Inferring Counter-Examples from Abstract Error
States via Backward Analysis

Master's Thesis Problem Description

Raphael Fuchs
Supervisor: Lucas Brutschy

Background

The TouchDevelop programming environment [6, 8] enables hobbyist programmers to
create scripts for their smartphones. Applications may be written on the devices them-
selves, and they have access to all things that matter in a mobile environment: music
and images on the device, sensors, shared data in the cloud and social networks.

Since users of TouchDevelop are usually not experienced programmers, a lot of pub-
lished scripts contain errors. Furthermore, the environment lacks traditional rigorous
testing facilities. The TouchBoost project attempts to increase the reliability of scripts
and detect possible errors by employing static analysis techniques. It utilizes the Sam-
ple framework (Static Analysis of Multiple LanguagEs), which is a generic static ana-
lyzer based on the abstract interpretation theory [2, 3], developed at the Chair of Pro-
gramming Methodology at ETH. Sample supports and already contains a wide range
of different analyses [4, 9, 1].

When an analyzer like TouchBoost finds an abstract state with a potential error, the anal-
ysis usually stops there and the problem is reported. However, this is not very helpful
to a TouchDevelop user, since the reported problem may not be easy to understand. A
problem is often only triggered with a particular set of inputs. There is also the pos-
sibility of false alarms because the analysis is incomplete and necessarily leads to an
over-approximation of program behaviours.

Core Task

The main goal of this thesis is to improve the situation when a possible violation of some
property is found by the analyzer: We try to infer a counter-example, that is, a concrete
execution leading to the error. If we can find one, we provide the user with concrete
inputs for this execution.

We want to determine such inputs by reasoning backwards from an abstract error state.
The first step will be to define and implement a backward interpreter for an interesting
subset of the TouchDevelop language features and API: Starting from the abstract error

1



O O NI ON Ol W IN =

11
12
13

state, we compute the backwards fixed point semantics, i.e. we basically execute the
program backwards. This should narrow down the possible input states leading to the
possible error. [7] suggests a similar approach, but they apply it to a completely different
language for embedded software which for example does not make use of a heap. The
key challenge here is to make the analysis precise enough, while keeping the approach
sound. The soundness of some important abstract transformers will be proven.

Once the restrictions on the input states are computed by the backward analysis, there
are three possible cases for the set of traces starting from these inputs:

1. The set is empty. Therefore we know that the reported error was a false alarm
because the error state is not reachable.

2. All the traces in the set lead to the error state. We can pick any of them as a counter-
example.

3. Some traces may reach the predicted state with an error, but not all. It is unclear
which of them are counter-examples, if any. (Our approximated traces are not a
subset of the error traces).

It is unclear how often each case will occur. We will perform a case study with a set of
synthetic examples and all the currently available TouchDevelop scripts to evaluate the
number of false alarms found as well as the number of counter-examples inferred.

Example

var w := wall->ask number("width?")
var h := wall->ask number("height?")
var radial := wall->ask boolean ("radial shape?")
var pic := media->create picture(w, h)
pic—->post to wall
for 0 <= i1l < 50 do
if radial then
pic->draw text(w/2, h/2,
text, font, 0, colors -> rand)
else
pic->draw text(math ->rand(w), math->rand(w),
text, font, math -> rand(360), colors -> rand)
pic—->update on wall

Consider the slightly modified code snipped from a published TouchDevelop script
above. It lets the user create some kind of artistic image by drawing text in random
colors and positions. The user enters the desired width, height and chooses among two
drawing variants.

There are two problems a static analyzer may report here: Because the dimensions are
not validated, negative values for the picture size can violate the precondition of create
picture online 4. A more subtle bug is present on line 11: Both the x and y-coordinates
of the drawn text are chosen at random from [0, w]. In case w > h, text may be placed




vertically outside the picture bounds since [0, w] Z [0, h]. Drawing outside bounds is
often not desirable and an analysis could detect it in this case.

Ideally, our backward analysis should then produce a counter-example, e.g. for the sec-
ond bug we may find the inputs w = 400, h = 200, radial = false and the random
coordinates happen to be x = 300, y = 600 (since y > h, text is out-of-bound).

The deliverables of the core include:

e Abstract semantics with (partial) soundness proof
e Concretization of input state to find counter examples
e Implementation

e Evaluation

Possible Extensions

Depending on the time left and progress of the project, there are several possible exten-
sions:

e Trace partitioning: Normally static analyses perform a reachable states abstraction,
therefore losing information about how a concrete program trace can arrive at a
state. For example, in a state after an if-statement, it may be unclear which parts
of it are due to the different branches taken. Trace partitioning techniques perform
an abstraction over a partition of the set of traces to regain some precision lost
when approximating the trace semantics [5].

e Iterative refining approach: To improve the precision of our analyzer, we can itera-
tively switch between forward and backward analysis. Different iteration strate-
gies provide a lot of opportunity for fine-tuning. For example, if our backward
analysis concludes that an if-branch is never executed, we can apply forward
analysis again to get rid of the possibly imprecise join after the if.

e Backwards semantics for complete API: The TouchDevelop API is increasingly pro-
viding more and more features. We first focus on supporting the basic language
features and parts of the API. For the rest, coarse but sound abstractions can be
used. If time permits, it would be nice to implement precise abstract transformers
covering the complete TouchDevelop APL

Project Management

Project Plan

The project is roughly divided into four phases:



o Getting Started (first half of October): Getting familiar with the environment, setting
up all required tools, reading relevant papers.

e Design and implementation of core (late October - January): The backwards analysis
will be designed, implemented and evaluated. In late December or January the
intermediate presentation will be given. The deliverables include source code and
a set of examples with expected results.

o Work on extensions (January-February): Depending on how much time is left, im-
plement one or more extensions.

o Writing (March): Documenting the project work. This includes a final report and
presentation.

Meetings

Weekly meetings will be held when possible, to discuss progress and define further
steps to be taken.

References

[1] Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. Static analysis of string val-
ues. In Formal Methods and Software Engineering, pages 505--521. Springer, 2011.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238--252. ACM, 1977.

[3] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 269--282. ACM, 1979.

[4] Pietro Ferrara, Raphael Fuchs, and Uri Juhasz. Tval+: Tvla and value analyses to-
gether. In Software Engineering and Formal Methods, pages 63--77. Springer, 2012.

[5] Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpretation
based static analyzers. In Programming Languages and Systems, pages 5--20. Springer,
2005.

[6] Microsoft. Touch Develop environment. http://www.touchdevelop.com/. [Online;
accessed 29-September-2013].

[7] Xavier Rival. Understanding the origin of alarms in astrée. In Static Analysis, pages
303--319. Springer, 2005.

[8] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel Fahndrich.
Touchdevelop: Programming cloud-connected mobile devices via touchscreen. In
Proceedings of the 10th SIGPLAN symposium on New ideas, new paradigms, and reflections
on programming and software, pages 49--60. ACM, 2011.

4


http://www.touchdevelop.com/

[9] Matteo Zanioli, Pietro Ferrara, and Agostino Cortesi. Sails: static analysis of infor-
mation leakage with sample. In Proceedings of the 27th Annual ACM Symposium on
Applied Computing, pages 1308--1313. ACM, 2012.



