shown in Listing 2.

1 trait HeapDomain[T <: HeapDomain[T, I], I <: HeapIdentifier[I]] extends Analysis
with LatticeWithReplacement[T] {

2 /**
3 Creates an object on the heap
4 */
5 def createObject(typ : Type, pp : ProgramPoint) : (HeapIdSetDomain[I], T,

Replacement);
6 /**
7 Returns an identifier which represents the field of a given object
8 */

đTVLA 3.0alpha, http://www.cs.tau.ac.il/~tvla/

http://www.cs.tau.ac.il/~tvla/

2.3 Heap State and Encoding 13

9 def getFieldIdentifier(objectIdentifier : Assignable, name : String, typ :
Type, pp : ProgramPoint) : (HeapIdSetDomain[I], T, Replacement);

10

11 /**
12 Called when an assignment was completed.
13 */
14 def endOfAssignment() : (T, Replacement);
15 /**
16 Assigns the given expression to the given variable
17 */
18 def assign[S <: SemanticDomain[S]](variable : Assignable, expr : Expression,

state : S) : (T, Replacement);
19 /**
20 Assigns the given expression to the field of identifier
21 */
22 def assignField(obj : Assignable, field : String, expr : Expression) : (T,

Replacement);
23 /**
24 Assumes that a given expression holds
25 */
26 def assume(expr : Expression) : (T, Replacement);
27 /**
28 Create a variable
29 */
30 def createVariable(variable : Assignable, typ : Type) : (T, Replacement);
31 /**
32 Create a variable which is a parameter of analyzed method
33 */
34 def createVariableForParameter(variable : Assignable, typ : Type, path :

List[String]) : (T, Map[Identifier, List[String]], Replacement);
35 /**
36 Removes a variable
37 */
38 def removeVariable(variable : Assignable) : (T, Replacement);
39 /**
40 Computes the least upper bound of two heaps
41 */
42 def lubWithReplacement(left : T, right : T) : (T, Replacement)
43 /**
44 Computes the greatest lower bound of two heaps
45 */
46 def glbWithReplacement(left : T, right : T) : (T, Replacement)
47 }

Listing 2: Interface provided by a HeapDomain

2.3 Heap State and Encoding

The heap domain not only provides operations to access and modify the heap, but it
has to keep its own internal state which it uses to conservatively represent the program

2.3 Heap State and Encoding 14

heap at a point during program execution. In other words, each instance of HeapDomain
describes a set of possible concrete heaps. It is natural to represent this information in
the same way TVLA does, that is by a ànite set of three-valued structures.

As we have seen in Section 1.3.1, such structures consist of a vocabulary set, the pred-
icate symbols. All the structures in a heap state are deàned over the same vocabulary.
We now give an overview over all the essential predicates we use.

2.3.1 Program Variable Predicates

For every program variable x, we keep a unary predicate Px(v). A program variable
may either point to a node, or it may be null. In other words, Px(v) = 0 holds for
all individuals v except at most one. We can express this in TVLA with the property
unique.

1 %s PVar {x,y,z,..}
2 foreach (x in PVar) {
3 %p x(v_1) unique
4 }

Listing 3: Declaration of program variable predicates

2.3.2 Field Predicates

Heap nodes are connected to each other when the àeld of an object references another
one. For every possible àeld f , we introduce a binary predicate Pf (v1, v2). For example,
if the àeld n of node a references node b, it holds that Pn(a, b) = 1.

Since a àeld can reference atmost one other object, Pf is a special case of a general binary
predicate: To express this in TVLA, we can specify the property function which adds
the following integrity constraints:

∃v : Pf (v, v1) ∧ Pf (v, v2) ⇒ v1 = v2

∃v1 : Pf (v, v1) ∧ v1 ̸= v2 ⇒ ¬Pf (v, v2)

1 %s Fields {n, i, ...} // all field names
2 foreach (f in Fields) {
3 %p f(v_1,v_2) function
4 }

Listing 4: Declaration of àeld predicates

2.4 Graphical Notation for Three-Valued Heap Structures 15

2.3.3 Summarization Predicate

Summarized nodes play a crucial role in TLVA. One abstract summarized node repre-
sents one or more nodes in the concrete. TVLA’s built-in unary predicate sm serves to
denotewhether an individual is summarized. It doesn’t need to be declared inTVP.

2.3.4 Name Predicates

In order to reàne the precision of the analysis, we have to assign a unique name to every
node by letting a unary predicate with the chosen name point to the node. We call those
predicates name predicates.

1 %s Names { n1, n2, ...}
2 foreach (z in Names) {
3 %p z(v_1) nonabs
4 }

Listing 5: Declaration of name predicates

2.3.5 Instrumentation Predicates

To make the analysis more precise, we add several instrumentation predicates which
try to capture certain shape invariants.

2.4 Graphical Notation for Three-Valued Heap Structures

We adopt the widely established notation to visualize three-valued structures through-
out this document, favouring it over the TVS input and output format of TVLA. Fig-
ure 5 incorporates all relevant elements of our notation which can be explained as as
follows:

• Rectangular boxes like x denote program variables.

• Ovals represent a heap nodes (individuals of the structure). In our example, a, b
and c are the heap nodes.

• Dashed ovals represent summarized nodes, like node c in the example.

• An arrow fromaprogramvariable to a heap nodemeans that the programvariable
points to the node. In Figure 5, variable x points to node a.

• Similarly, for a unary predicate, a label is drawn with arrows starting from the
label pointing to the nodes for which it holds. In the example, n1, n2 and n3 are
such unary predicates.

• Labelled arrows between heap nodes denote that the given àeld of the àrst node
references the second one. E.g. the àeld i of node a references node b.

2.5 Translation of Simple Statements 16

..a.

b

.

i

.

c

.

f

.
f

.

x

.

n1

.

n3

.

n2

Figure 5: Graphical notation example

• Solid arrows symbolize true, dashed arrows unknown (1/2) values, and the ab-
sence of arrows false. Consider e.g. the dashed arrows between a and c: It im-
plies that f(a, c) = 1/2.

2.5 Translation of Simple Statements

While we describe the programs we intend to analyze using TVP in TVLA, we have
Simple in Sample. This language was speciàcally designed to support object-oriented
features. This results in a major difference in the level of abstraction between the two
languages; TVP àles like the examples shipped with the TVLA binary distribution typ-
ically look like direct translations of C programs. On the other hand, Simple programs
still exhibit an object-oriented structure and are much more concise, at the cost of com-
plexity.

For example, Simple does not clearly distinguish between expressions and statements.
Furthermore, it has a complex type system whereas types are usually not considered in
TVLA.

As a consequence of these differences, a suitable translation from Simple to TVLA be-
comes necessary: We need to express the higher-level Simple statements in terms of
more primitive TVLA operations.

When Sample executes a program in the abstract, a single Simple statements results in
several method calls on the heap domain. These method calls in turn invoke TVLA
actions. Every operation of our heap domain is assumed to modify the heap and return
the new resulting state.

Some operations also produce a result (e.g. a new node) which we would like to refer
to later. This is achieved using HeapIdentifiers. However, since different structures

2.5 Translation of Simple Statements 17

contained in the heap may have different results and we sometimes need to take their
union, those operations return a set of such identiàers.

2.5.1 Program Variable Management

In contrast to pure TVP where all predicates (and therefore program variables) are de-
clared globally and before execution, Simple has scoped variables. This implies that
variables may appear and disappear throughout execution. For an example, consider
this Scala code:

1 if (test) {
2 val a = new a
3 val b = new b
4 ...
5 }

Listing 6: Scoped variables

When createVariable or removeVariable are called, we simply declare a new program
variable predicate or remove it from all structures. This is done without running TVLA.
Note that we ignored variable shadowing for simplicity, but this could be done by en-
coding the scope in the variable name.

2.5.2 Object Creation

Dynamic object creation is essential for most real-world object-oriented programs. It is
also the reason why we need to abstract concrete heaps since heaps can grow unbound-
edly.

As mentioned, Simple does not really distinguish between statements and expressions:
An expression ‘new A’ may for instance occur inside an if statement, and the resulting
value is assigned only after the else branchwas evaluated. However, if we create a new
heap node in TVLA without letting anything point to it, we may not be able to access it
later on again in another statement, like an assignment which is usually done after an
object creation.

To overcome this problem, we decided to automatically create a temporary program vari-
able and let it point to the newly created heap node. After an assignment, the heap
operation endOfAssignment is performed and we drop all the created temporary vari-
ables.

Our TVLA action in Listing 7makes use of the built-in predicate isNewwhich designates
the newnode. Note that it is important to provide update formulas for any instrumenta-
tion predicates we may add later since they cannot be updated automatically by TVLA
for new nodes.

1 %action createObject(temporary) {
2 %new

2.5 Translation of Simple Statements 18

3 {
4 temporary(v) = isNew(v)
5 // ... manual updates of instrumentation predicates ...
6 }
7 }

Listing 7: Action for object creation

2.5.3 Variable Assignment

In most assignments, program variables are assigned the result of another expression.
This other expression may be another variable, the resulting heap identiàer of another
heap operation or null. The most common cases are:

1 x = y // source is a variable
2 x = new SomeClass // source is heap id of a new node
3 x = y.n // source is heap id of a field
4 x = null // constant null

Listing 8: Variable assignments

If the right-hand side is not null, we always have a unary predicate pointing to the
source of the assignment. In the case of a variable, it is the program variable predicate
and in case of a heap identiàer it is the temporary which was created. Wemay therefore
simply copy the valuation of the unary predicate.

We treat a null-assignment as a special case, with an additional TVP action in List-
ing 9.

1 // assign source to target unary predicate (program variable)
2 %action copyVariable(target,source) {
3 %f { source(v) }
4 {
5 target(v) = source(v)
6 }
7 }
8 // special case for null
9 %action setVariableNull(target) {

10 {
11 target(v) = 0
12 }
13 }

Listing 9: Action for variable assignment

2.5.4 Field Access

In Samplewe expect expressions of the form“target.field” to return an identiàerwhich
points to the content of the referenced àeld. This identiàer may possibly also represent

2.5 Translation of Simple Statements 19

null, for example in the case of uninitialized àelds.

Afterwards, the identiàer is usually used as the source of an assignment (e.g. y = x.n)
or the target of another àeld access (e.g. x.n.n). In any case, we create a new temporary
variable pointing to the result of the performed àeld access, just like we do for created
objects.

Example: When the Simple statement y = x.n.n is executed, it is translated to the
following sequence of operations (slightly simpliàed pseudo code):

Simple Notation HeapDomain method TVLA Action used
1. temp1 = x.n getFieldIdentifier extractField
2. temp2 = temp1.n getFieldIdentifier extractField
3. y = temp2 assign copyVariable
4. temp1 = temp 2 = null endOfAssignment setVariableNull

Accessing the object referenced by a àeld is one of the situations in which the object we
are trying to access may have been summarized with other nodes. However, we would
like our result be one speciàc, concrete node and not a summarized one. This is where
materialization comes into play: If we add the focus formula

∃(v1, v2) : Ptarget(v1) ∧ Pf (v1, v2)

we get deànite values for the temporary which points to the accessed node. It either
points to a single non-summarized node or is null.

1 %action extractField(destinationVar,targetVar,fieldName) {
2 %f { E(v_1,v_2) target(v_1) & field(v_1,v_2) }
3 {
4 destinationVar(v) = E(v_1) targetVar(v_1) & fieldName(v_1, v)
5 }
6 }

Listing 10: Action for àeld access

2.5.5 Field Assignment

The treatment of assignments to àelds of an object is similar to normal assignment. The
cases that may occur look basically the same:

1 x.n = y // source is a variable
2 x.n = new SomeClass // source is heap id of a new node
3 x.n = y.n // source is heap id of a field
4 x.n = null // constant null

Listing 11: Field assignments

However, the translation to TVLA is different, as it involves a àeld predicate and we
need to access the target whose àeld is assigned. Also note that in x.n = y.n, the left-
hand side and right-hand side are treated in a different way by Sample: It evaluates the

2.5 Translation of Simple Statements 20

àeld access y.n but x.n is not interpreted as a àeld access; the later simply denotes the
target and the àeld which is to be assigned. We again have a separate action to set àelds
to null as can be seen in Listing 12.

1 %action setField(target,field,source) {
2 %f { target(v), source(v) }
3 {
4 field(v_1, v_2) = field(v_1, v_2) | target(v_1) & source(v_2)
5 }
6 }
7 // spcial case for settings fields to null
8 %action setFieldNull(target,field) {
9 %f { target(v) }

10 {
11 field(v_1, v_2) = field(v_1, v_2) & !target(v_1)
12 }
13 }

Listing 12: Action for àeld assignment

2.5.6 Assumptions

When the control áow of a program branches, it is often useful if an analysis can as-
sume a condition that lead to the particular branch taken. This is exactly the purpose of
assumptions in Sample.

For a heap domain, the relevant branching conditions are reference comparison expres-
sions. We limit ourselves to the following most common cases:

1 x == y
2 x != y
3 x == null
4 x != null

Listing 13: Implemented assumptions for the heap domain

As we have decided in Section 2.3, our heap state contains a set of heap structures.
When executing assume, we can evaluate the condition in all the structures and safely
drop those in which it evaluates to false. We need to make sure it evaluates to a deànite
value, so we add focus predicates for the predicates of the program variables in the
expression.

In TVP, we can specify a precondition formula which àlters out structures which do not
satisfy it. Listing 14 shows the declared actions.

1 %action assumeVariableEqual(var1, var2) {
2 %f { var1(v), var2(v) }
3 %p A(v) var1(v) <-> var2(v)
4 {}
5 }

2.5 Translation of Simple Statements 21

6 %action assumeVariableNotEqual(var1, var2) {
7 %f { var1(v), var2(v) }
8 %p !A(v) var1(v) <-> var2(v)
9 {}

10 }
11 %action assumeVariableNull(var) {
12 %f { var(v) }
13 %p !(E(v) var(v))
14 {}
15 }
16 %action assumeVariableNotNull(var) {
17 %f { var(v) }
18 %p E(v) var(v)
19 {}
20 }

Listing 14: Actions for assume

2.5.7 Heap Equality and Least Upper Bound

During an analysis, Sample performs an iteration over the control áow graph of the
program, executing the abstract transformers on the states until a àxed point is reached.
For this to work, we need a suitable deànition of equality and a least upper bound
operation on heap states. We took the decision that our abstract heaps are equal when
they contain the same structures in the following sense: Two structures are considered
equal if they have the same universe (i.e., the names of heap nodes match) and they
agree on the values of all predicates over the universe. We do not determine if they are
isomorphic ignoring the names.

A node in the control áow graph can have several predecessors. This happens for ex-
ample after if-else-statements when the two branches merge again, or at the entry of
a loop due to a back-edge. In that case, a join operation is used to combine the post-
states of the predecessors into a single pre-state of the current node. It is important that
such an operation is safe in the sense that it returns an upper bound of the information
contained in the inputs.

Sample invokes the operation lub(s1: T, s2: T): T on an abstract domain Twhenever
it needs to join two states. Since in our heap domain every heap state consists of a set
of three-valued structures, we could simply compute their union. However, during
repeated application of this operation, the set may grow unbounded and the analysis
would not terminate because no àxed point is reached. The reason for this is that the
union of two structure sets may not be minimal: it can contain structures which are
isomorphic or are contained in each other.

We found that TVLA automatically performs a join operation on all the input structures
at the start of program, not only on joins of the control áow graph. Therefore we pass
the union of the input structures to TVLA and let it “minimize” this set (i.e., we get
as output a set of structures which are not isomorphic but still contain all the concrete
structures described by the input).

2.6 Heap Identiàers 22

1 %action lub() {
2 {}
3 }

Listing 15: Action for the least upper bound

2.6 Heap Identiàers

Identiàers are used in Sample to name entities (variables or heap nodes) which are rel-
evant to the analysis of a program. While different domains are independent to a large
extent, their states share a common set of identiàers.

The canonical example for identiàers is an integer variable identiàer which simply is
the variable name listed in the program. The interval domain associates all these nu-
merical identiàers with an integer interval to approximate their runtime values. At the
same time, another semantic domain may handle the identiàers differently and track
for instance their dynamic type.

For our heap domain, we let the heap nodes, that are the individuals of three-valued
structures, denote our identiàers. It seems reasonable that in one structure, identiàers
are unique (otherwise the universewould not be a set) while on the other hand, different
structures may contain the same heap identiàers.

The set of heap nodes changes throughout the analysis, and so does the set of identi-
àers; it is not àxed. Identiàers are created when new objects are created. However, one
purpose of the heap domain is to abstract the concrete heap by summarizing nodes.
When that happens, identiàers may disappear. A new identiàer also appears when
materializing a node from a summary node.

2.6.1 Preserving Names

Tracking the names of nodes in TVLA is challenging. The input names are translated
to an internal format, and when producing output TVLA numbers the nodes in an un-
known and unpredictable way.

When structures given as input are modiàed (that is, they are summarized or material-
ized), TVLA does not tell us what happens to these structures in the output.

To solve these issues, we add predicates to track names, from now on referred to as
name predicates. Each time we run TVLA, a unary predicate is added for every node
name, pointing to the named node. Afterwards, the values of the name predicates tell
us what happened to the original names. Table 1 lists the most common cases and how
the results are interpreted.

Usually unary predicates are used to distinguish between different structures when a
join of heap states is performed. Because we are just naming nodes, we do not want the

2.6 Heap Identiàers 23

Input Example Output Conclusion

..a.

a

. b.

b

.._1.

a

. _0.

b

a and b unchanged,
now called _1 and _0

..a.

a

. b.

b

.._3.

a

.

b

a and b summarized
into _3

..a.

a

.._1.

a

. _0.

a

node _1 was material-
ized from a

Table 1: Illustration of name predicates with examples

name predicates to have an ináuence on the abstraction. Wewere able to achieve this be-
haviour using the property “non-abs” to declare non-abstraction predicates. Such non-
abstraction predicates allow nodes to be merged even though different non-abstraction
predicates hold for them [LAS00]. Experiments showed that “non-abs” only has an in-
áuence in TVLAversion 3.0awith an option to use a partial join [LAIS06,MSRF04].

2.6.2 A Naming Scheme for Heap Identiàers

So far we omitted what the names of heap nodes, our heap identiàers, look like. For
the reasons given above, we cannot use the names assigned to them by TVLA. A àrst
simple idea is to consecutively number all the created heap nodes. The numbers are
assigned based on the pre-state, not counted globally, since we always need to obtain
the same result when an operation is performed on a pre-state.

However, in general we would lose a lot of precision regarding the semantic domain,
as illustrated in the example in Listing 16. Given the same pre-state, the newly created
objects get assigned the same heap identiàer in both branches of the if-statement, even
though they might be used and modiàed in a different way. When the states after the
twobranches are combined into the post-state of the if-statement, Sample takes the least
upper bound. The values associated with the said heap identiàer in the other domains
are also combined into one, entailing a loss of precisionwhichwould not have happened
if we had assigned two different names.

2.6 Heap Identiàers 24

1 // pre-state
2 if (someCondition) {
3 x = new Object
4 // ..more heap updates..
5 } else {
6 y = new Object
7 // ..more heap updates..
8 }
9 // post-state

Listing 16: Imprecision of consecutive names

As an improvement, we introduce a naming scheme that considers the context in which
a heap identiàer àrst appears: The name of a new node is based on the program point
pp where it is created. At a given program point pp, several nodes may be created due
to loops, so we add a counter c, forming a tuple (pp, c). The counter is then incremented
at each iteration. Let PPC denote the set of all these tuples:

PPC := ProgramPoint× N

We also have to consider the case where two ormore nodes are summarized into one: In
this case the names are combined to form a single one in an operation we callmerge. We
do this by taking the union of the name tuples (pp, c) described above. For this reason,
every name consists of a setE ∈ P(PPC) of such tuples, which simply has a single tuple
for newly created nodes.

Sometimes new nodes appear for other reasons than performing a new- statement, e.g.
when a nodes was materialized out of a summary node. As illustrated in the third
case of Table 1, such a node ‘inherits’ the naming predicate of the summary node. It is
therefore necessary to add another characteristic uid to the set of the program point /
loop counter pairs in order to make all names unique within a structure. A name thus
is a tuple (E, uid). By default, we let uid = 0, and only increase it when necessary,
basically numbering nodes like in the naïve naming scheme described above, as a last
resort to guarantee the uniqueness of names. Formally, the set of our heap identiàers is
deàned as

HeapID := P(PPC)× N

We now move on to formally deàne the merge operation. While the basic idea is to take
the union of all the (pp, c) ∈ PPC of the nodes to be merged, we to have at most one
element of a given pp in such a set. Therefore we adopted this solution: If both nodes
contain a tuple with the same program point, say (pp, i) and (pp, j), the resulting node
will only contain (pp,min(i, j)) instead of both:

merge : HeapID×HeapID → HeapID

merge(n1, n2) = merge ((E1, uid1), (E2, uid2)) := (E′,min(uid1, uid2))

2.6 Heap Identiàers 25

where

E′ = {(pp, c) | ∃(pp, c′) ∈ E1∪E2∧c =


min(c1, c2) if (pp, c1) ∈ E1 ∧ (pp, c2) ∈ E2

c1 if (pp, c1) ∈ E1 ∧ ∄c2 : (pp, c2) ∈ E2

c2 if (pp, c2) ∈ E2 ∧ ∄c1 : (pp, c1) ∈ E1

}

The reason for this specialized operation is to keep bounded the number of identiàers
we produce. The number of program points pp contained in our identiàers is clearly
bounded, as every program has ànitelymany of them. Since TVLA also uses a bounded
abstraction for the heap, new nodes repeatedly created at a given program point will
start to be summarized with existing ones. Here lies the reason for the rather convo-
lutedmerge operation: By taking the minimum of the counters c, we ensure they are not
increased further.

Note that other naming schemes would be possible and sound. However, we found it
to be most suitable for the precision of our analysis.

2.6.3 Updating the Identiàer Space: Replacements

We described how to assign and update identiàers in a heap structure of our heap do-
main. However, the space of identiàers is shared with our semantic domain, and so it
needs to be made aware of our modiàcations. For example, we need to make explicit
that a new identiàer appeared because the two existing ones were merged, so that the
information associated with them in other domains also can be combined.

To capture all updates to identiàers within a structure after we executed a heap oper-
ation, we introduced a data structure rep, for “replacement”. All our heap operations
return a replacement to Sample for further processing. A replacement is a partial func-
tion

rep : P (HeapID) → P (HeapID)

It basically describes what the heap identiàers of the input structure under considera-
tion were replaced with. Consider the following examples:

1. Some heap identiàer nwas not summarizedwith others or materialized. This cor-
responds to the case in the àrst row in Table 1 and is expressedwith a replacement
such that

rep({n}) = {n}

2. Two heap identiàers n1 and n2 were merged due to summarization into an iden-
tiàer n3. This for instance happens in the second row of Table 1. Then

rep({n1, n2}) = {n3}

The replacement can be used by another domain: E.g. assume there is a state σN
of the interval domain satisfying σN (n1) = [1..2] and σN (n2) = [2..3]. Given the
replacement, it can be updated to σ′

N such that σ′
N (n3) = [1..3].

2.7 Getting More Precise: Instrumentation 26

3. An identiàer n5 was duplicated from n4, e.g. due to materialization of the sum-
mary node n4. This case corresponds to the third row of Table 1. Then

rep({n4}) = {n4, n5}

Again, consider the same domain as above, this time with σN (n4) = [1..1]. After
the replacement was applied, we have σ′

N (n4) = σ′
N (n5) = [1..1].

2.7 Getting More Precise: Instrumentation

With the predicates and actions described above, our analysis performs a conservative
approximation of the concrete heap semantics. However, summarization immediately
results in a signiàcant information loss which makes the analysis very imprecise.

By adding instrumentation predicates and some constraints, we can compensate for a
part of this information loss. However, such instrumentation predicates are always de-
signed to tune the analysis to a certain data structure one is interested in. It remains im-
possible to obtain precise results for all cases. Moreover, adding more instrumentation
predicates usually makes an analysis slower. We took the decision only to support lists
as part of this thesis, while additional predicates could be added in further work.

The predicates we chose are more or less standard when analyzing singly-linked lists
and can also be found in the examples shipped with TVLA. Brieáy, the predicates, their
purpose and deànition in terms of core predicates are the following:

• Transitive Reáexive Reachability: For every àeld f, we add a predicate which de-
scribes whether a node v2 can be reach from v1 by following zero or more f-àelds:

t[f](v_1, v_2) = f*(v_1, v_2) transitive reflexive

• Shared-ness: For every àeld f, we deàne a predicate that captures whether there
is more than one object (node) whose àeld f references a given node v:

is[f](v) = E(v_1, v_2) (v_1 != v_2 & f(v_1, v) & f(v_2, v))

• Reachability from variables: For every àeld f and program variable x, we deàne
a predicate that captures whether a node v can be reached from x along zero or
more f-àelds:

r[f,z](v) = E(v_1) (z(v_1) & t[f](v_1, v))

From the reachability properties combined with the fact that nodes are not shared can
be used to infer that a heap structure is indeed acyclic. Nodes with a single àeld can be
shown to form an acyclic singly-linked list.

27

3 Evaluation and Results

3.1 Visualization

Heaps are complex structures and are therefore best rendered graphically for human
inspection. To visualize the results of an analyzed program, we considered two use
cases.

Interactive Visualization

In the àrst use case, a user interactively explores the results in a GUI. This is usually
done after manually analyzing a single method at hand. For that purpose, we extended
the existing GUI of Sample. It is able to display the program’s control áow graph (CFG),
as well as the state at every program point.

In our analysis, a heap state is displayed as a set of graphs including all the program the
program variables. Each graph visualizes one three-valued structure. The numerical
information associated with an identiàer can be viewed by clicking on it. All the heap
graphs are drawnusing the jGraph library and all heap nodes can bemoved bydragging
them.

Figure 6 shows our visualization for the code snippet in Listing 17. The control áow
graph of the program appears in Figure 6a. After clicking on the end node in this graph,
the three-valued structures of the result are displayed like in Figure 6b. In our example,
there are two distinct structures, divided visually by a horizontal line. Finally, Figure 6c
shows how the numerical state associatedwith a heap node can be viewed: The analysis
determined that the value of the selected node is in the interval [1..1].

Non-interactive Visualization

Sometimes the results of an analysis should be saved for later use in a non-interactive
fashion, such as when analyzing dozens of methods. In that case, we generate images
with graphs of all heap structures in the end state of the program.

Automatically layouting large graphs well is a difàcult endeavour, so we chose to use
Graphviz DOT for that task. Figure 7b shows the rendered graph of the heap state after
executing Figure 7a. Apart from minor differences in appearance, the rendered graph
corresponds to the graphical notation for heaps described in Section 2.4. That is, the
program variable x references the àrst heap node that was created, namely L5C13_0,
while the àeld n of the later references node L6C11_0.

3.2 Performance and Optimization

As outlined in Section 2.1, we decided to use TVLA as an external tool. After some
experimentation it soon became evident that our analysis suffered from severe perfor-

3.2 Performance and Optimization 28

(a) CFG

(b) Heap state: Two structures (c) Numerical state of heap ID

Figure 6: Sample GUI visualization

3.2 Performance and Optimization 29

1 class A {
2 var i = 0;
3 var n: A = null
4 }
5

6 object SomeObject {
7 def someMethod(unknown: Boolean) = {
8 var x,y : A = null
9 if (unknown) {

10 x = new A
11 x.i = 1
12 } else {
13 y = new A
14 y.i = 2
15 }
16 }
17 }

Listing 17: Scala code of GUI visualization example

1 class A { var n: A = null }
2

3 object SomeObject {
4 def someMethod = {
5 val x = new A
6 x.n = new A
7 }
8 }

(a) Program code

L6C11_0

L5C13_0

field_n

x

(b) Heap end
state

Figure 7: Graphviz DOT visualization

3.3 Testing 30

mance problems. These were to a large part due to the start-up of a new JVM for every
call to TVLA.We then tried to invoke the mainmethod of the TVLA java library directly
in order to save the process creation and JVM initialization time. However, this did not
work since some static data internal to TVLA was not reset. The default binary distri-
bution of TVLA is designed to be used as a standalone application to analyse whole
programs, which is in sharp contrast to our usage.

Upon request to the developers, we were able to obtain a customized version of TVLA
which allowed us to reset the internal state after one execution and then call the main
method again. This lead to a reduction of the execution times of about 80% in gen-
eral.

Furthermore, we found the iteration performed by Sample to execute a program in the
abstract domain to be inefàcient. While this may not be critical for other analyses, it has
a huge impact on our heap analysis. The problem is that Sample frequently executes
the same statement in the CFG several times on the same pre-state. While the result ob-
viously does not change, we perform a full run of TVLA. To improve the performance,
we cached the results of previous heap operations on our heap domain: Whenever our
domain is requested to perform an operation, we check if such an operation was previ-
ously applied to the same heap state. If that is the case, we can return the cached result.
We observed a 60% reduction of the execution times on average. The memory usage for
the caching seems to be negligible compared to the memory footprint of TVLA.

3.3 Testing

To assess the implementation of our domain, wedeveloped two test-suiteswhich consist
of Scala methods. We veriàed by manual inspection for each test case that the results
are indeed safe approximations of the real execution behaviour.

We ran Sample with two domains, our new TVSHeap heap domain and a non-relational
numerical domain which uses interval abstraction. All analyzed examples are written
in Scala, therefore we used the Scala compiler back-end to translate the source code to
Simple.

The analysis was run on amachinewith a Intel Core 2Duo at 2.53GHz and 4GB of RAM.
We used the Java HotSpot 64-Bit Server VM included in Java SE Runtime Environment
1.6.0_26-b03 with the option -XX:NewRatio=2, which helped us to improve garbage col-
lection performance.

Table 2 contains all the experimental results. Column #tr shows the number of times
TVLA was called during the analysis, while column #tr-unique shows the actual calls
performedwhen caching of the results was enabled. The running times are displayed in
columns JVM-nc (JVM invocation method without caching), JVM (JVM with caching)
and MR (main+reset invocation method with caching).

Note that the main+reset invocation method produced some invalid results for the test
cases initializeFixedList, createNumericalList and initializeAbstractedListFields.
This ismost likely due to a bug in the customized binary TVLAversion thatwe obtained
from the TVLA developers.

3.3 Testing 31

Testcase # tr # tr-unique JVM-nc [s] JVM [s] MR [s]
createObject 12 4 4.9 2.0 0.7
createAndOverWrite 26 9 9.9 3.7 0.7
assignNextField 26 9 10.4 3.9 0.6
accessNullField 20 7 8.0 2.7 0.3
assignFieldSelf 18 7 6.9 2.5 0.3
overwriteField 24 10 8.8 3.8 0.4
createObjectIfCondition 24 7 9.0 2.7 0.2
conditionalAssignment 30 11 11.4 4.4 0.4
conditionalAssignmentVariant 49 14 18.1 5.9 0.6
assumeEqual 35 10 12.6 3.9 0.2
assumeUnequal 32 13 11.8 5.1 0.3
assumeUnequal2 36 10 12.7 3.8 0.2
createSharedObject 50 19 19.8 8.1 0.8
linkObjects 84 32 34.8 13.8 1.4
linkAndTraverseObjects 104 38 44.2 16.1 1.9
createObjectWhile 100 39 38.0 15.8 1.1
appendByFieldAccessTwo 42 15 16.1 5.9 0.6
buildList 52 20 20.1 7.4 0.5
appendByFieldAccessThree 60 22 23.5 8.9 0.9
appendByFieldAccessFour 112 72 116.0 73.6 4.7
createPrependList 129 54 52.2 22.1 1.4
createAppendList 178 103 76.7 47.3 3.3
swapLoop 126 34 49.6 12.5 0.9
accessNextSummarized 60 23 22.3 9.6 0.6
traverseFixedShortList 247 93 104.0 48.7 3.3
traverseSummarizedList 331 164 149.2 89.1 8.6
assignNumericField 22 8 9.9 5.0 1.3
assignAndAccessNumericField 28 10 11.9 4.4 1.0
createThreeElementList 78 30 36.2 13.8 2.0
createSummarizedIntList 82 32 37.8 15.1 2.0
assignTwoFields 32 12 14.8 5.9 0.9
assignFieldsAndSummarize 112 44 58.5 23.6 4.1
assignAndAddFields 170 55 102.2 32.4 8.3
createOneOrTwoNodes 112 22 49.8 9.9 1.8
swapHeapObjectsOnce 85 24 37.2 11.2 1.8
initializeFixedList 370 109 183.8 57.9 4.5
createNumericalList 302 148 151.7 79.9 14.4
initializeAbstractedListFields 476 220 253.2 144.8 31.8
sumListElementsZero 893 609 683.3 524.7 86.7

2521.4 1351.9 195.4

Table 2: Non-numerical and numerical testsuite execution times

3.4 Representative Testcases 32

1 def conditionalAssignmentVariant(unknown: Boolean) = {
2 val x = new A
3 val y = new A
4

5 val z = if (unknown) x else y
6 }

Listing 18: if-branches and heap structures

3.4 Representative Testcases

In this section, we present the analysis results of a few notable test cases, representative
of what we were able achieve with the new domain. Note that the Scala code of our test
cases looks rather imperative than functional because Sample’s support for interproce-
dural analysis is incomplete. For that reason, we did not use any method calls.

Sometimes heap node names in the scheme we proposed tend to become too long, so
we decided to abbreviate them in the resulting graphs for the sake of clarity. We provide
the names and contents of the numerical domain separately.

3.4.1 Multiple Structures

Our àrst example in Listing 18 illustrates how our heap domain increases the number
of three-valued structures to represent the heap when necessary. This usually happens
when previously abstracted (summarized) parts of the heap are concretized again, and
when paths of the control áow join. Here we show the later case.

After both branches of the if-statement were evaluated, we take the least upper bound
of the two states, i.e. we take the union of both structures and move on to perform the
assignment of the expression result. Canonical abstraction determines that the struc-
tures cannot be combined into one, since they do not agree on the value of the unary
predicate for z. In one structure, it points to the object referenced by x, while in the other
one it points to the one referenced by y. The result is displayed in Figure 8.

It is also worth mentioning that whenever we need a condition that cannot be deter-
mined statically, weuse a boolean variable unknownpassed as a parameter to themethod.
We noticed that the Scala compiler sometimes is smart enough to eliminate branches if
conditions are too simple (e.g. depending only on constants).

3.4.2 Abstraction: Creation of a List

In the next example, things get more interesting: The program in Listing 19 creates an
unbounded number of heap objects. More precisely, it creates a singly-linked list of one
or more elements whose head is referenced by the variable x. It uses a loop to allocate
new objects and prepend them to the existing tail.

3.4 Representative Testcases 33

..n1.

x

.

z

. n2.

y

(a) Structure 1

..n1.

x

. n2.

y

.

z

(b) Structure 2

Abbr. Full ID
n1 L2C11_0
n2 L3C11_0

(c) Heap IDs

Figure 8: Multiple Heap Structures: Result

1 def createPrependList(unknown: Boolean) = {
2 var x = new A
3 var t:A = null
4

5 while (unknown) {
6 t = new A
7 t.n = x
8 x = t
9 t = null

10 }
11 }

Listing 19: List creation

Again, for technical reasons, we used the variable unknown tomodel a condition that can-
not be decided. One could also think of it as a random variable which decided whether
the (concrete) program keeps executing the loop or stops.

It could be that the while-loop body is never executed: In that case, we get a list of length
one. However, if we keep executing the loop, abstraction takes place to keep the heap
bounded: All elements beyond the head are summarized into a single one, since they
look the same to TVLA (regarding the predicate values). Therefore, a summary node is
created which stands for one or more elements.

Figure 9 displays the abstract heap state after the method was executed. It contains a
structure for each of the described cases.

3.4.3 Traversing Lists

The last testcase showed how abstraction is performed. However, what is much more
difàcult is how to obtain precise information when accessing parts of the heap which

3.4 Representative Testcases 34

..n1.

x

(a) Structure 1

..n1.

x

. n2.
n

.

n

(b) Structure 2

Abbr. Full ID
n1 L2C11_0
n2 L2C11_0+L6C9_0

(c) Heap IDs

Figure 9: List creation result

1 def traverseSummarizedList(x: AcyclicList) = {
2 // variable which afterwards references the last element
3 var end : AcyclicList = null
4

5 var cur = x
6 while (cur != null) {
7 end = cur
8 cur = cur.n
9 }

10 }

Listing 20: List traversal testcase

were summarized.

The input state at the start of the method in Listing 20 consists of a singly-linked list
of length two or more. With instrumentation predicates added (for reachability and
sharing), we were able to successfully traverse the list. We let a reference move along
an arbitrary long (since abstracted) list, pointing to the last element in the end (Fig-
ure 10).

This testcase also shows that our analysis actually makes use of branching conditions:
When the loop body is entered, we let the heap domain assume the condition is true, if
it is not entered we assume the negation. This can be seen from the fact that cur is null
in the end state.

3.4.4 Integer Fields and the Numerical Domain

In the absence of summarization, it is desirable not to lose any precision. The testcase in
Listing 21 demonstrates that we can assign and access àelds without any precision loss
since all the objects are referenced by program variables: As can be seen in the result

3.4 Representative Testcases 35

..n1.

x

. n2.
n

.

end

(a) Structure 1

..n1.

x

. n2.
n

. n3.
n

.

end

(b) Structure 2

Abbr. Full ID
n1 L1C28_0
n2 L1C28_1
n3 (L1C28_1)_U1
x x
end end

(c) Heap IDs

Figure 10: List traversal result

in Figure 11, the sum of all integer àelds is exactly 21. We also see how the interval
domain tracks the numerical information associated with the integer-valued àelds i
and j.

3.4.5 Replacements in Action

We introduced the concept of replacements to update the numerical domain when the
identiàers change. Here we consider the (admittedly artiàcial) case where two objects
are created with integer àelds of different value. The references to these objects are then
swapped depending on a condition. At the end of the if-statement in Listing 22, the
least upper bound of the original and the swapped heap states is taken. While in the
concrete, the structures of these heap states are not equivalent, they look structurally
the same to TVLA: In both cases, there are two variables each pointing to a node with
an integer àeld. Therefore, they are joined into a single one.

Our mechanism for names is able to detect this and creates a replacement to merge the
numerical values of the àelds, i.e. both àelds now have the numerical value [1..2], since
the distinction between the unswapped and swapped cases was lost. The end state is
depicted in Figure 12.

3.4.6 Initialize and Sum Lists

In Listing 23 we show the most challenging testcase we considered: A singly-linked
list is initialized with all i àelds set to 0. We then traverse the list and sum up all the
elements we have seen and are able to deduce that the sum is exactly 0.

3.4 Representative Testcases 36

1 class TwoIntNode {
2 var n: TwoIntNode = null // next
3 var i: Int = 0
4 var j: Int = 0
5 }
6

7 def assignAndAddFields = {
8 val x = new TwoIntNode
9 x.i = 1; x.j = 2

10 var y = new TwoIntNode
11 y.i = 3; y.j = 4
12 var z = new TwoIntNode
13 z.i = 5; z.j = 6
14 x.n = y;
15 y.n = z
16

17 val sum = x.i + x.j + x.n.i + x.n.j + x.n.n.i + x.n.n.j
18 }

Listing 21: Field assignment testcase

1 def swapHeapObjectsOnce(unknown:Boolean) = {
2 var x = new IntNode
3 x.i = 1
4 var y = new IntNode
5 y.i = 2
6 var t: IntNode = null
7

8 if(unknown) {
9 t = x

10 x = y
11 y = t
12 t = null
13 }
14 }

Listing 22: Swap àelds testcase

3.4 Representative Testcases 37

..n1.

x

.

n4

.

i

.

n5

.

j

. n2.
n

.

y

.

n6

.

i

.

n7

.

j

. n3.
n

.

z

.

n8

.

i

.

n9

.

j

(a) Structure 1

Abbr. Full ID Semantic Domain
n1 L8C11_0 ⊤
n2 L10C11_0 ⊤
n3 L12C11_0 ⊤
n4 L9C9_0 [1..1]
n5 L9C18_0 [2..2]
n6 L11C9_0 [3..3]
n7 L11C18_0 [4..4]
n8 L13C9_0 [5..5]
n9 L13C18_0 [6..6]
x x ⊤
y y ⊤
z z ⊤
sum sum [21..21]

(b) Heap IDs and semantic state

Figure 11: Numerical àelds: Result

..n1.

x

.

n3

.

i

. n2.

y

.

n4

.

i

(a) Structure 1

Abbr. Full ID Semantic Domain
n1 L2C11_0+L4C11_0 ⊤
n2 (L2C11_0+L4C11_0)_U1 ⊤
n3 L3C9_0+L5C0_0 [1..2]
n4 (L3C9_0+L5C9_0)_U1 [1..2]
x x ⊤
y y ⊤

(b) Heap IDs and semantic state

Figure 12: Swapping numeric àelds: Result

3.4 Representative Testcases 38

1 def sumListElementsZero = {
2 x = /* code to build and initialize a list with fields set to 0 */
3

4 // traverse the list and sum up elements
5 var cur = x
6 var sum = x.i
7 while (cur != null) {
8 sum += cur.i
9 cur = cur.n

10 }
11 }

Listing 23: Sum list elements testcase

..n1.

x

.

n3

.

i

. n2.
n

.

n

.

n4

.

i

(a) Structure 1

Abbr. Full ID Semantic Domain
n1 L194C17_0 ⊤
n2 L196C17_0+L198C17_0 ⊤
n3 L195C15_0 [0..0]
n4 L197C15_0+L199C15_0 [0..0]
x x ⊤
sum sum [0..0]

(b) Heap IDs and semantic state

Figure 13: Summing up list elements: Result

39

4 Conclusions

We successfully implemented a new heap analysis in Sample which is muchmore pow-
erful than the existing ones. Moreover, since it relies on TVLA, it is parametric in the
predicates used, allowing different choices to be made if necessary.

Our analysis yields precise results for programs that manipulate singly-linked lists and
integers, which we demonstrated in the given examples written in Scala. However,
when other data structures are involved, the abstraction often becomes imprecise very
quickly. We are under the impression that TVLA does not scale well to general pro-
grams. All the examples shippedwith its binary distribution contain very speciàc pred-
icates tailored towards a given type of program to analyze.

4.1 Known Issues

Currently there is an open issue concerned with typing of the heap nodes: We do not
encode any type information in TVLA; i.e. all our heap nodes are untyped. It is there-
fore possible that heap nodes of different type are summarized, leading to imprecision.
Instrumentation predicates could be used to consider types, but doing so is not within
the scope of this thesis, since it is a highly non-trivial task given the complex type system
of Scala and Simple.

4.2 Future Work

As shown above, we used the interval domain as the semantic domain to evaluate our
analysis. However, in principle our design allows any semantic domain of Sample to
be plugged in. It would be interesting to use such domains, e.g. the existing one for
string analysis, and see whether it produces precise results. It seems likely that our
heap analysis improves the precision of the whole analysis.

Furthermore, different instrumentation predicates should be added to analyse other
common data structures apart from singly-linked lists. Adding more instrumentation
to the existing ones while the performance is not degraded severely will be a major
challenge.

REFERENCES 40

References

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a uniàed lattice model for
static analysis of programs by construction or approximation of àxpoints.
In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 238–252. ACM, 1977.

[CC79] P. Cousot andR. Cousot. Systematic design of program analysis frameworks.
In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 269–282. ACM, 1979.

[CFC11] G. Costantini, P. Ferrara, and A. Cortesi. Static analysis of string values. In
International Conference on Formal Engineering Methods (ICFEM), volume 6991
of Lecture Notes in Computer Science. Springer, October 2011. To appear.

[Fer10] P. Ferrara. Static type analysis of patternmatching by abstract interpretation.
In Formal Techniques for Distributed Systems (FMOODS/FORTE), volume 6117
of Lecture Notes in Computer Science, pages 186–200. Springer-Verlag, 2010.

[LAIS06] T. Lev-Ami, N. Immerman, andM. Sagiv. Abstraction for shape analysiswith
fast and precise transformers. In Computer Aided Veriàcation, pages 547–561.
Springer, 2006.

[LAS00] T. Lev-Ami and M. Sagiv. Tvla: A framework for kleene logic based static
analyses. Master’s thesis, Tel Aviv University, 2000.

[MSRF04] R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive
heap abstraction. Static Analysis, pages 159–412, 2004.

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems (TOPLAS),
24(3):217–298, 2002.

[WSR00] R. Wilhelm, M. Sagiv, and T. Reps. Shape analysis. In Compiler Construction,
pages 1–17. Springer, 2000.

41

A Detailed List of TVLA Actions

1 /**
2 * All the Actions as declared in the TVP file passed to TVLA
3 *
4 * NOTE: Above we omitted the instrumentation predicate updates
5 * and some details for simplicity. Here we provide the
6 * complete listing. The actions are loosely based on the actions
7 * for the SLL example of the downloadable TVLA archive.
8 */
9

10 // Action for ”target = null”
11 %action setVariableNull(target) {
12 { target(v) = 0 }
13 }
14

15 // Action for ”target = source” (variable assignment)
16 %action copyVariable(target,source) {
17 %f { source(v) }
18

19 { target(v) = source(v) }
20 }
21

22 // Action for ”target.field = null.”
23 %action setFieldNull(target,field) {
24 %f { target(v) }
25

26 {
27 field(v_1, v_2) = field(v_1, v_2) & !target(v_1)
28 }
29 }
30

31 // Action for ”target.field = source.”
32 %action setField(target,field,source) {
33 %f { target(v), source(v) }
34

35 {
36 field(v_1, v_2) = field(v_1, v_2) | target(v_1) & source(v_2)
37 }
38 }
39

40 // Action for ”destination = target.field”
41 %action extractField(destination,target,field) {
42 %f { E(v_1,v_2) target(v_1) & field(v_1,v_2) & t[field](v_2,v) }
43

44 {
45 destination(v) = E(v_1) target(v_1) & field(v_1, v)
46 }
47 }
48

49 // Action for ”target = new Object”
50 %action createObject(target) {

42

51 %new
52 {
53 target(v) = isNew(v)
54 foreach (f in Fields) {
55 t[f](v_1, v_2) = (isNew(v_1) ? v_1 == v_2 : t[f](v_1, v_2))
56 is[f](v) = is[f](v)
57 r[f, target](v) = isNew(v)
58 foreach(z in PVar-{target}) {
59 r[f,z](v) = r[f,z](v)
60 }
61 }
62 }
63 }
64

65 // Action for assumptions ”if(v == null) ...”
66 %action assumeVariableNull(var) {
67 %f { var(v) }
68 %p !(E(v) var(v))
69

70 { }
71 }
72

73 // Action for assumptions ”if(v != null) ...”
74 %action assumeVariableNotNull(var) {
75 %f { var(v) }
76 %p E(v) var(v)
77

78 { }
79 }
80

81 // Action for assumptions ”if(var1 == var2) ...”
82 %action assumeVariableEqual(var1,var2) {
83 %f { var1(v), var2(v) }
84 %p A(v) var1(v) <-> var2(v)
85

86 { }
87 }
88

89 // Action for assumptions ”if(var1 != var2) ...”
90 %action assumeVariableNotEqual(var1,var2) {
91 %f { var1(v), var2(v) }
92 %p !A(v) var1(v) <-> var2(v)
93

94 { }
95 }
96

97 // Action for least upper bound of two heap states
98 %action lub() {
99

100 { }
101 }

Listing 24: All used TVP actions

	1 Introduction
	1.1 Overview
	1.2 Shape Analysis: Motivation
	1.3 TVLA
	1.3.1 Representing Concrete Heaps
	1.3.2 Heap Abstraction
	1.3.3 Expressing Semantics and Programs
	1.3.4 Refining the Abstraction

	1.4 Sample

	2 Design
	2.1 Approach
	2.2 Structure of Heap Domains in Sample
	2.3 Heap State and Encoding
	2.3.1 Program Variable Predicates
	2.3.2 Field Predicates
	2.3.3 Summarization Predicate
	2.3.4 Name Predicates
	2.3.5 Instrumentation Predicates

	2.4 Graphical Notation for Three-Valued Heap Structures
	2.5 Translation of Simple Statements
	2.5.1 Program Variable Management
	2.5.2 Object Creation
	2.5.3 Variable Assignment
	2.5.4 Field Access
	2.5.5 Field Assignment
	2.5.6 Assumptions
	2.5.7 Heap Equality and Least Upper Bound

	2.6 Heap Identifiers
	2.6.1 Preserving Names
	2.6.2 A Naming Scheme for Heap Identifiers
	2.6.3 Updating the Identifier Space: Replacements

	2.7 Getting More Precise: Instrumentation

	3 Evaluation and Results
	3.1 Visualization
	3.2 Performance and Optimization
	3.3 Testing
	3.4 Representative Testcases
	3.4.1 Multiple Structures
	3.4.2 Abstraction: Creation of a List
	3.4.3 Traversing Lists
	3.4.4 Integer Fields and the Numerical Domain
	3.4.5 Replacements in Action
	3.4.6 Initialize and Sum Lists

	4 Conclusions
	4.1 Known Issues
	4.2 Future Work

	A Detailed List of TVLA Actions

