
I    

Raphael Fuchs
fuchsra@student.ethz.ch

Master’s thesis report

Chair of Programming Methodology
Department of Computer Science

ETH Zurich

April 7, 2014

Supervised by:
Lucas Brutschy
Prof. Dr. Peter Müller

Chair of Programming Methodology

mailto:fuchsra@student.ethz.ch

Abstract

TouchDevelop is a beginner-friendly programming language and platform enabling smart-
phone users to write scripts in a mobile environment. It was developed by Microsoft
Research and integrates closely with Microsoft cloud services. As scripts often contain er-
rors that may cause the program to crash or misbehave during execution, the TouchBoost
project applies static analysis techniques to detect such possible errors ahead of execu-
tion time. However, since the behavior of the programs has to be over-approximated,
there can be false alarms and it may be unclear how the program reaches a potential
error.

In this Master’s thesis we enhance the TouchBoost static analyzer with backward analysis
functionality [Riv05]. The approach based on abstract interpretation allows us to narrow
down entry states that lead to potential errors. We then use these refined entry states
to infer concrete counterexamples. When executed, such a counterexample leads to
the abstract error reported by the forward abstract interpreter and helps the user better
understand the problem at hand. In some situations, the technique can also prove alarms
to be false. We demonstrate that the approach is effective for a large set of published
TouchDevelop scripts.

CONTENTS 3

Contents
1 Introduction 5

1.1 Motivation and Goals . 5
1.2 Outline . 6

2 Background 7
2.1 TouchDevelop . 7
2.2 Sample and TouchBoost . 7

3 Foundations 9
3.1 Forward Abstract Interpretation . 9
3.2 Backward Abstract Interpretation . 13
3.3 Refining Backward Interpretation . 14
3.4 Illustration of Approach . 17

4 Backward Analysis in TouchBoost 20
4.1 The TouchBoost Abstract Domain . 20

4.1.1 Domain Structure . 20
4.1.2 Backward Semantics for Product Domains 20

4.2 Semantic Domain . 21
4.2.1 Numerical Domain . 22
4.2.2 Invalid Domain . 24
4.2.3 String Domain . 26

4.3 Heap Domain . 26
4.4 Greatest Lower Bounds . 28
4.5 Native Method Semantics . 29
4.6 Support for Non-Determinism . 31

4.6.1 Non-Determinism in TouchDevelop 31
4.6.2 Approach . 32

4.7 Interprocedural Analysis . 36
4.7.1 Concrete and Abstract Execution Model 36
4.7.2 Method Summaries and Forward Method Call Semantics 36
4.7.3 Backward Summaries . 38
4.7.4 Interprocedural Error Investigation Strategies 40

4.8 Collections . 41

5 Counterexample Generation 42
5.1 Concretization of Entry States . 42

5.1.1 Numerical Domain . 42
5.1.2 Invalid Domain . 43
5.1.3 Heap Domain . 43
5.1.4 Solver Search Strategy . 43

5.2 Testing . 43

6 Evaluation 45
6.1 Randomly Selected Cloud Scripts . 45

6.1.1 Script aanja . 46

CONTENTS 4

6.1.2 Script aaoweirj . 47
6.1.3 Script aaib . 47

6.2 Counterexamples for Numerical Errors . 49
6.2.1 Motivating Example . 49

6.3 Detection of False Alarms . 51
6.3.1 Imprecision Due to Joins . 52
6.3.2 Imprecision Due to Widening . 52
6.3.3 Interprocedural Detection of False Alarm 53

7 Conclusion 55
7.1 Related Work . 55
7.2 Open issues and Future Work . 56
7.3 Acknowledgements . 56

A Notation Overview 57

B Infrastructure Work 58
B.1 Move to Mercurial and SBT . 58
B.2 End-to-End Tests for TouchBoost . 58
B.3 Syntax highlighting . 58

5

1 Introduction

1.1 Motivation and Goals

When a static analyzer like TouchBoost finds a potential error, the analysis usually
reports the problem in a form similar to

‘‘Assertion expr may not hold at program point pp.′′ (1)

A typical error is to call a method on an invalid reference: E.g., in obj->method(param),
the analyzer raises an error if it cannot prove that the implicitly generated assertion
obj != invalid holds in every execution of the program. Other common errors include
passing of invalid arguments to methods that do not expect them, violating numerical
bounds, and accessing resources without checking whether they are available.

However, a problem is often only triggered by a particular subset of all possible inputs.
In many cases it is not obvious how the reported errors relate to interactive inputs and
program state such as the values of method arguments and global variables at the begin-
ning of the method containing the error. There is also the possibility of false (spurious)
alarms because the analysis is conservative and never misses any potential errors, at the
cost of considering program behavior that may never actually happen.

The goal of this thesis is to improve the error reporting in TouchBoost. We narrow down
the conditions that must be fulfilled at the program entry to reach the point where a
potential error is reported. If we detect that no actual inputs can satisfy the constraints,
we classify the alarm as false and drop it. Otherwise, we try to synthesize concrete
program inputs for the user that cause the error to occur.

The action in Listing 1 serves as our motivating example. It is a modified version of
an action found in the TouchDevelop script “TextMaster” (id hwyo). The action creates
an artistic image by drawing text multiple times with random position, orientation and
color. Two problems for which alarms are produced exist in its code, both related to
violated numerical bounds:

• On line 5, a picture of some requested size is created. However, the dimensions
are directly taken from user input, without any validation. The user may enter a
negative number, or the number string may fail to parse and turn into NaN . Such
numbers certainly do not satisfy any preconditions the method create picture
may reasonably have.

• A more subtle bug is present on line 11 when calling the method “draw text”:
Both the x and y-coordinates of the drawn text are chosen at random from [0, w].
The author meant to write rand(h) to generate a pseudo-random y-coordinate,
as the text may sometimes be drawn vertically outside the picture bounds in the
erroneous version.

To narrow down the conditions leading to a given error, we start at its program location,
assuming the assertion is indeed violated. A backward analysis then reasons backwards

1.2 Outline 6

toward the program entry and keeps track of constraints. For example, the second
bug above is only reached when the radial boolean variable is false. Its value in turn
originates from interactive user input in the program GUI. Furthermore, the random
y-coordinate must be smaller than the entered width of the picture but at the same
time greater than the entered height. When we are not sure whether a constraint always
holds, we do not assume it. Hence, the analysis over-approximates and returns necessary,
but not sufficient conditions for the error.

At the program entry, the backward analysis results in the abstract constraints we have
just described. We then try to produce a concrete counterexample satisfying the con-
straints, e.g. for the second bug we may suppose that the user inputs a width of 400,
height 200, selects the option flag to be false and the random coordinates happen to
be x = 300, y = 600. Since our conditions are not sufficient, we perform testing on
that input instance to ensure that it actually triggers the error. The testing is done by
running the method in a TouchDevelop interpreter.

1 action draw(text: String, font: String) {
2 var w := wall->ask number(”width?”)
3 var h := wall->ask number(”height?”)
4 var radial := wall->ask boolean (”radial shape?”)
5 var pic := media->create picture(w, h)
6 for 0 <= i1 < 50 do {
7 if radial then {
8 pic->draw text(w/2, h/2,
9 text, font, math->rand(360), colors->rand)

10 } else {
11 pic->draw text(math->rand(w), math->rand(w),
12 text, font, 0, colors->rand)
13 }
14 }
15 }

Listing 1: Motivating example

1.2 Outline

We first give some background on both TouchDevelop and TouchBoost in Section 2.
The approach we take is explained in Section 3, together with some foundations of ab-
stract interpretation and their formal description. Section 4 describes how the backward
analysis was implemented in TouchBoost, detailing changes to abstract domains and
implementation obstacles we faced. In Section 5 we explain how the abstract states ob-
tained from the backward analysis are concretized and then used as inputs for concrete
testing. Section 6 demonstrates a few results of the analysis. Finally, in Section 7, we
summarize our findings, discuss related work on the topic and point out possible future
improvements. Appendix B briefly lists some other work done during the thesis.

7

2 Background

2.1 TouchDevelop

The TouchDevelop programming environment [Mic, TMdHF11], developed by Microsoft
Research, enables programmers to create scripts for their smartphones. Applications are
written directly on the devices, and they have access to all functionality common in a
mobile environment: Music and images on the device, sensors, cloud services and social
networks.

The language itself statically typed and has no advanced subtyping mechanisms or para-
metric polymorphism. It tries to hide technicalities as much as possible. For example,
there is a single number type instead of separate integer and floating point types. Ad-
ditionally, type inference for local variables enables easier script input with less over-
head.

TouchDevelop’s execution model is traditionally imperative with global mutable state.
The execution is not multi-threaded; no concurrent interleavings of instructions may
occur. Code is composed into actions and events. Events are run after actions in
response to user inputs, on completion of long-running operations etc. Scripts can be
executed on multiple execution platforms: A variety of web browsers and smartphone
OS like Windows Phone 8 are supported.

2.2 Sample and TouchBoost

A lot of published TouchDevelop scripts contain errors which may cause the program to
crash or misbehave during execution. One reason might be that TouchDevelop mainly
targets hobbyists, many of whom write program code for the first time. Furthermore,
the one-off nature of many of these scripts contributes to omitted error checking.

The TouchBoost project attempts to increase the reliability of scripts and detect possible
errors by employing static analysis techniques. It utilizes the Sample framework (Static
Analysis of Multiple Languages), which is a generic static analyzer based on abstract
interpretation [CC77, CC79]. Sample has been used to implement many different static
analyses [FFJ12, ZFC12, CFC11] and was extended with abstract semantics necessary
for the analysis of TouchDevelop scripts. Recently, improved collection support [Bon13]
has been added. TouchBoost was also used to implement a cost estimation for scripts
[FSB14]. An overview of the TouchBoost architecture is shown in Figure 1. The front-
end TouchDevelop compiler takes local scripts or JSON ASTs from the TouchDevelop
cloud and translates them into the intermediate representation Simple. Afterwards, the
forward abstract interpreter analyzes the programs. The analysis is instantiated with a
composition of different abstract domains and computes the abstract program semantics.
In the end, TouchBoost produces an error report with the analysis results.

TouchDevelop is an attractive target for static analysis, since an open web API provides
access to all published scripts and their development histories. At the time of writing,
already more than 90 000 scripts have been published.

2.2 Sample and TouchBoost 8

TouchDevelop
Compiler

Local Script
Published

Cloud Script
(JSON AST import)

Simple
(Intermediate

language)

Abstract Interpreter
(Execution Engine)

TouchDevelop API
Abstract

Semantics

Interprocedural
Analysis

Error Report

Abstract
Domains

Apron Numerical
Domains (Octagon,

Polyhedra)

Invalidity Domain

Non-relational
Heap Domain

String Domain

Figure 1: The architecture of TouchBoost

9

3 Foundations

In this section we explain the foundations of the technique we use, focusing on the general
concepts and ignoring the specifics for TouchBoost which will be illustrated later.

Sample is based on the abstract interpretation theory [CC77, CC79, Cou78], making
static and sound reasoning about programs possible. Like standard abstract interpreters,
it computes a set of program states that a run of the program may encounter when
started from a given initial state. This is done by tracking static information along the
program flow and is referred to as forward abstract interpretation.

However, as mentioned in 1.1, we need a static analysis that is able to reason backwards
from an error towards the program entry. There is well established theory [Cou78, Riv05]
that describes a dual backward abstract interpretation to find states that may reach a
given final state. Both abstract interpretations can also be combined into a more precise
variant called refining interpretation which uses both forward and backward information
and that we decided to adopt in this thesis.

We now describe more formally the framework of abstract interpretation and then show
how we make use of a refining abstract interpreter.

3.1 Forward Abstract Interpretation

Before defining a static analysis and its approximations, the formal meaning of under-
lying programs must be specified. At the lowest level, the operational semantics of a
programming languages define what a given program does. They give rise to a transition
system encoding the program behavior.

Transition systems. A transition system is a pair (Σ, →) where Σ is the set of states
and → ∈ P(S × S) the transition relation. We write σ → σ′ for (σ, σ′) ∈ →, if the
system may transition from state σ to σ′. For our programs, Σ consists of all the possible
program states which have some further structure and consist of variable environment
and the program heap, i.e. Σ = Env × Heap.

Reachability semantics. The concrete forward reachability semantics CI ∈ P(Σ) of a
program then describes all program states that may be reached from a set of possible
initial states I. The operator

post(S) = {σ ∈ Σ | ∃σ′ ∈ S : σ′ → σ} (2)

yields all the direct successor states of set of pre-states. Note that a single state σ can
only ever have more than once successor if the program is non-deterministic. Using this
operator, we can express the forward semantics as a least fixed point (the order being
subset inclusion)

CI = lfpλX. I ∪ post(X) (3)

CI also has a convenient, isomorphic representation which collects all the states that
may occur at each point the program code, essentially describing local invariants. Given

3.1 Forward Abstract Interpretation 10

a function extractPP : Σ→ ProgramPoint that extracts the program point of a state,
we can express these invariants in terms of CI :

ĈI : ProgramPoint→ P(Σ)
ĈI(pp) 7→ {σ ∈ CI | extractPP (σ) = pp} (4)

Programs as equation systems. However, program semantics expressed directly
using transition systems as in Equation 3 are not used in practice, since such semantics
are monolithic and not built from reusable components [Min12]. Instead, one prefers
an easier formulation as the (least) solution of an equation system instead. In this
equation system, we describe how the states at different program points are related to
each other with the help of concrete transfer functions −→c JsK : P(Σ)→ P(Σ). For every
statement s, −→c JsK(σpre) returns all the post-states the program can be in after executing
the statement on any pre-state in σpre.

As an example, the factorial function in Figure 2 a) can be described by the following
equation system in b).

1 action fact(n: Number)
2 returns (r: Number) {
3 (P1) r := 1;
4 (P2) while n >= 1 do {
5 (P3) r := r * n;
6 (P4) n := n - 1;
7 (P5)
8 }
9 (P6) contract->assert(r >= 1);

10 }

(a) Program code

ĈI(P1) = I
ĈI(P2) = −→c Jr := 1K(ĈI(P1)) ∪ ĈI(P5)

ĈI(P3) = −→c Jn >= 1K(ĈI(P2))

ĈI(P4) = −→c Jr := r ∗ nK(ĈI(P3))

ĈI(P5) = −→c Jn := n− 1K(ĈI(P4))

ĈI(P6) = −→c Jn < 1K(ĈI(P2))

(b) Equation system defining concrete (collect-
ing) semantics

Figure 2: Factorial computation

Abstract Semantics. So far we only formalized the concrete semantics of programs.
However, computations of concrete fixed points are not feasible. Programs can have an
infinite number of executions and many interesting properties of programs are undecid-
able in general. We must therefore abstract from the concrete semantics and compute
a sound over-approximation of the program states. Abstract interpretation provides a
comprehensive framework to construct such sound abstractions.

The concrete domain is the lattice (D = P(Σ), ⊑, ⊔, ⊓, ⊥, ⊤) that represents concrete
program states. The corresponding abstract domain is the lattice (D♯, ⊑♯, ⊔♯, ⊓♯, ⊥♯, ⊤♯)
holding all the abstract states approximating the concrete ones. The two domains are
related via a galois connection D −−−→←−−−α

γ
D♯, where the abstraction function α : D → D♯

3.1 Forward Abstract Interpretation 11

approximates a concrete element and the concretization function γ : D♯ → D returns
the possible concrete states represented by an abstract one.

Furthermore, for each concrete transfer function −→c JsK for a statement s, an abstract
transfer function

−→
f JsK : D♯ → D♯ (5)

needs to be provided. Since this function needs to over-approximate the concrete one,
all states produced by −→c JsK applied to an arbitrary pre-state σpre must also be included
in the abstract result. This is expressed by the soundness condition:

∀σpre ∈ D♯ : −→c JsK(γ(σpre)) ⊑ γ(
−→
f JsK(σpre)) (6)

The main task when designing abstract domains is thus coming up with efficient yet pre-
cise and sound transfer functions. The abstract forward semantics F̂ : ProgramPoint→
D♯ of a complete program can then be expressed as an equation system in the same man-
ner as for the concrete semantics. For our example in Figure 2 this would be:

F̂I(P1) = I (7)

F̂I(P2) =
−→
f Jr := 1K(F̂I(P1)) ∪ F̂I(P5)

F̂I(P3) =
−→
f Jn >= 1K(F̂I(P2))

F̂I(P4) =
−→
f Jr := r ∗ nK(F̂I(P3))

F̂I(P5) =
−→
f Jn := n− 1K(F̂I(P4))

F̂I(P6) =
−→
f Jn < 1K(F̂I(P2))

Abstract Interpreter. Equation systems like in Equation 7 can be solved iteratively
by an abstract interpreter. Initially, let F̂1

I = λp.⊥. If we then view the right hand sides
of the equations as rules to update the corresponding entries in F̂I , we get a series of
iterates F̂1

I = λp.⊥, F̂2
I , · · · . For example, we have

F̂k+1
I (P5) =

−→
f Jn := n− 1K(F̂k

I (P4))

If we continue this iteration, we eventually reach a fixed point. It is well known that the
same result is obtained in the end whether one updates all the entries simultaneously, or
individually by a so-called chaotic iteration [Bou93] which allows many different iteration
schemes.

In Sample we use a work list based algorithm to perform this iteration on our pro-
grams represented in a traditional control flow graph (CFG) which consists of blocks of
statements that are connected with conditional edges.

3.1 Forward Abstract Interpretation 12

Pseudo code for the iteration is displayed in Algorithm 1. The algorithm proceeds as
follows: We initialize the work list with the entry CFG block and the first state of the
entry block with I. Until the work list is empty, we keep removing CFG blocks from
the list. For each retrieved list entry block, we have to recompute its current entry
state. Since control may transfer from any predecessor block to the current one, we have
to join all the predecessor states, but we can additionally assume the edge condition
for each incoming edge. This is expressed by the operation

⊔̇
in the pseudo-code. If

the resulting abstract updated entry state is smaller (⊑♯) than the block’s old entry
state F̂I(block.entry), the iteration has not stabilized yet and we need to recompute the
semantics of the block on the newer state. Updating the forward semantics of a block
is straightforward: The forward transfer function −→f JstmtK for every statement stmt in
the block is evaluated in sequence. Since successor blocks may depend on the updated
exit state of the current block and may be influenced, we add all of them to the work
list and continue processing blocks.

Note the iteration may fail to converge within a reasonable number of steps. This is
due to abstract domains with lattices of infinite height or program structures that are
expensive to analyze such as nested loops. We detect slow convergence by counting
the number of times a block is scheduled for recomputation (slowConvergenceAt in
Algorithm 1). When a threshold is exceeded, we apply a widening operation that makes
the abstract state larger to ensure convergence.

Algorithm 1 Forward abstract interpreter: CFG iteration
1: function ForwardInterpret(cfg)

2: F̂I(p)←

{
I if p = cfg.entry

⊥ otherwise
3: worklist← {entryBlock}
4: while worklist ̸= ∅ do
5: block ← chooseNext(worklist)
6: worklist← worklist− {block}
7: blockEntry ←

⊔̇
predecessorExits(block)

8: oldBlockEntry ← F̂I(block.entry)
9: if blockEntry ̸⊑♯ oldBlockEntry then

10: if slowConvergenceAt(blockEntry) then
11: blockEntry ← widen(oldBlockEntry, blockEntry)
12: end if
13: currentState← blockEntry
14: for statement← block.statements do
15: F̂I(statement.programPoint)← currentState

16: currentState←
−→
f JstatementK(currentState)

17: end for
18: F̂I(block.exit)← currentState
19: worklist← worklist ∪ successors(block)
20: end if
21: end while
22: end function

3.2 Backward Abstract Interpretation 13

3.2 Backward Abstract Interpretation

With an established formalism for the forward analysis, we can now state the details
for backward abstract interpretation. The goal is now to reason backwards from a set
of end states E (usually containing erroneous states), and to arrive at a set of concrete
states at the program entry that may potentially lead to the ones in E .

Backward reachability semantics. Analogously to the forward case, we describe the
concrete backward semantics with the help of the transition system, but this time with
an operator returning the predecessors of state sets:

pre(S) = {σ ∈ Σ | ∃σ′ ∈ S : σ → σ′} (8)
←−CE = lfpλX. E ∪ pre(X) (9)

Abstract semantic equations and transfer functions. To express the abstract
backward program semantics B̂E : ProgramPoint→ D♯ similar to F̂I as the solution of
an equation sytem, we need to define abstract backward transfer functions

←−
b JsK : D♯ → D♯ (10)

for all corresponding forward transfer functions−→f JsK. ←−b JsK(σpost) must over-approximate
all the concrete pre-states the program could execute from when it reaches one of the
post-states in σpost directly by executing statement s. The formal soundness condition
is:

∀σpost ∈ D♯ : −→c JsK−1 [γ(σpost)] ⊑ γ(
←−
b JsK(σpost)) (11)

where we use h−1[A] to denote the preimage of A under h. The semantic equation system
for our example now is:

B̂E(P1) =
←−
b Jr := 1K(B̂E(P2)

B̂E(P2) =
←−
b Jn >= 1K(B̂E(P3)) ∪

←−
b Jn < 1K(B̂E(P6))

B̂E(P3) =
←−
b Jr := r ∗ nK(B̂E(P4))

B̂E(P4) =
←−
b Jn := n− 1K(B̂E(P5))

B̂E(P5) = B̂E(P2)

B̂E(P6) = E

Backward interpreter. To find an approximative fixed point of this equation system,
we can again apply a work list iteration. As the procedure is mostly dual to the forward
case in Algorithm 1, we do not reproduce the pseudo-code here. Basically, instead of

3.3 Refining Backward Interpretation 14

starting with the entry CFG block, we initialize the work list with the block containing
the final state. Until the work list is empty, a CFG block is selected. We then check if
its old exit state is general enough by joining all the block entry states of the successors
and comparing the result to the old one. If not, we update the block by going through
the statements in the block in reverse order, executing the backward transfer function←−
b JstmtK on each of them. Widening is applied as in the forward iteration.

Relationship between forward and backward semantics. As a theoretical side
remark, we note that the concrete forward and backward semantics of programs are
completely dual to each other. In fact, the post operator can be expressed in terms of
pre and so we would not need the additional notation in our formalism. Furthermore,
the classical weakest precondition and strongest postconditions semantics of programs
can be shown to be equivalent [Cou97]. However, as pointed out by [Cou98], we obtain
different results once abstraction is introduced and the semantics is approximated. In
practice, this means that one nevertheless needs to define separate forward and backward
transfer functions for all statements.

3.3 Refining Backward Interpretation

Forward-backward combination. If we want to express the concrete states that are
reached for executions that both start from a set of initial states I and end up in a set
of final states E , we may take the intersection of the two fixed points of the concrete
forward and backward reachability semantics:

CI ∩
←−CE = (lfpλX. I ∪ post(X)) ∩ (lfpλX. E ∪ pre(X)) (12)

Naïve abstract semantics. In the abstract, it is safe to do the same and perform a
separate forward and backward abstract interpretation as described in sections 3.1 and
3.2. The forward-backward semantics is then the meet of the two results:

λl . F̂I(l) ⊓♯ B̂E(l) (13)

Refining abstract semantics. However, a naïve intersection of forward and backward
analysis results as in Equation 13 can be very imprecise. The precision can be improved
if we resort to a mixture between forward and backward analysis which can reuse the
information obtained by the forward abstract interpretation during the backward in-
terpretation. In the literature, this is known as the refining forward-backward process
[Riv05, CC92, Cou78].

The forward interpretation is applied as described earlier and gives us F̂I . However, for
the subsequent backward interpretation, we modify the abstract transfer functions to
also take the pre-condition into account that was inferred to hold before the statement
and which is available in F̂I . We call those new transformers the refining backward

3.3 Refining Backward Interpretation 15

transfer functions:
←−−
bref JsK : D♯ × D♯ → D♯ (14)
←−−
bref JsK(σoldPre, σpost) 7→ σrefinedPre (15)

Such a transfer function for statement s maps the current post-state σpost together with
the pre-state from the forward analysis σoldPre to a new, refined pre-state σrefinedPre.

To see the difference between ←−b JsK and
←−−
bref JsK consider the statement

(ℓ1) x := x + 1 (ℓ2)

that is executed at program label ℓ1 before reaching ℓ2. Assume the backward interpreter
starts with an abstract post-state σpost at ℓ2 for which holds 2 ≤ x ≤ 3. ←−b Jx := x+ 1K
would then produce a pre-state containing 1 ≤ x ≤ 2. On the other hand, if it is already
know from the forward analysis that 0 ≤ x ≤ 1 must hold at ℓ1, the refining transfer
function can take this pre-state F̂I(ℓ1) = σoldPre and compute a more precise refined
pre-state

σrefinedPre =
←−−
bref Jx := x+ 1K(σoldPre, σpost)

for which we know exactly x = 2.

Note that a refining transfer function is free to take a simple intersection (meet) between
the backward result and the pre-state as in the naïve forward-backward combination
above (Equation 13). For example, we could define the refining semantics of stmt to
be: ←−−

bref JstmtK(σoldPre, σpost) =
←−
b JstmtK(σpost) ⊓♯ σoldPre

This simple fallback can be applied for some operations, while other statements can take
advantage of σoldPre in more sophisticated ways.

Soundness. The modified soundness condition for refining transfer functions
←−−
bref JsK

reads

∀σpost, σoldPre ∈ D♯ : −→c JsK−1 [γ(σpost)] ⊓ γ(σoldPre) ⊑ γ(
←−−
bref JsK(σoldPre, σpost)) (16)

Refining backward interpreter. Pseudo-code for a refining backward interpreter is
shown in Algorithm 2. It is a blend of the forward and backward interpreters discussed
in Section 3.1 and Section 3.2, respectively. As in the backward case, it also processes
CFG blocks in reverse order and propagates abstract states from block entries to their
predecessor exits. The key difference however is that the interpreter also has access to
F̂I and uses these pre-states when computing the refining transfer functions for block
statements. Also note that the interpretation does not have to proceed from the CFG
exit, but it may start with the end states E from an arbitrary statement (program point
endLocation) in the CFG.

3.3 Refining Backward Interpretation 16

Algorithm 2 Refining backward interpreter: CFG iteration
1: function RefiningBackwardInterpret(cfg, F̂I , E , endLocation)
2: ∀p : B̂refE (p)← ⊥
3: worklist← {endLocation.block}
4: while worklist ̸= ∅ do
5: block ← chooseNext(worklist)
6: worklist← worklist− {block}
7: blockExit←

⊔̇
successorEntries(block)

8: oldBlockExit← B̂refE (block.exitPoint)
9: if blockExit ̸⊑♯ oldBlockExit then

10: Widen state when necessary
11: if slowConvergenceAt(block) then
12: blockExit← widen(oldBlockExit, blockExit)
13: end if
14: currentState← blockExit
15: for statement← reverse(block.statements) do
16: B̂refE (statement.programPoint)← currentState

17: oldPreState← F̂I(statement.programPoint)

18: currentState←
←−−
bref JstatementK(oldPreState, currentState)

19: if statement.location = endLocation then
20: currentState← currentState ⊔ E
21: end if
22: end for
23: B̂refE (block.entry)← currentState
24: worklist← worklist ∪ predecessors(block)
25: end if
26: end while
27: end function

3.4 Illustration of Approach 17

3.4 Illustration of Approach

We now illustrate how we intend infer definite counterexamples with the help of the new
refining backward analysis.

The example code in Listing 2 serves in a step-by-step explanation. It takes two integers
and performs some arithmetic computations, including a division. A division by zero
may occur because nothing restricts the input parameters x and y. The program is
annotated with the invariants inferred by the forward analysis, displayed in blue. Note
that these formulas are always of a very restricted form, limited by the expressiveness
of the used abstract domains. In our example, we used the octagon numerical domain,
so all invariants are conjunctions with terms of the form ±var1 ± var2 = const. This is
also the reason why we get a generic ⊤ state after the assignment in line 3, as we cannot
represent the fact t = x− y − 1 with octagon constraints.

1 action main(x: Number, y: Number) {
2 (s) { ⊤ }
3 t := x - y - 1;
4 { ⊤ }
5 if (x >= y) {
6 { y − x <= 0 }
7 (lbl) r := 1 / t;
8 }
9 }

Listing 2: Example annotated with forward analysis results

The forward analysis registers an abstract error at line 7 because the implicitly generated
assertion t ̸= 0 before the division cannot be shown to hold in the abstract semantics,
i.e.

{y − x ≤ 0} ⊓♯ {t = 0} ̸= ⊥

We therefore start the investigation of this abstract error using the backward analysis,
beginning at lbl with an over-approximation of the error states B̂refE (lbl) = {y − x ≤
0} ⊓♯ {t = 0} = E

Just as the forward analysis over-approximates the program states that can be actu-
ally reached from a set of inputs, our refining backward analysis seeks to find an over-
approximation of all the states that lead to this error state. At the same time, it refines
the invariants obtained by the forward analysis. This makes sure that everything we
infer about the states leading to an error is consistent with the forward analysis. At the
entry label s, we finally end up with a refined entry state that contains all program states
where y−x = −1, which is precisely the condition for the error to happen. The program
annotated in red with the computed backward invariants is shown in Listing 3.

3.4 Illustration of Approach 18

I = F(s)

F(lbl)

B(lbl)

E: ¬cI = F(s)

F(lbl)

B(lbl)

E: ¬c

B(s)

I

F(lbl)E: ¬c

s: start lbl: assert(c)

I = F(s)

s: start lbl: assert(c)

s: start lbl: assert(c)

(a) Forward analysis, error at lbl

I = F(s)

F(lbl)

B(lbl)

E: ¬cI = F(s)

F(lbl)

B(lbl)

E: ¬c

B(s)

I

F(lbl)E: ¬c

s: start lbl: assert(c)

I = F(s)

s: start lbl: assert(c)

s: start lbl: assert(c)(b) Over-approximated error state

I = F(s)

F(lbl)

B(lbl)

E: ¬cI = F(s)

F(lbl)

B(lbl)

E: ¬c

B(s)

I

F(lbl)E: ¬c

s: start lbl: assert(c)

I = F(s)

s: start lbl: assert(c)

s: start lbl: assert(c)

(c) Result of backward analysis

Figure 3: Visualization of approach. Green: Over-approximation of forward-reachable
states , Red: Error states, Light red: Over-approximation of states leading to error,
Dashed: Over-approximations

1 action main(x: Number, y: Number) {
2 (s) { ⊤ } { y − x = −1 }
3 t := x - y - 1;
4 { ⊤ } { y − x <= 0, t = 0 }
5 if (x >= y) {
6 { y − x <= 0 }{ y − x <= 0, t = 0 }
7 (lbl) r := 1 / t;
8 }
9 }

Listing 3: Example annotated with forward- and backward invariants

Figure 3 visualizes this procedure for a violated assertion assert(c) such as division by
zero check in our example. The sets of all possible states at both the program entry
s and the assertion label lbl are drawn. The forward analysis in (a) determines that
some concrete states E where c does not hold may be reached at lbl – the green and
red sets intersect. Since the concrete error states at lbl may not always be precisely ex-
pressed by the abstract domain, the backward analysis starts with an over-approximation
B̂refE (lbl) = E♯ of them (Figure 3 b). The refining backward analysis then results in a
refined entry state at s which is always a subset of all the possible original entry states
I (Figure 3 c).

In our example, it was possible to refine the original entry state without any constraints
on the inputs into an abstract entry state B̂refE (s) that contains precisely the x and y
parameter values leading to the error. However, since we use over-approximations, there
are programs for which the concretization γ(B̂refE (s)) may also contain states that do
not entail an error. Therefore, we need to pick concretized potential counterexamples

3.4 Illustration of Approach 19

and run the program with the inputs. If the execution leads to the error, we can be
sure that the counterexample is not spurious. While we apply standard concrete testing,
more sophisticated techniques could be used.

For some abstract errors, it may also happen that the refined entry state becomes ⊥. In
this case, we conclude that the forward analysis produced a false alarm, because there
do not possibly exist any concrete inputs that could cause the error, i.e. γ(⊥) = ∅. The
causes for false alarms are manifold but always boil down to over-approximations that the
abstract program semantics makes. Abstract interpreters are designed to be sound: They
do not to miss any possible program behavior, but at the same time they are almost never
complete, i.e. they lose information when calculating the fixed points of the collecting
semantics. Often, the loss of information occurs because the abstract transfer functions
are not implemented precisely enough. Another very common reason for false alarms is
that the abstract domains themselves are simply not sufficiently expressive.

Finally, if none of the cases above occur, we have to give up and declare the alarm as
undecided (inconclusive), since we could neither present a counterexample nor declare it
false. Algorithm 3 summarizes our error investigation process for the set of all alarms
A produced by the forward interpreter.

Algorithm 3 Abstract error investigation process, pseudo-code.
1: function Analyze(m: Method)
2: // Compute forward semantics, collect alarms.
3: (F ,A)← forwardInterpret(m)
4: // Investigate alarms
5: for all a ∈ A do
6: // Compute abstract error state
7: E ← F(a.programpoint) ⊓♯ {¬ a.assertion }
8: Bref ← backwardInterpret(m,F , E , a.programpoint)
9: σrefinedEntry ← Bref (m.entry)

10: if σrefinedEntry = ⊥ then
11: Report a as false alarm
12: else
13: // Randomly test candidates
14: for i← 1 to #tries do
15: // Generate a concrete entry state
16: σconcreteEntry ← γnext(σrefinedEntry)
17: errorReached← concreteRun(s, σconcreteEntry, a)
18: if errorReached then
19: Report a as actual error, give counterexample σconcreteEntry

20: end if
21: end for
22: Report alarm a as undecided
23: end if
24: end for
25: end function

20

4 Backward Analysis in TouchBoost

The implementation of a refining backward analysis in TouchBoost required a number of
changes that we now describe. They mainly concern the extension of the abstract domain
with refining backward transfer functions for operations such as variable assignment. We
also show how we handle challenging analysis aspects like interprocedural semantics and
reasoning about non-deterministic code.

4.1 The TouchBoost Abstract Domain

4.1.1 Domain Structure

The foundations above refer to a generic lattice D♯ of abstract values. In TouchBoost,
this abstract domain is not monolithic. Instead, it is a composition of multiple specialized
domains where each domain abstracts particular aspects of concrete runtime values. This
makes the analysis parametric and different domains may be instantiated if required. The
composition mechanism is usually the cartesian product.

At the highest level, a state consists of two subdomains: A heap domain that abstracts
the concrete heap structure of the program, and a second semantic domain that abstracts
the values of identifiers.

The semantic domain is further decomposed into separate domains that track the differ-
ent value types of identifiers: The invalid domain abstracts the validity (non-nullness) of
identifiers. Another domain tracks the values of string identifiers. Finally, the numerical
domain abstracts only the concrete values of all numerical identifiers.

The heap domain on the other hand consists of two separate domains: One for vari-
able identifiers in the environment and another one for heap identifiers in the program
store.

To sum up, the structure of TouchBoost’s abstract domain expressed in terms of cartesian
product compositions boils down to:

TouchBoostDomain = D♯ = SemanticDomain×HeapDomain

SemanticDomain = StringDomain× (InvalidDomain×NumericalDomain)

HeapDomain = V ariableEnv ×HeapEnv

4.1.2 Backward Semantics for Product Domains

Each analyzed TouchDevelop statement causes a series of operations to be issued on
the abstract state. For example, an assignment to a variable results in the assign
operation. Other common operations include the creation of objects and the assumption
of conditions.

4.2 Semantic Domain 21

For all these operations, we need to implement a (refining) backward transfer function
←−−
bref . Because the TouchBoost abstract domain is structured into cartesian products, the
transfer functions of subdomains can be applied individually. For example, the semantics
of assign(x, y) which assigns y to x is expressed as follows. Given a full TouchBoost
pre-state σ = (σS , σH) and post-state σ′ = (σ′

S , σ
′
H) which consist of the semantic and

heap domains, we can write the full transfer function in terms of the subdomain transfer
functions:
←−−
bref Jassign(x, y)K(σ, σ′) =

(←−−
bref Jassign(x, y)KS(σS , σ′

S),
←−−
bref Jassign(x, y)KH(σH , σ′

H)

)

Hence, in the following description we show how the different abstract domains support
the backward operations.

4.2 Semantic Domain

The following essential operations must be implemented for all the semantic sub-domains:

• createV ariable(v) introduces a new identifier v whose runtime should be ab-
stracted in the domain

• removeV ariable(v) removes a given identifier v from the domain.

• assume(expr) causes the semantic domain to assume that the boolean-valued sym-
bolic expression expr holds for all concrete values in the current abstract state.
This enables the computation of a “smaller”, more precise abstraction. Assump-
tions are particularly important for control flow constructs. For example in the
analysis of “if (cond) then ... else ...” we perform assume(cond) and
assume(¬cond) when entering the true and the false branch, respectively.

• assign(id, expr) assigns the contents of expression expr to the given identifier.
The expression can for example be a constant value, another identifier or a more
complex symbolic term with arithmetic or boolean operators.

We first discuss the handling of the operations that is common to all semantic sub-
domains. The backward semantics for assign needs specific implementations, so they
are described separately for each the numeric, the invalid and the string domain.

Variable creation and removal. In theory, these two operations simply have the
opposite effect to their forward versions, when executed backward:

←−−
bref JcreateV ariable(v)K = −→f JremoveV ariable(v)K (17)
←−−
bref JremoveV ariable(v)K = −→f JcreateV ariable(v)K (18)

However, the creation of variable identifiers is handled rather loosely in Sample: When
createV ariable is invoked, it only creates a new variable when there does not already
exist one with the same name. This property is used by TouchBoost for the semantics
of assignments var := expr to a variable. createV ariable(var) is always first executed

4.2 Semantic Domain 22

to make sure the variable exists. We therefore decided to omit an explicit removal of the
variable var when executing backwards. We leave the task of getting rid of a variable
that does not exist in the pre-state but in the post-state to a modified greatest lower
bound operation ⊓ described in Section 4.4.

Assuming expressions. As mentioned above, the most common usage of assume(expr)
is the assumption of branching conditions. For the backward semantics, we are given a
post-state at the entry of a branch and are interested in the pre-states that may reach
our post-state. In a forward execution the branch would only have been taken if the
branch condition expr was true, so we may do the same as in the forward semantics and
assume the condition:

←−−
bref Jassume(expr)K(σoldPre, σpost) =

−→
f Jassume(expr)K(σpost) (19)

4.2.1 Numerical Domain

The numerical domain tracks the values of numerical identifiers. Each domain state
maintains a set of known numerical identifiers and describes an over-approximation of
all the concrete values these identifiers may take on. It also manages boolean identifiers
whose truth values are encoded with the numbers 0 and 1.

In TouchBoost, different numerical domain implementations can be selected by the user.
The interval domain abstracts each identifier value with lower and upper bounds. It is
non-relational and cannot capture relations such the equality of identifiers. The more
precise octagon domain describes relationships between variables with constraints of the
form ±var1 ± var2 = const. Yet more expressive is the polyhedra domain, which dis-
covers general linear inequalities among identifiers. The octagon domain offers more
performance in exchange for precision and is therefore the default choice for analy-
ses.

Let Num from now on denote the selected numerical domain.

Backward assignment. At first, it may seem that all a backward assignment can do
is to forget the current value in the post-state of the variable that is assigned. This is
illustrated in the very simple example in Figure 4 (a) where we want to compute the
backward semantics of the assignment n := x on a post-state with n = 0. By forgetting
the value of n, we lose all information and obtain a pre-state of ⊤. This is certainly
sound, but very imprecise.

Even though the value of the assigned variable is forgotten because it was erased by the
assignment, we can learn more about the state before the assignment. In our example,
we know that n = x must hold after the statement. Since we already have n = 0 and
the assignment does not change x, we can infer that before the assignment x = 0 holds
(Figure 4 b). This simple relational reasoning can be delegated to the numerical domain
Num in the form of an assumption assume(n = x). However, this argument is not valid
in general when the assigned identifier is also referenced in the right-hand side, such as
in n := n+ 1.

4.2 Semantic Domain 23

The following observation generalizes the idea above: A backward assignment trans-
former for x := expr can be thought to perform a substitution that replaces all oc-
curences of the identifier x in the symbolic representation of the post-state with the
expression expr, i.e. the pre-state becomes σpost[expr/x]. This idea directly corresponds
to the assignment axiom in Hoare logic. However, the constraints of our abstract do-
mains are not arbitrary expressions, but part of a limited fragment of formulas, such as
linear inequalities, so the result of an exact substitution may not be expressible in the
abstract domain. We therefore require the numerical domain Num to provide an opera-
tion substNum(σ, id, expr) which approximates a substitution that replaces an identifier
id with an expression expr in the abstract state σ. We assume the substitution to be
sound, that is, we have

α
(−→c Jassign(id, expr)K−1(γ(σ))

)
⊑♯ substNum(σ, id, expr)

We can then define the refining backward transfer function for assignments as

←−−
bref Jassign(id, expr)K(σoldPre, σpost) = substNum(σpost, id, expr) ⊓♯ σoldPre

Imprecise generic substitution. With the existing functionality of the numerical
domains, a simple generic substitution substgeneric(σ, id, expr) can be defined for all
domains Num:

1. Create a fresh identifier id′ that represents the “old” value of id before the assign-
ment. Nothing is known about it yet.

2. Enable the domain to establish a relationship between id′ and id by executing
the assumption assume(id = expr[id′/id]), where all occurences of id in expr are
syntactically replaced with id′. For example, we would perform assume(n = n′+1)
for the substitution substgeneric(σ, n, n+1) which is used to handle an assignment
n := n+ 1.

3. Remove the identifier id that refers to the value in the post state.

4. Rename id′ to id.

{ ⊤ }
n := x;
{ n = 0 }

(a) Naive transformer: Forgetting as-
signed identifier value

{ x = 0 }
n := x;
{ n = 0 }

(b) Improvement: Substitution in ab-
stract state

Figure 4: Backward assignment

Substitution using Apron. In our actual implementation of the backward assignment,
we do not use the generic substitution just presented. Instead, we rely on a more precise

4.2 Semantic Domain 24

variant offered directly by the Apron library [JM09]. Our domains already make heavy
use of Apron’s fast native code by calling an extensive but low-level Java API provided
by the japron Java binding.

Apron’s substitution functionality is able to take into account the internals of the par-
ticular numerical domain and also takes advantage of the old pre-state to further refine
the result, going much further than taking a greatest lower bound. Complex non-linear
expressions are linearized [Min06] to get a symbolic over-approximation, which is then
used to make the substitution more precise.

Discussion. Consider Figure 5 for an example where the preciser Apron substitution
with linearization improves the precision somewhat compared to a naive generic sub-
stitution. The code computes the square of a variable x, for which we initially know
1 ≤ x ≤ 4. The forward and backward invariants are again illustrated in blue and
red, respectively. We use the strict polyhedra domain to perform a backward analysis
where an exact computation of the entry state would require taking the square root of x.
Non-linear constraints are beyond the expressiveness of the domain but the situation can
be mitigated by the linearization of Apron. Note that in (a) the imprecise substitution
leads to an entry state of 1 ≤ x ≤ 4, which is the same as the forward invariant already
known, i.e. the backward analysis did not infer anything useful. On the other hand, the
better Apron substitution is able to narrow down the initial states that may lead to the
assertion violation and yields 3.75 ≤ x ≤ 4, which is much closer to the exact (concrete)
solution 3.87... ≤ x ≤ 4. A similar precision improvement is also illustrated in [Riv05]
where they use the interval domain on a different example.

// Exact states leading to
error:

// {3.87.. ≤ x ≤ 4}

{ 1 ≤ x ≤ 4 }{ 1 ≤ x ≤ 4 }
x := x * x;
{ 1 ≤ x ≤ 16 }{ 15 > x ≤ 16 }
contract->assert(x <= 15,
”may not hold”);

(a) Generic substitution, glb with pre-state

// Exact states leading to
error:

// {3.87.. ≤ x ≤ 4}

{ 1 ≤ x ≤ 4 }{ 3.75 ≤ x ≤ 4 }
x := x * x;
{ 1 ≤ x ≤ 16 }{ 15 < x ≤ 16 }
contract->assert(x <= 15,
”may not hold”);

(b) Apron: Substitution with linearization

Figure 5: Precision comparison of different backward assignments

4.2.2 Invalid Domain

All types in TouchDevelop contain a special invalid value which corresponds to null in
other languages. It is typically used for uninitialized variables and as a return value of un-
successful operations. Because we want to prevent dereferences of this invalid value, the
Invalid abstract domain in TouchBoost separately tracks the validity of identifiers.

4.2 Semantic Domain 25

{valid, invalid}

{valid} {invalid}

⊥ = ∅

Figure 6: V alidityV alue lattice

All TouchDevelop values are abstracted by the V alidityV alue domain which determines
whether a value is definitely invalid, definitely valid or unknown. Its lattice is a simple
powerset lattice of with the set {valid, invalid}, displayed in Figure 6. The domain
that abstracts the validity of all identifier values has the structure of a functional do-
main: All its abstract values are maps from identifiers to elements of V alidityV alue.
Formally:

V alidityV alue = (P({V alid, Invalid}), ⊆, ∪, ∩,∅, {V alid, Invalid})
InvalidDomain = Identifier → P({V alid, Invalid}

(20)

Backward Assignment. The InvalidDomain is non-relational as the individual map
entries abstract the values of identifiers separately. As a consequence, the backward
assignment is simple and can be implemented by forgetting the validity value of the
identifier that is being assigned, with a prior assumption the equality between the iden-
tifier and assigned expression:
←−−
bref Jassign(id, expr)K(vmapoldPre, vmappost) =(

λk.

{
{valid, invalid} if k = id
−→
f Jassume(id = expr)K(vmappost)(k) otherwise

)
⊓ vmapoldPre

(21)

Example: When executing backward the sequence of assignments

y := x; z := y

from a post-state vmap ∈ InvalidDomain where we know vmap(z) = {invalid}, we
obtain a refined pre-state vmap′ with vmap′(x) = {invalid}. The initial validity values
of both y and z are unknown since they are overwritten by the assignments. However,
our equality assumption back-propagates the fact that z is invalid in the end to its origin
x.

Detection of False Alarms. To be able to detect false alarms, we need the greatest
lower bound ⊓ of two InvalidDomain states to become ⊥ when the entries for an
identifier contradict each other. One usage of the greatest lower bound occurs e.g. in
the backward assignment defined above.

For example, assume that a backward operation results in state vmap with vmap(x) =
{invalid} at a location where forward analysis already inferred the invariant vmap′(x) =

4.3 Heap Domain 26

{valid}. Clearly, these facts are not compatible so there cannot be any concrete exe-
cution. This may happen during the analysis of a false alarm and enables us to detect
it.

However, the default implementation of ⊓ for functional domains in Sample such as
InvalidDomain does not result in a ⊥ state but only a bottom validity value ∅ for the
particular identifier entry. I.e., for our example we need that vmap ⊓ vmap′ = ⊥ but
instead only (vmap ⊓ vmap′)(x) = ∅ holds.

Hence, we defined a custom greatest lower bound operation ⊓ID for InvalidDomain
that includes a special case for such situations and otherwise reuses the generic ⊓ of
functional domains (see Section 4.4):

(m1 ⊓ID m2) =⊥ if ∃ id :
(m1(id) = {V alid} ∧m2(id) = {Invalid}) ∨
(m2(id) = {Invalid} ∧m2(id) = {V alid})

m1 ⊓m2 otherwise

(22)

4.2.3 String Domain

StringDomain is responsible for abstracting the runtime values of string identifiers. It
is a non-relational functional domain like InvalidDomain. We only equipped it with
minimal backward transformers that are sound but imprecise.

The backward assignment forgets the value of the identifier that is being assigned.

4.3 Heap Domain

The abstract heap domain in TouchBoost maintains an abstraction of all the allocated
heap locations and the values of references.

Heap Abstraction. For every concrete reference (memory location) r ∈ Ref , we have
a corresponding abstract heap identifier heapId = αref (r) returned by the abstraction
function

αref : Ref → HeapId (23)

We use a program-point based abstraction that assigns the same heap identifier to all
references of objects created at the same program location. The number of heap iden-
tifiers therefore always remains bounded, for example when creating new objects in a
loop. We call an identifier which has more than one concrete counterpart a summary
identifier.

The abstract heap consists of two components: The abstract environment and store.
Both are functional abstract domains with the keys being identifiers and the values

4.3 Heap Domain 27

members of the set domain of heap identifiers. I.e., for each variable identifier and
heap identifier, there is an entry in the environment or store, respectively, with an over-
approximation of all heap identifier it points to. Formally:

Heap = Env × Store

HeapIdSet = P(HeapId)

Env : V arId→ HeapIdSet

Store : HeapId→ HeapIdSet

Since all identifiers have separate entries, we cannot explicitly state relationships among
them. For example, we cannot represent the fact that two local variables must reference
the same heap object. The domain is therefore non-relational.

Backward Assignment. Assignment operations assign(id, expr) that modify our ab-
stract heap structure come in two forms with slight semantic differences:

• assign(id, id2) makes the identifier id point to all identifiers the identifier id2 may
point to.

• assign(id, {hid1, hid2, · · · }) causes id to point to the all the identifiers in the
given set. It is the case with a “constant” right-hand side, so to speak. The heap
identifier set usually originated from the evaluation of more complex symbolic
expression.

For both versions, depending on whether the left-hand side id is a variable identifier or a
general heap identifier, either the environment or the store is affected by this operation.
In the backward assignment transfer function, we have to forget the identifier that was
assigned to but instead of setting it to ⊤, the entry from the old pre-state is used:

←−−
bref Jassign(varId, expr)K((envoldPre, storeoldPre), (envpost, storepost)) =((

λ k.

{
envoldPre(varId) if k = varId

envpost(k) otherwise

)
, storepost

)

←−−
bref Jassign(heapId, expr)K((envoldPre, storepost), (envpost, storepost)) =(

envpost,

(
λ k.

{
storeoldPre(heapId) if k = heapId

storepost(k) otherwise

))

In the case of assignments with id sets assign(id, {hid, hid2, · · · }), this is all we can
do. On the other hand, for better precision in the case assign(id, id2), we may first
execute an assume(id == id2) to establish the equality of the identifiers after the
assignment.

4.4 Greatest Lower Bounds 28

Example: Let us assume we have a post-state with two local variables p, r with two
allocated objects represented by the heap identifiers objId1 and objId2. Further we know
that p may point to both objects, but r only to the first, i.e. env(p) = {objId1, objId2},
env(r) = {objId1}. Computing the backward semantics of assignment assign(r, p), we
can infer a pre-state where we know p must point to objId1, since the assumption can
take the intersection of both heap identifiers sets:

{ p→ {objId1}, r → ⊤ }
r := p;
{ p→ {objId1, objId2}, r → {objId1} }

Object Removal. The heap identifiers associated with a heap object, namely for the ob-
ject itself and its fields, are created in the abstract state by−→f JcreateObject(typ, programPoint)K.
Naturally, we remove them again in the backward version of this transformer.

4.4 Greatest Lower Bounds

Two aspects concerning the handling of identifiers in the greatest lower bound (meet)
operation required special attention throughout all abstract domains.

Removal of Uncommon Identifiers. It is important that created identifiers are
removed again when the program is interpreted backwards. However, new abstract
identifiers are often implicitly introduced by TouchDevelop statements and the scope of
identifiers is rather undisciplined in Sample. For example, the forward semantics of an
assignment x := y may implicitly create an identifier for x in case it does not exist yet
in the pre-state.

As the greatest lower bound with the pre-state is taken by a refining backward transfer
function, this operation provides a good opportunity to get rid of any superfluous iden-
tifiers not present in the pre-state. We thus made sure that the greatest lower bound
always removes identifiers not common to both abstract states.

The greatest lower bound for the numerical domain was already implemented in this
way. On the other hand, this is not the case for all functional domains (in particular,
our InvalidDomain, StringDomain and HeapDomain). As stated earlier, the abstract
values of a functional domain are maps from identifiers to elements of another lattice

(V alueDomain, ⊑V , ⊔V , ⊓V , ⊥V , ⊤V). (24)

The existing ⊓ on the elements of functional domains is defined as:

4.5 Native Method Semantics 29

dom(a ⊓ b) = dom(a) ∪ dom(b) (25)

(a ⊓ b)(id) =


a(id) ⊓V b(id) if id ∈ dom(a) ∩ dom(b)

a(id) ⊓V default if id ∈ dom(a)− dom(b)

b(id) ⊓V default if id ∈ dom(b)− dom(a)

(26)

The value default ∈ V alueDomain can be provided by specific functional domain im-
plementations, making the operation more flexible but less uniform across domains. The
problematic part of this definition is that the domain of the resulting map dom(a ⊓ b)
always contains all the identifiers, including the ones not common to a and b.

We therefore use a stricter stricter and simpler definition of the greatest lower bound ⊓s
for all functional domains in the backward analysis:

dom(a ⊓s b) = dom(a) ∩ dom(b) (27)
(a ⊓s b)(id) = a(id) ⊓V b(id) (28)

Unnecessary Summary Identifiers. An identifier may become a summary identifier
during the forward analysis. As explained in Section 4.3, a summary identifier soundly
abstracts one or more concrete objects (values). To guarantee sound updates, abstract
operations involving summary identifiers have to be conservative and perform weak
updates on the abstract values for these identifiers. Let us represent the property of
identifiers of an abstract state being summary in a map

summaryIds : D♯ → Identifier → {true, false} (29)

Once an identifier an identifier id becomes a summary, it normally stays so in all ab-
stract successor states computed from it. However, in the backward execution we want
them to become normal, non-summary identifiers again if possible. This effect can be
achieved in the greatest lower bound operation: If id is a summary in one state a (i.e.,
summaryIds(a)(id) = true) but not in the other state b, it can become non-summary
in the result. The only way an identifier stays a summary after the operation is when it
already is in both original states. That is, the update of the summary information can
be expressed as:

summaryIds(a ⊓ b)(id) = summaryIds(a)(id) ∧ summaryIds(b)(id) (30)

4.5 Native Method Semantics

Sample’s program representation called “Simple” aims to be as generic as possible and
is restricted to the most essential elements common across imperative programming
languages: The supported statements are constants, variable references, assignments,

4.5 Native Method Semantics 30

1 CheckNonNegative(widthParam)
2 CheckNonNegative(heightParam)
3 New(TPicture.typ,Map(
4 TPicture.field_width -> widthParam,
5 TPicture.field_height -> heightParam
6))(preState)

Listing 4: Native method semantics for media->create picture(widthParam,
heightParam)

1 createObject(programPoint, typ)
2 assignField(programPoint, width, 10)
3 assignField(programPoint, height, 5)
4 assignField(programPoint, location, invalid)
5 . . .

Listing 5: Operations on abstract state during call to media->create picture(10, 5)

field accesses and method calls. However, it allows almost arbitrary nesting of these
constructs and does not enforce a particular structure such as static single assignment
form (SSA).

Any language statement that is not directly translatable to one of the mentioned con-
structs is modelled as a method call, including calls to the API of the language libraries.
While the abstract semantics of the pre-defined elements like assignments is implemented
generically, all method call semantics must be modelled manually with so-called native
method semantics.

The TouchDevelop API comprises more than 100 types with the number of members
(properties) exceeding 1500, and it is steadily growing. All of these plus a few custom
helper methods for language constructs are specified via native method semantics. To
make the specifications more succinct, TouchBoost offers expressive Scala helper methods
that can be composed to act like a embedded domain specific language (EDSL). For
example, a call media->create picture(width, height) to create a picture can be
(slightly simplified) specified using Scala code like in Listing 4.

These forward native semantics are already implemented in TouchBoost and basically
give us an abstract transfer function −→f JnmK for each native method nm of the API.
We now need the corresponding

←−−
bref JnmK backward transfer functions for the backward

analysis as well. Given the sheer number of such methods, it would be an enormous task
to specify them all by hand. However, at closer look the rich semantics in TouchBoost
are expressed in terms of lower-level operations on states. Consider for example some
of the state operations that are invoked for the call media->create picture(10, 5),
displayed in Listing 5.

4.6 Support for Non-Determinism 31

eh := σpre basicOp | eh ; eh | σpre if (cond) eh else eh

basicOp := assignVariable | createObject | ...

Listing 6: Structure of execution history

We have backward transformers for all such lower-level operations like assignments.
It thus natural to define the backward semantics of a native method as the reverse
applications of the backward transformers of all the elementary operations which the
method entails. In the current TouchBoost architecture, these operations are not part
of the AST/CFG of our programs and are only invoked implicitly when executing the
DSL-like rich semantic helpers. The intermediate states which we need to supply as
forward pre-states to the refining backward transfer functions are not saved anywhere
either.

To work around this architectural limitation with reasonable effort, we decided to wrap
our abstract state and record all forward operations and their effect during forward
execution as part of our state. These new history states maintain their own execution
history in addition to the normal abstract state:

HistoryState = D♯ × ExecutionHistory (31)

The execution history is a sequence of forward operations but may also branch due
to conditional semantic definitions. Loops are not possible, as the semantic helpers
do not express general control flow. We also make sure to save all the intermediate
forward states σpre to be used in the backward run. Listing 6 shows the structure of
the execution histories. After the forward history has been recorded, we can backward
interpret it starting from the given post-state.

Note that the described workaround is only needed during the abstract interpretation of
statements with native method call. It is not necessary to keep the history of operations
across multiple statements when interpreting the control flow graph.

4.6 Support for Non-Determinism

Another challenging feature of the backward analysis is reasoning about non-deterministic
program inputs. We first explain the nature of non-determinism in TouchDevelop and
then show how we support it in our analysis.

4.6.1 Non-Determinism in TouchDevelop

Many language constructs and the execution model of TouchDevelop scripts are inher-
ently non-deterministic. Basically everything that is not pre-determined before the exe-
cution of a script may be considered as non-determinism. In particular, non-deterministic
behavior occurs for the following reasons:

4.6 Support for Non-Determinism 32

Random number generation. Scripts may consume pseudo-random numbers as pro-
duced by library calls like Math->random. This is e.g. often used by small game engines
for “jump-and-run” games.

Direct user inputs. Users can be prompted with a dialogue to input numbers, strings
and make boolean “yes-no” choices. Apart from statistical properties, these inputs are
indistinguishable from randomly generated input.

Interactions with environment. Every interaction with the environment can be seen
as a form of non-determinism. Many TouchDevelop API calls require accessing external
resources. For example, a script may issue a HTTP request to a host, and the result
(success or failure of request, content of response) is not fixed ahead of time.

Event execution order. As the execution model of TouchDevelop is event-based, we
have no concurrent interleaving of execution threads. However, the order in which events
are scheduled and executed is not defined.

To see why a proper treatment of non-determinism matters, consider the very simple
example in Listing 7. For the possible division by zero in line 5, the backward analysis
infers the entry state to be ⊤, since the user may or may not enter zero and we need a
valid over-approximation. There is no way to narrow down the input state because we
cannot refer to the non-deterministic input before the assignment to n.

1 action main()
2 { ⊤ }
3 var n := wall->ask number(”positive number?”)
4 { n = 0 }
5 var result := 1 / n

Listing 7: Simple case of non-deterministic input

4.6.2 Approach

Internal vs. External Non-Determinism. Non-deterministic decisions can be
thought to be made by an external entity, outside of our program. This is obviously the
case for all interactions with the network. But also other forms of non-determinism may
also be interpreted like that. On the other hand, one may have the viewpoint that the
system has already predetermined all non-deterministic choices itself, consulting some
internal hidden state whenever decisions are to be made.

Non-determinism source identifiers. We decided to handle non-determinism (ex-
cluding the form of event execution order) by converting the external determinism to
an internal one, so that we can reason about it as part of the state, entirely within
our framework. For all program points where a non-deterministic value is produced, we
add internal state recording that value. These values are associated with a new kind
of identifier NonDetId which represents a source of non-determinism. Such identifiers
possess a name, type and a program point describing where the non-deterministic access

4.6 Support for Non-Determinism 33

occurs. The program point information is later used to look up the relevant identifier in
the state:

NonDetId ⊆ Identifier (32)
name : NonDetId→ String (33)
type : NonDetId→ Type (34)
pp : NonDetId→ ProgramPoint (35)

The identifiers are added to the initial analysis state and tracked throughout the forward
and backward analysis. To make use of the new identifiers, we have to change the abstract
semantics of all the methods returning a non-deterministic result. So far, such methods
always returned a constant expression representing a ⊤ value of the required type. For
example, a non-deterministic method with a boolean result would return the symbolic
expression {true, false}. Since we want to reason about the values of non-deterministic
decisions, we override this behavior and return our new identifiers instead.

For the example in Listing 7, we would introduce a new identifier nid for the number
returned by the call to wall->ask number, e.g. with name(nid) = nondet_pp3_16,
type(nid) = Number, pp(nid) = “line 3 column 16”. Then we simply return nid as the
resulting expression. Later during the backward analysis of the division-by-zero error,
we can establish the fact n = nid = 0 and end up with nid = 0 in the initial state.

Additional assumptions. Some TouchDevelop API methods are modelled with for-
ward semantics that do more than just return a⊤ value. For example, Math->random(limit)
produces pseudo-random integers between 0 and limit (excluding the upper bound). Its
old forward semantics returned a symbolic expression 0

to−→ limit representing such a
number range. Because we want to return a non-deterministic identifier, we have to
establish these additional constraints for the identifier. We do this by making a series
of additional assumptions on the state before returning the resulting identifier. For the
Math->random case returning the identifier nid, this would be

assume(nid = (0
to−→ limit))

Summary Identifiers. The same non-determinism source may be accessed more than
once during program execution, but our forward semantics always returns the same non-
deterministic identifier. If we do not treat this situation differently from single accesses,
we run into an unsoundness. Listing 8 displays a constructed example where this hap-
pens: The user is asked two times for a number, and the program asserts that they are the
same. Obviously, the assertion has to fail because there is nothing requiring the inputs
to be equal, but if we always return the same identifier, the checks succeeds. The reason
is that our identifier actually stands for more than one concrete value instance.

In Sample, we already have a mechanism to deal with cases where an abstract identifier
represents multiple concrete identifiers, which is used in the context of heap-allocated
values. As mentioned in Section 4.3, multiple objects created at the same program point
are approximated by the same identifier, which we call a summary identifier. Here, we
have essentially the same situation where we want a program-point bounded abstraction
to get a finite over-approximation.

4.6 Support for Non-Determinism 34

Summary identifiers are treated specially in the abstract domains. For assignments, this
means weak updates to the abstract state instead of strong ones. Assuming expressions
is handled similarly. This prevents unsound under-approximations, often by paying with
precision.

1 action main()
2 var first = 0;
3 var second = 0;
4 for 0 < i <= 2 do {
5 var n := wall->ask number(”next number?”)
6 if (i = 1) then {
7 first := n;
8 } else {
9 second := n;

10 }
11 }
12 assert(first = second);

Listing 8: Non-determinism source accessed multiple times: Summary identifier
necessary to prevent unsoundness.

The task now is to determine which sources of non-determinism need to have a summary
identifier, i.e. to provide the information:

summary : NonDetId→ {true, false} (36)

so that the identifiers can be created accordingly in the initial state. While we could
syntactically scan the program for method calls nested inside loops which exhibit non-
determinism, this would be unreliable and awkward. Listing 9 shows that we also have
to take into account the interprocedural behavior of our scripts starting from the entry
action. Even though the access on line 9 is not directly in a loop, it may be called
multiple times from main.

1 action main() {
2 var x := wall->ask number(”next number?”)
3 for 0 < i <= 2 do {
4 var y := sub();
5 }
6 }
7
8 private action sub() returns (r: Number) {
9 r := wall->ask number(”next number?”)

10 }

Listing 9: Counting calls to non-deterministic methods

4.6 Support for Non-Determinism 35

Instead, we decided to instrument the existing infrastructure and implement a simple
data flow analysis which is run before the main analysis. Its task is to collect all the non-
deterministic accesses and determine conservatively whether they may happen multiple
times at the same location.

Our state consists of the access map domain which is the functional domain

(AccessMapDomain, ⊑AM , ⊔AM , ⊓AM , ⊥AM , ⊤AM) (37)

with the keys being the non-deterministic identifiers and the values access counts:

AccessMapDomain : NonDetId→ AccessCount (38)
AccessCount = {NoAccess, SingleAccess, MultipleAccess} (39)

AccessCount forms the lattice (AccessCount,⊑AC ,⊔AC ,⊓AC ,⊥AC ,⊤AC) where the el-
ement order is a linear chain and the according least upper bound and greatest lower
bound are defined naturally:

⊥AC = NoAccess ⊑AC SingleAccess ⊑AC MultipleAccess = ⊤AC (40)

All forward semantics of native methods that access a source of non-determinism make
sure to call the operation accessNondet(id) on the current state. We then define its
forward transfer function for the AccessMapDomain to be

−→
f JaccessNondet(id)K(accessMap) =

λk.


SingleAccess if k = id ∧ accessMap(id) = NoAccess

MultipleAccess if k = id ∧ accessMap(id) = SingleAccess

accessMap(k) otherwise

The join ⊔AM and meet ⊓AM of AccessMapDomain are defined in the usual man-
ner:

⊔AM (a, b) = λk. a(k) ⊔AC b(k)

⊓AM (a, b) = λk. a(k) ⊓AC b(k)

Precision Improvement for Loops. While the introduction of summary identifiers
is necessary, it hurts the precision of our backward analysis since we cannot infer any
useful facts about them. As a counter-measure, we implemented a syntactic unrolling of
loops. This way, we get non-deterministic non-summary identifiers for the first k unrolled
loop iterations in addition to the summary identifier for the remaining iterations. The
backward analysis can then establish more precise constraints on these identifiers for the
states that lead to an error.

4.7 Interprocedural Analysis 36

4.7 Interprocedural Analysis

In the examples presented so far, we constrained ourselves to TouchDevelop scripts
with a single method. However, most useful real-world scripts consist of more than one
method.

Units of execution in scripts are divided into actions and events: Actions are normal
methods while events are event handlers that are executed in response to some runtime
event like the user touching the screen or shaking the phone. Both are chunks of code
taking parameters and possibly returning values, and we collectively refer to them as
methods when the distinction does not matter. Actions can be made public or private,
which enables some visibility control and encapsulation.

4.7.1 Concrete and Abstract Execution Model

The concrete execution model of scripts is a simple event loop. One of the public actions
(by default main) is executed first. Once it terminates, all triggered events are handled.
Both events and the actions may call other actions in turn, and after their completion
the remaining events are dealt with. A script may be run multiple times and may keep
persistent state between invocations.

TouchBoost provides support for the interprocedural analysis of scripts. There are sev-
eral aspects to this: The analyzer needs to know what to do with the abstract state
when a method calls another one. It should also reuse computed semantics modularly
to guarantee reasonable performance. Moreover, it must soundly handle the possibility
that a method calls itself in the case of recursion. Finally, it should take into account
the behavior of all events that may be executed.

Figure 7 (inspired by a similar figure in [Bon13]) shows an overview of the abstract
execution model that TouchBoost uses for the interprocedural analysis The execution
could start with any public action, so we execute them all “in parallel” on the initial
state and join the results. After that, the same happens with all the events. But since
more than one event can be executed in sequence, we have to make sure to take the least
fixed point (or an over-approximation in the case of widening) of this repeated event
execution. We also compute the fixed point of the repeated application of this whole
process so multiple script executions are considered.

4.7.2 Method Summaries and Forward Method Call Semantics

To describe the extensions for the backward analysis, we first need to explain how the
abstract semantics of user-defined methods are handled.

For every method, TouchBoost keeps a method summary which is a description of the
forward semantics that this method may exhibit in the context of the given program.
We maintain these summaries in a map, slightly adopting our previous notation for the
forward states F so that the states are now associated explicitly with a method:

SummaryF : Method→ ProgramPoint→ D♯

4.7 Interprocedural Analysis 37

Action 1
(main)

Action n
Private
action 1

Initial
state

⨆

Event 1 Event n

⨆

lfp

lfp

Figure 7: Interprocedural analysis: Abstract execution model

E.g., we denote the entry state in the method summary of main by

SummaryF(main)(entryPP)

where entryPP is the program point of the first method statement.

In TouchDevelop, methods may call others by accessing them as properties of the global
singleton code. For instance, r := code->m(a1, a2) calls method m with two arguments
and assigns the returned result.

The forward semantics −→f Jcode→method(arg1, arg2, · · ·K first has to enter the method
and establish the relationship between the passed actual method arguments with the
formal ones. It then consults the summary for the method. If the state on which the
method is called is contained in the summary entry state, we can directly reuse the
abstract summary exit state. If not, the summary is not yet general enough: there may
exist additional exit states and we need to reanalyze the method’s body with the forward
interpreter on the new input. So while a method may be called more than once, the
behavior of all these calls is described by the same summary. Before returning from the
call, the analysis exits from the method scope by removing the locally scoped variables
and makes a return value from the output parameter identifiers.

Special care needs to be taken for directly or indirectly recursive methods. The inter-
procedural analysis maintains a set that over-approximates all the methods that may

4.7 Interprocedural Analysis 38

be on the call stack at a given time. When a method being called is already contained
in this set, we detect a possible recursion and introduce additional approximation to
ensure both soundness and termination. A simple but very imprecise way is to return
⊤ in such a case. TouchBoost implements a more sophisticated recursion handling that
we omit here.

Algorithm 4 contains informal pseudo-code for what we have just described.

Algorithm 4 Informal interprocedural call semantics, forward analysis.
1: function −→f Jcode→method(concreteArgs)K(σpre, methodStack)
2: // Enter scope, create local variables for arguments and outputs,
3: // assign concrete arguments
4: σ′ ←

−→
f JenterMethod(method, concreteArgsK(σpre)

5: if method ∈ methodStack then
6: // Possibly recursive call detected (naive strategy)
7: σ′′ ← ⊤
8: else
9: s← summaryF(method)

10: if σ′ ⊑ s(entry) then
11: // Reuse summary
12: σ′′ := s(exit)
13: else
14: // Generalize summary, interpret method body again
15: methodStack ← methodStack ∪ {method}
16: s′ ← forwardInterpret(method.cfg, s, postEnterState)
17: summmaryF(method)← s′

18: methodStack ← methodStack − {method}
19: σ′′ := s′(exit)
20: end if
21: end if
22: // Exit scope, purge local state except return variables
23: σpost ←

−→
f JexitMethod(method)K(sigma′′)

24: return σpost
25: end function

4.7.3 Backward Summaries

The approach of the forward analysis can be used during the backward analysis as well.
In addition to the forward summaries, we also keep backward summaries

SummaryB : Method→ ProgramPoint→ D♯

which save the states that possibly reach the abstract error currently under investigation.
The abstract semantics of calls to user-defined methods

←−−
bref Jcode→method(arg1, arg2, · · ·K

4.7 Interprocedural Analysis 39

can be implemented similarly to Algorithm 4, but this time using the refining interpreter
on the method body. The forward summaries are reused for the refinement and remain
unchanged while the backward summaries as generalized when necessary. Algorithm 5
contains informal code for this process.

The two operations for entering and exiting a method (like setting up a stack frame)
have their backward transfer functions implemented as follows:

•
←−−
bref JexitMethod(method)K: We recreate all local variables that are present in the
forward pre-state but not in the backward post-state. This includes variables for
the formal method parameters of the method, output parameters and possibly
local variables that are assigned somewhere in the method. Furthermore, we undo
the heap pruning of unreachable objects.

•
←−−
bref JenterMethod(method)K: Undo the assignment of the parameter values and
remove all formal method parameter variables.

Algorithm 5 Informal interprocedural call semantics, backward analysis.

1: function
←−−
bref Jcode→method(concreteArgs)K(σpre, σpost, methodStack)

2: // Reuse forward summary
3: fs← summaryF(method)
4: // Undo exiting from method scope
5: σ′ ←

←−−
bref JexitMethod(method)K(fs(exit), σpost)

6: if method ∈ methodStack then
7: // Possibly recursive call detected (naive strategy)
8: σ′′ ← ⊤
9: else

10: bs← summaryB(method)
11: if σ′ ⊑ bs(exit) then
12: // Reuse summary
13: σ′′ := bs(exit)
14: else
15: // Generalize summary, backward interpret method body again
16: methodStack ← methodStack ∪ {method}
17: bs′ ← refiningBackwardInterpret(method.cfg, fs, bs, σ′)
18: summmaryB(method)← bs′

19: methodStack ← methodStack − {method}
20: σ′′ := bs′(exit)
21: end if
22: end if
23: // Undo entering method scope
24: σrefinedPre ←

←−−
bref JenterMethod(method, concreteArgs)K(σpre, σ′′)

25: return σrefinedPre

26: end function

4.7 Interprocedural Analysis 40

4.7.4 Interprocedural Error Investigation Strategies

When we looked at isolated methods, the goal of the analysis was always obvious, namely
to compute a refined entry state at the start of the method that contains the alarm and
to try to synthesize a counterexample from it that leads to the error.

Backward analysis to top-level method entry. One might want to go further and
try to determine from where and under what conditions the method with the alarm was
called, and provide a counterexample starting from this point.

This proves to be difficult in general since in a full-scale interprocedural execution of
a script, there are multiple locations in the program from which we could try to find
a counterexample: While TouchDevelop scripts are typically started from main, they
can have multiple entry actions. Furthermore, when events are executed before the
alarm, a counterexample must include a sequence of all events executed up to that
point. Considering all possibilities quickly leads to a combinatorial explosion.

Instead of tackling the problem in its full generality, we support a few simple scenarios
that seem common enough.

Listing 10 shows an example where a private action calc is called by the top-level public
action main. An alarm is produced in the private action, but clearly, the cause for it
is a user input in its caller. If we search for a counterexample input for action calc,
we learn that param must be non-positive. However, looking at a broader context, we
could also determine that the parameter fixed in action main must be false and the non-
deterministic user input a non-positive number. We see that in such a case, a non-local
counterexample is helpful when trying to understand the problematic code.

However, the method with an alarm may be reached from multiple top-level methods.
We therefore compute the call graph of a TouchBoost script and detect any call roots
(top-level methods) from which the problematic method could be called. For each such
call root, the backward analysis is executed assuming the program starts its executions
from that method.

Note that this procedure is a heuristic since it considers only certain execution patterns
and not all possible program behaviors anymore.

1 action main(fixed: Boolean) {
2 if (not fixed) then {
3 n := wall->ask number(”enter number?”);
4 code->calc(n);
5 } else {
6 code->calc(1234);
7 }
8 }
9

10 private action calc(param: Number) {
11 // ...
12 contract->assert(param > 0, ””);

4.8 Collections 41

13 // ...
14 }

Listing 10: Alarm where non-local counterexample is helpful

Interprocedural False Alarm Detection. We also implemented experimental sup-
port for the interprocedural detection of false alarms, in particular when an alarm is
reported in an event.

The idea is to issue a backward analysis run that propagates the error states all the
way back to the start of the program. This can be done analogously to the forward
abstract execution model in Figure 7, basically inverting all the arrows and computing
the backward semantics starting from method exits instead of forward semantics from
the entries.

Since before the event with the alarm another event may have been executed, we have
to take a join over the backward analysis results of all possible events, and take the
fixed point of this process since several events can be executed in sequence. After that,
we propagate the resulting refined state back into all available public actions and take
the join. The resulting state represents an over-approximation of all the initial program
states that may potentially lead to the abstract error, considering all interprocedural
execution behaviors. If we obtain ⊥, we can be sure that no sequence of events of events
causes the reported error.

A real-world use case of this technique is discussed later in Section 6.3.3

4.8 Collections

Collections are a central feature of TouchDevelop. TouchBoost has very recent support
for tracking both may- and must-information about collection contents [Bon13]. Due to
the complexity of the current implementation and time constraints, we were forced to
implement coarse backward semantics and take some shortcuts.

Operations on abstract states that modify collections such as insertCollectionElement
are handled by forgetting the collection contents. For the domain that keeps the may-
contain over-approximation, the result is a collection that possibly contains anything.
For the must-contain domain, a ⊤-valued collection identifier means we cannot guarantee
the presence of any elements. Other operations that do not modify the collection such
as for testing whether a collection contains a given element do not need an explicit
backward version. One consequence of our imprecision is for example that we cannot
infer entry states which lead to an error because some collection does not contain a
particular element.

On the other hand, we can reason about the collection size since it is handled as an
identifier in the numerical domain. E.g., if an error occurs because an invalid value
is used after being returned from an empty collection, we can infer entry states with
collection size zero.

42

5 Counterexample Generation

After running the backward analysis for a given abstract error, we can start the search
for possible counterexamples. The inferred entry state is then ideally much more precise
than the original unconstrained one, but not all concrete states represented by it have
to lead to the error since we over-approximate the program behavior.

Our investigation (illustrated in Algorithm 3) proceeds by repeatedly picking concrete
prospective states from the refined entry state and testing whether they result in the
investigated error. The selection of concrete states may be guided by random decisions
and heuristics. Clearly, we now only cover a subset of all concrete program traces, and
may fail in general to obtain a conclusive classification of the alarm as true or false. If
not, we can decide to simply drop the warning and not bother the user any further.

Thus, two mechanisms are needed: Firstly, a way to concretize abstract entry states
and generate potential counterexamples. Secondly, a testing procedure to exercise the
program on these inputs.

5.1 Concretization of Entry States

Abstract states can represent arbitrary many concrete ones – often even an infinite
number. To enumerate them, we can exploit the well-defined structure of our abstract
states which, as described in Section 4.1, consist of several sub-domains composed via
cartesian product domains. Furthermore, the information contained in our “elementary”
sub-domains like the numerical domain can be expressed as a conjunction of simple
terms.

We can therefore extract the information contained in these abstract domains and model
a constraint system using it. Our main requirement is to find and enumerate instances
fulfilling the constraints (if any). Due to the simple nature of these constraints, we
decided to employ the Choco constraint solver, a java library for constraint satisfaction
problems (CSP) and constraint programming [JRL+08]. Another powerful alternative
would have been an SMT solver.

The following Choco variables and constraints are created for the abstract state compo-
nents:

5.1.1 Numerical Domain

We introduce boolean solver variables for all boolean identifiers and Integer-valued solver
variables for all other numerical identifiers in the Apron abstract state. Note that integer
variables impose a simplification but prevent us from finding floating point values which
are contained in the Number type of TouchDevelop. We refrained from integrating the
Ibex C++ library that would enable Choco to deal with real-values variables.

Furthermore, we add scalar product constraints on the identifiers for all the linear con-
straints in an Apron state. Because all numerical domains are convex, we get a con-

5.2 Testing 43

junction of terms of the following form where ci and s are constants, and vi variable
symbols: ∑

i

ci vi ⊗ s, ⊗ ∈ {>, ≥, =, ̸=}

Such scalar product constraints are directly supported by Choco.

5.1.2 Invalid Domain

The validity of an identifier is a binary choice constrained by its corresponding entry in
the InvalidDomain. The constraint generation process therefore adds a boolean solver
variable for every identifier. In case the analysis determined an identifier to be definitely
valid or definitely invalid, its value is fixed, otherwise decided by the solver.

5.1.3 Heap Domain

For all “points-to” choices in the heap environment, enumerated variables are added
that may only assume a discrete set of values. For example, when a variable identifier v
may point to three different heap identifiers, i.e. env(v) = {hid1, hid2, hid3}, we let the
solver choose any element of this set. This mainly gives us a convenient enumeration of
possible variable assignments.

5.1.4 Solver Search Strategy

Choco offers a wide range of search heuristics to tune the solving process. We did
not implement a custom search, but point out that the enumeration of solutions could
be guided to first try different combinations for variables with a small range and few
constraints, like boolean flags. This could ensure a better test coverage.

5.2 Testing

At the time of writing there was no way to automatically upload new scripts into the
cloud and execute them, so they have to be entered by hand either in on the phone or
the IDE in the web browser.

Since our approach requires concrete testing, we implemented a custom TouchDevelop
interpreter. As the size and complexity of a comprehensive interpreter is outside the
scope of this project, we provide a proof-of-concept implementation that supports basic
language constructs and extended it with API methods that were needed for interesting
test cases.

We outline a few design choices we made:

• Interpretation of Sample CFG. The interpreter operates directly on the Sample
CFGs that the TouchDevelop frontend produces. It contains enough information

5.2 Testing 44

for a concrete execution and provides a relatively high-level view of the scripts
compared to the AST returned from the parser.

• Concrete values. We cannot reuse the infrastructure of the abstract execution,
since all values there are symbolic expressions and approximations of the abstract
domains. The concrete value types for primitives are implemented as thin wrappers
around the corresponding Scala types, such as booleans and strings. We imple-
ment TouchDevelop’s Number type with Double. Additionally, we model values
of references explicitly and have a separate type for invalid values. Objects are
simply maps of field names to values, and collections also maintain maps but with
different key types such as indices for list positions.

• Concrete heap. The concrete heap store as well as all environments are allocated
in maps. We decided to keep this state mutable to avoid excessive copying.

• Termination. To ensure termination, the execution has an upper limit for the
number of statements which are processed. If this limit is exceeded, we report a
possible non-termination.

45

6 Evaluation

In this section, we evaluate the new backward analysis. Our discussion includes both
synthetic test cases and some published real-world scripts from the TouchDevelop cloud.
For scripts derived from cloud versions or taken literally from the cloud, we indicate the
publication ids. All analyses were instantiated with the polyhedra numerical domain and
the option for inter-procedural backward analysis disabled, unless otherwise noted. A
bug in Sample causes some persistent global variables to unnecessarily become summaries
when the effect of multiple script runs is computed. This incurs a precision loss and we
thus analyzed the scripts in single-execution mode that only considers one execution of
a script without taking into account the persisted state between executions.

The full source code used for each example is contained in our test suite. To make au-
tomated testing possible, that source also includes annotations describing where alarms
are expected and whether a definite counterexample or a false alarm should be inferred
for them.

It would have been interesting to analyze a larger number of cloud scripts automatically,
but this was unfortunately prevented by our concrete testing approach with a limited
TouchDevelop interpreter. We were required to manually inspect the alarms found in
scripts and extend the interpreter on a case-by-case basis.

6.1 Randomly Selected Cloud Scripts

We took an existing TouchDevelop test set of published cloud scripts which is already an-
notated with explanations of the produced alarms, including manual judgement whether
they are true or false. It was previously created by Lucas Brutschy to evaluate the for-
ward analysis. The tests were obtained by random selection of 50 scripts with the id
prefix aa. The standard analysis of TouchBoost checks code for invalid references being
used as method call targets or parameters. No other warnings were enabled and we
instantiated the octagon numerical domain.

Among these 50 scripts, our analysis was not able to detect any of the 5 false alarms
raised in 3 scripts. The false alarms are all except one caused by imprecision of collections
in the abstract heap domain. As our collection backward semantics are even coarser, it
is not possible to infer a ⊥ entry.

However, for all the 19 scripts containing true alarms, we managed to produce at least
one counterexample. Only minor changes to our analysis were required to support these
scripts. The causes of the errors are mostly surprisingly simple but are very common in
TouchDevelop scripts. We are thus positive that our results for this random selection
represent the average case among all scripts.

We now discuss the analysis results for a few of the alarms.

6.1 Randomly Selected Cloud Scripts 46

6.1.1 Script aanja

In Listing 11, we show a script that accesses the acceleration sensor of the executing de-
vice which returns a three-dimensional vector. Such a sensor is not present on all execu-
tion platforms, for example web browsers. In this case, a call to senses→acceleration
quick can return invalid.

The correct way to use this API would be to check senses→has accelerometer first
and inform the user that the script does not support his device if there is no acceleration
sensor. However, the script directly uses the result by scaling it to set parameters of the
game engine.

Our analysis state keeps a boolean flag in the senses singleton object that indicates
the presence of the acceleration sensor. Initially, the value of this flag is undetermined,
causing the forward analysis to consider the possibility of an invalid value returned
from sensor readings. In the line a := acc->scale(200), the implicit assertion acc !=
invalid fails to hold in general and causes an alarm.

When we investigate this abstract error with the backward analysis, we assume the nega-
tion of this assertion, i.e. we start with acc == invalid. This means senses→acceleration
quick did indeed return invalid. After propagating back this fact, we can conclude that
the error occurs when starting from an initial state with the accelerometer capability
flag set to false. A simple run in the interpreter confirms that this is indeed a definite
counterexample.

The same reasoning is applied for an alarm on line 11 which has the exact same cause,
but we actually never run into it because the execution already terminates in the first
error.

1 ...
2 event gameloop() {
3 acc := senses->acceleration_quick;
4 a := acc->scale(200);
5 data->board->set_gravity(a->x, a->y);
6 data->board->evolve;
7 data->board->update_on_wall;
8 // Add game logic here
9 // Get the acceleration and rescale to pixels.

10 accp := senses->acceleration_quick;
11 p := accp->scale(800);
12 // Assign acceleration as board gravity.
13 data->board->set_gravity(p->x, p->y);
14 // Apply physics
15 data->board->evolve;
16 // Redraw board on wall
17 data->board->update_on_wall;
18 }
19 ...

6.1 Randomly Selected Cloud Scripts 47

Listing 11: Script aanja: Accessing missing acceleration sensor

6.1.2 Script aaoweirj

Listing 12 shows a TouchDevelop toy example of which there exist many variations. The
script randomly chooses a song from the media collection on the phone and plays it in
reaction to the user changing the orientation of his phone. The problem with this code is
that it does not handle the case where the media collection does not contain any sound
files. If this is true, the random call on the collection returns an invalid value, but the
invocation of play on this result immediately causes the script to crash.

The forward analysis fails to prove that the call target of play must be valid and therefore
correctly reports an alarm. Our backward analysis now works backwards from this call
with the assumption that the return value of the random is invalid. It determines that
this may only happen if the song collection size is 0. As the script does not modify
the collection between the start of the event and this program point, the backward
analysis results in a refined entry state with this information. We then generate a
concrete counterexample with an empty collection, and determine that it is indeed a
true alarm.

Note that this is an example where our lack of precision for collection operations and
contents has no negative effect because all that is relevant for the error is the collection
size.

1 action main() {
2 ”TouchDevelop is cool!”->post_to_wall;
3 }
4
5 event phone_face_down() {
6 // possible crash here!
7 s := media->songs->random->play;
8 phone->vibrate(0.6);
9 wall->set_background(colors->random);

10 }

Listing 12: Script aaoweirj: Accessing an empty song collection

6.1.3 Script aaib

The script named “Is it up?” displayed in Listing 13 asks the user for a web address and
consults a web service to check whether the given site is up for other people.

TouchBoost produces several (non-spurious) alerts for this script:

6.1 Randomly Selected Cloud Scripts 48

• web->download(url) issues a HTTP request and returns the result in a string in-
ternet. This operation may fail depending on the connectivity and the reachability
of hosts. In such a case, the method returns invalid. In line 15, the string is
passed to web->json that parses JSON. The analysis detects that this argument
may be invalid.

• web->json may either return a valid JSON collection object or invalid if the input
string is not proper JSON. However, the result is directly used without a check:
json->field(”status_code”)

• Since we do not have any specifications or guarantees about the accessed web
service, the JSON object may contain anything. Even if variable json is valid, all
unchecked member value usages like json->field(”status_code”)->to_number
immediately cause the script to crash if the fields are not present or have the
wrong type. TouchBoost warns in all 4 instances of this .

Our backward analysis is able to handle the first error: The analysis adds a non-
deterministic string variable for the result of the web download. We infer its contents to
be invalid and a counterexample is generated with this input. The concrete interpreter
then immediately runs into the first error.

On the other hand, we are not able to construct a counterexample in the case where
both the web download and the JSON parsing succeed but the field accesses fail. We
would have to come up with a valid JSON collection object that can contain anything
but a given field as our abstract domains are not expressive enough to describe what a
collection does definitely not contain - in constrast to what it may or must contain.

1 ...
2 action isitup() {
3 // Utilize isitup.org json API to check sites are working.
4 // A first attempt at handling json data.
5 //
6 // Site to check.
7 site := wall->ask_string(”Site to check.”);
8 //
9 // Build the query url.

10 url := ”http://isitup.org/” || web->url_encode(site) || ”.json”;
11 //
12 // Download the result and parse it into a json data structure
13 downloaded := web->download(url);
14 json := web->json(downloaded);
15 // Fetch required fields from the json object.
16 sc := json->field(”status_code”)->to_number;
17 dom := json->field(”domain”)->to_string;
18 if sc = 1 then {
19 // If site is up then display some info.
20 ip := json->field(”response_ip”)->to_string;
21 rc := json->field(”response_code”)->to_string;

6.2 Counterexamples for Numerical Errors 49

22 wall->prompt(dom || ” (IP: ” || ip || ”)” || ”\nIs working.”);
23 }
24 else {
25 // If site is down then display.
26 wall->prompt(dom || ” Is not working.”);
27 }
28 ...

Listing 13: Script aaib: Using HTTP APIs without checks

6.2 Counterexamples for Numerical Errors

We demonstrated above that our analysis supports reasoning about invalid values, but
interesting errors also include the violation of numerical bounds. We now discuss one
such test case in detail.

6.2.1 Motivating Example

We started out with the code in Listing 14 as a motivating example for our work. It
is a variation of the real-world script action shown in Listing 15 (id hwyo). The alarms
detected in the script are all triggered by particular interactive user inputs. As such, it
is a good example of our handling of non-determinism. Both alarms are non-critical in
the sense that TouchDevelop does not crash, but the behavior may be undesirable and
unexpected to the user.

For the error where there picture size parameters in the call

media->create picture(w, h)

are not validated, the analysis simply infers a definite counterexample with negative user
inputs. The values of the relevant identifiers as determined by the solver are:

Id Value Description / Origin
nondet1 -50000 picture width, ask_number(‘‘Width?’’)
nondet2 0 picture height, ask_number(‘‘Height?’’)

where nondeti denote the non-deterministic identifiers that we introduce in the state to
describe user inputs. The second error is less straightforward as it involves conditional
non-deterministic access in a loop. The statement

pic->draw text(math->rand(w), math->rand(w), text, font, 0, colors->rand)

is only executed when the user choose the second drawing style. Text may be drawn
out-of-bound because the range of the y coordinate is wrong, as the code should read
math->rand(h). But for the error to happen the random number generator needs to
yield a high enough number, i.e. math->rand(w) > h. The counterexample found by
our analysis is:

6.2 Counterexamples for Numerical Errors 50

Id Value Description / Origin
nondet1 50001 picture width, ask_number(‘‘Width?’’)
nondet2 12500 picture height, ask_number(‘‘Height?’’)
nondet3 false boolean flag, ask_number(‘‘radial shape?’’)
nondet4 25000 random x coordinate, math->random(w) (unrolled iteration)
nondet5 25001 random y coordinate, math->random(w) (unrolled iteration)
nondet6 0 random x coordinate, math->random(w)(loop summary)
nondet7 0 random y coordinate, math->random(w) (loop summary)

It leads to the undesired behavior in the first iteration of the loop. Note that nondet4
and nondet5 are identifiers generated for the random numbers obtained in the first loop
iteration, while nondet6 and nondet7 are separate summary identifiers used to capture
the non-deterministic decisions in the remaining iterations. The loop unrolling is critical
here as we are only able to infer a suitable value for nondet5 because it is determined to
be non-summary.

1 action draw(text: String, font: String) {
2 var w := wall->ask number(”width?”)
3 var h := wall->ask number(”height?”)
4 var radial := wall->ask boolean (”radial shape?”)
5 var pic := media->create picture(w, h)
6 for 0 <= i1 < 50 do {
7 if radial then {
8 pic->draw text(w/2, h/2,
9 text, font, math->rand(360), colors->rand)

10 } else {
11 pic->draw text(math->rand(w), math->rand(w),
12 text, font, 0, colors->rand)
13 }
14 }
15 }

Listing 14: Motivating example

1 // Textmaster, Circler, Waller and Starouz: Copyright Pouya Animation Inc
2 // License: GNU GPL 3
3 action Waller() {
4 // this code will get a text from user
5 wall->create_text_box(”note: Waller will make a wallpaper from a text,
6 that this text will write in a some random places,
7 so now you should enter that text.”, 18)->post_to_wall;
8 $text := wall->ask_string(”Enter a text to make your wallpaper”);
9 wall->clear;

10 // this code will get a font size from user
11 wall->create_text_box(”note: Waller will make a wallpaper with some
12 texts that the texts have a muximum font size and now you should

6.3 Detection of False Alarms 51

13 write this maximum size”, 18)->post_to_wall;
14 $font := wall->ask_number(”Please write a maximum size for font”);
15 // This code will ask user a number for next loop
16 // (that how many user need text)
17 wall->clear;
18 wall->create_text_box(”note: Waller will put some texts in some places
19 now hamany text you want?”, 18)->post_to_wall;
20 $i := wall->ask_number(”how many text you want?”);
21 // This code will ask users screen size
22 wall->clear;
23 $w := wall->ask_number(”enter your phones screens width”);
24 // Will ask users screens height
25 wall->clear;
26 $H := wall->ask_number(”Enter your screens height”);
27 // This is code will create a picture for Walling
28 wall->clear;
29 wall;
30 $pic := media->create_picture($w, $H);
31 $pic->post_to_wall;
32 // This code will drow texts in their places.
33 for 0 <= i1 < $i do {
34 $pic->draw_text(math->rand($w), math->rand($w),
35 $text, $font, math->rand(360), colors->rand);
36 $pic->update_on_wall;
37 }
38 // This Code will ask user about saving picture
39 wall->clear;
40 if wall->ask_boolean(”waller@termini :~$”, ”do you want to save it?
41 it will save in your photo gallery”) then {
42 $pic->save_to_library;
43 }
44 }

Listing 15: Extract from script hwyo

6.3 Detection of False Alarms

As noted earlier, if we infer an entry state that is ⊥, we may safely conclude that the
analyzed alarm is false. This happens when the backward analysis determines that all
paths to the error location are not viable.

We now describe a few cases where we managed to detect such false alarms.

6.3 Detection of False Alarms 52

6.3.1 Imprecision Due to Joins

Missing disjunctive information is common theme when analyzing programs that perform
case distinctions to produce results. The action in Listing 16 is adapted from [Riv05]
where it serves as a motivating example. It simply computes the absolute value of a
number and performs an assertion, yet the forward analysis fails to verify it – even
with the most precise, available polyhedra domain. The assertion amounts to showing
abs(x) > 5 =⇒ x < −5 ∨ x > 5 which clearly holds.

The forward analysis infers that we must have x > 0 ∧ y = x at the end of the true
branch and x ≤ 0 ∧ y = −x after the else branch, respectively. However, after the if
statement that assigns y, a join is performed and results in y ≥ x. This fact is useful
but not strong enough to establish the assertion. Ideally, our numerical domains would
be able to represent the disjunction (x > 0 ∧ y = x) ∨ (x ≤ 0 ∧ y = −x) when doing the
join, but this lies beyond their expressiveness because they are all convex.

The backward analysis starts in the error state y > 5 ∧ −5 ≤ x ≤ 5 at the assertion
statement and propagates this state back into the if-branches. In both branches, the
greatest lower bound is taken with the states from the forward analysis and the numerical
domain immediately determines that the states there must be ⊥, i.e. definitely not
forward- and backward reachable at the same time.

1 action abs(x: Number) returns (y: Number) {
2 if (x > 0) then {
3 y := x;
4 } else {
5 y := -x;
6 }
7
8 if (y > 5) then {
9 //:: ExpectedOutput(assert.failed)

10 contract->assert(x < -5 or 5 < x, ”must hold”);
11 }
12 }

Listing 16: Action computing absolute value: False alarm because of imprecise join
(join_imprecision.td)

6.3.2 Imprecision Due to Widening

Another notorious cause of imprecision is the widening operation. It accelerates and
ensures the termination of the fixed point iteration for abstract domains that are lattices
of infinite (or prohibitively large) height. In Sample, we apply widening at the entry
of CFG basic blocks whenever the iteration encounters them more often than a fixed
number of times (see Algorithm 1).

6.3 Detection of False Alarms 53

The problem with widenings is that they “over-jump” the least fixed point in the abstract
domains lattices. Listing 17 display a loop where this happens. We use the default setting
of Sample that widens the state after 3 iterations of the loop. Instead of x = 11, we only
know that x > 10 after the loop. Assertions that depend on the number of iterations
performed cannot be shown to hold, for example x ≤ 11 which directly refers to the loop
counter.

The backward analysis of this alarm tries to find executions that lead to x > 11, but
as it enters the loop body backwards, it determines that x ≤ 11 ∧ x > 11 = ⊥. This
happens in all backward iterations, and together with x = 0 at the start the entry state
also becomes ⊥.

1 action main() {
2 var x := 0;
3 while (x <= 10) do {
4 // .. other logic ..
5
6 x := x + 1;
7 }
8
9 // assert fails due to widening...

10 contract->assert(x <= 11, ”must hold”);
11 }

Listing 17: Loop with widening imprecision (wideningAlarm.td)

6.3.3 Interprocedural Detection of False Alarm

Some false alarms occur in an interprocedural setting. We identified a common pattern
in published TouchDevelop scripts that causes problems in our forward analysis: At
some point during the execution, a bunch of global state is initialized. This state is
accessed in the events of the script, but the programmer has only limited control over
when they may be triggered. To prevent access to uninitialized, invalid state, all accesses
are wrapped with a check of a boolean initialization flag.

One popular script with this pattern is the game CloudHopper (script id wbxsa). Touch-
Boost produces several false alarms regarding property accesses on invalid targets. Some
of them are caused by collection imprecisions which we cannot handle. Furthermore, the
script is quite complex and uses API calls we did not implement in the interpreter.
We therefore extracted the relevant parts related to the alarm with the initialization of
global data, shown in Listing 18.

The analysis is unable to show that the access in line 15 is always safe because it cannot
relate the flag data→init to the validity of data→board. Once more, we suffer from
missing disjunctive domains; Our states cannot express data→init =⇒ data→board ̸=
invalid.

6.3 Detection of False Alarms 54

The interprocedural backward analysis then tries to find the initial states before the
execution of main that lead to this situation with data→init ∧ data→board = invalid.
Theoretically, there is an unbounded number of possible event sequences to examine but
they must all follow the informal execution pattern

main⇒ (gameloop | shake)∗ ⇒ gameloop

as the execution starts in main and ends at the error in gameloop, with an arbitrary
number of events triggered in between. We compute the backward semantics by taking
the fixed point of these repeated events. The analysis detects that all code paths from
the start to the error must have set the initialization flag, but in order for that to happen,
the initialization code would also have been executed. The state thus becomes ⊥.

1 var init: Boolean
2 var sprites: Sprite_Set
3 var board: Board
4 // .. more resources
5
6 action main() {
7 // all global data uninitialized, defaulting to invalid/false
8 }
9

10 event gameloop() {
11 if (data->init) then {
12 // game logic ..
13
14 // failing assertion: data->board might be invalid?
15 data->board->evolve();
16 }
17 }
18
19 event shake() {
20 if (not data->init) then {
21 data->board := media->create_full_board();
22 data->init := true;
23 }
24 }

Listing 18: Interprocedural false alarm

55

7 Conclusion

In this thesis, we extended the static analyzer TouchBoost with backward analysis func-
tionality in order to investigate the alarms reported for TouchDevelop scripts. The new
analysis permits the computation of refined entry states (program inputs) which narrow
down the program executions that may lead to a reported error. As a particular ap-
plication of this backward analysis, we concretized these resulting abstract entry states
and performed concrete testing with an interpreter to infer definite counterexamples.
We showed that in some cases, the resulting states also allow us to identify false alarms
caused by over-approximation of the program semantics.

Both the theoretical foundations of the approach based on abstract interpretation and
the changes needed in the TouchBoost abstract semantics were presented. The imple-
mentation aims to be generic in the sense that new abstract domains could easily be
extended with the necessary backward semantics. We note that the backward analy-
sis may also be useful in other contexts than automated counterexample generation,
namely whenever an automated, sound backward propagation of information towards
the execution entry of a program is needed.

Furthermore, we demonstrated that our analysis produces promising results for the error
exploration in a range of small but real-world TouchDevelop scripts. We are thus positive
that our work helps potential users get a better understanding of the root causes of
TouchBoost alarms in their scripts.

7.1 Related Work

Backward abstract interpretation and also refining analyses date back to the original
works of Cousot and his PhD thesis [Cou78]. The presentation in [Riv05] served as the
basis of our work. The authors explore techniques to better understand the origin of
alarms in the Astree analyzer [CCF+05] and to help with the manual classification of
alarms as true or false. Their work includes trace partitioning for loops and a syntactic
program slicing technique which we both did not implement. On the other hand, our
goal was to go a step further after the backward analysis and produce definite coun-
terexamples when possible.

In more recent work, Cousot et al. [CCL11, CCFL13] introduce a symbolic backward
analysis for contract inference that yields necessary preconditions. In contrast to the
method used here, they over-approximate the good runs which do not lead to errors.
The complement of the resulting entry state is thus sufficient for errors to occur. It
would be interesting to combine this approach with the traditional technique we use and
intersect that complement with the refined entry states that we obtain.

Brauer [BS12] take another approach and try to directly construct counterexample traces
by finding paths to the program entry with the help of SAT-based algorithms. The
technique represents the program state with boolean formulas (e.g. bit vectors for integer
variables) and is based on abduction of propositional boolean logic. In the presence of
loops, multiple loop iterations are summarized with a boolean transformer, which may

7.2 Open issues and Future Work 56

lead to an under-approximation of the transition relation. Like the refining backward
analysis, Brauer also reuses the results from the forward analysis.

[Min12] presents an under-approximating abstract interpretation with the polyhedra
numerical domain to infer sufficient preconditions that make sure the program always
stays within a set of safe states. They show that the approach can also be adapted
to infer sufficient conditions for the program to either not terminate or fail in an error
state. Its very strong focus on the polyhedra abstract domain kept us from adopting the
approach in this thesis.

7.2 Open issues and Future Work

At last, we summarize a few weaknesses in the current implementation and improvements
that could be made to fix them, as part of future work.

• Improve testing of potential counterexamples. We had to implement our
own TouchDevelop interpreter to exercise tests of scripts with given inputs since
we had no means to upload and run scripts automatically on the Microsoft cloud
infrastructure. Due to the complexity of the language and API, our interpreter
remains a proof of concept and implements only a tiny subset of all features. If
the TouchDevelop team decides to open up their web APIs to allow external code
upload, we could replace the testing component. A further consideration is the
use of more elaborate techniques like concolic testing instead of randomly picking
candidates.

• Graphical error exploration. Currently there is no user interface to explore er-
rors; all alarms are investigated and messages on the console indicate the outcomes.
It would be nice if a user could select an alarm and start the backward analysis
for it. Input states that are counterexamples could then be rendered graphically.

• Better collection support. Many errors are caused by wrong assumptions about
collections and their contents. Precise backward reasoning for these types of er-
rors should be implemented which would require the introduction of new abstract
domains that are able to express that certain elements must not be contained in
the collections.

7.3 Acknowledgements

I would like to thank my supervisor Lucas Brutschy for his helpful advice throughout
the thesis, and Prof. Dr. Peter Müller for giving me the opportunity to work on this
challenging project in his group.

Furthermore, I am indebted to Severin Heiniger who was also working on a Sample
project and sharing the office with me. We had many fruitful discussions about the
Sample architecture. His countless refactorings enabled us both to create automated
end-to-end test suites for our projects which greatly helped with the development.

57

A Notation Overview

Concrete program states : Σ

Concrete Domain (Lattice) : (D = P(Σ), ⊑, ⊔, ⊓, ⊥, ⊤)
Abstract Domain (Lattice) : (D♯, ⊑♯, ⊔♯, ⊓♯, ⊥♯, ⊤♯)

Abstraction : α : D → D♯

Concretization : γ : D♯ → D

Galois connection : D −−−→←−−−α
γ

D♯

Initial program states : I
Final (erroneous) program states : E

Concrete program semantics : ĈI : ProgramPoint→ D

Abstract forward program semantics : F̂I : ProgramPoint→ D♯

Abstract backward program semantics : B̂E : ProgramPoint→ D♯

Abstract forward-backward refined program semantics : B̂refE : ProgramPoint→ D♯

Concrete transfer functions : −→c JsK : D → D

Abstract forward transfer functions : −→
f JsK : D♯ → D♯

Abstract backward transfer functions : ←−
b JsK : D♯ → D♯

Abstract refining backward transfer functions :
←−−
bref JsK : D♯ ×D♯ → D♯

58

B Infrastructure Work

Apart from the work concerned directly with the thesis topic, a significant effort has
been spent on improving the infrastructure of Sample and the TouchBoost project. The
goal was to boost the productivity when working with the Sample code base.

Most of the following was done in collaboration with Severin Heiniger.

B.1 Move to Mercurial and SBT

Version control was switched from the aging Subversion to Mercurial (Hg). As several
people were working on the source code at the same time, we made heavy use of its
flexible branching and merging functionality.

The Sample project configuration used to be entirely IntelliJ-based. Compiling and ex-
ecuting programs always had to be performed using the GUI. With SBT (Scala Build
Tool), we introduced a proper build tool for Sample. It is able to manage library depen-
dencies and generate IntelliJ project files automatically. Compilation and testing can
now be automated with simple commands.

B.2 End-to-End Tests for TouchBoost

We integrated the existing annotation parser of the SIL project written by Stefan Heule
which was adapted by Severin Heiniger to allow the specification of expected analysis
results in the source code of TouchDevelop test cases.

This enables automated end-to-end testing for TouchBoost, which was not possible before
and hopefully contributes to the robustness of the tool.

B.3 Syntax highlighting

To make working with TouchDevelop scripts locally more visually appealing, we defined
a new syntax highlighting scheme for IntelliJ. Operations such as commenting out pieces
of code are also enabled by that change. An example can be seen in Figure 8.

B.3 Syntax highlighting 59

Figure 8: IntelliJ syntax highlighting for TouchDevelop scripts

REFERENCES 60

References

[Bon13] Y. Bonjour. Must analysis of collection elements. Master’s thesis, ETH
Zurich, 2013.

[Bou93] François Bourdoncle. Efficient chaotic iteration strategies with widenings.
In Formal Methods in Programming and their Applications, pages 128–141.
Springer, 1993.

[BS12] Jörg Brauer and Axel Simon. Inferring definite counterexamples through
under-approximation. In NASA Formal Methods, pages 54–69. Springer,
2012.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 238–252. ACM, 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 269–282. ACM, 1979.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and application
to logic programs. The Journal of Logic Programming, 13(2):103–179, 1992.

[CCF+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. The astrée analyzer. In
Programming Languages and Systems, pages 21–30. Springer, 2005.

[CCFL13] Patrick Cousot, Radhia Cousot, Manuel Fähndrich, and Francesco Logozzo.
Automatic inference of necessary preconditions. In Verification, Model
Checking, and Abstract Interpretation, pages 128–148. Springer, 2013.

[CCL11] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. Precondition in-
ference from intermittent assertions and application to contracts on collec-
tions. In Verification, Model Checking, and Abstract Interpretation, pages
150–168. Springer, 2011.

[CFC11] Giulia Costantini, Pietro Ferrara, and Agostino Cortesi. Static analysis of
string values. In Formal Methods and Software Engineering, pages 505–521.
Springer, 2011.

[Cou78] Patrick Cousot. Méthodes itératives de construction et d’approximation
de points fixes d’opérateurs monotones sur un treillis, analyse sémantique
des programmes. PhD thesis, Institut National Polytechnique de Grenoble-
INPG, 1978.

[Cou97] Patrick Cousot. Constructive design of a hierarchy of semantics of a tran-
sition system by abstract interpretation. Electronic Notes in Theoretical
Computer Science, 6:77–102, 1997.

REFERENCES 61

[Cou98] Patrick Cousot. Calculational design of semantics and static analyzers by
abstract interpretation. NATO Int. Summer School, pages 83–94, 1998.

[FFJ12] Pietro Ferrara, Raphael Fuchs, and Uri Juhasz. Tval+: Tvla and value
analyses together. In Software Engineering and Formal Methods, pages
63–77. Springer, 2012.

[FSB14] P. Ferrara, D. Schweizer, and L. Brutschy. Touchcost: Cost analysis of
touchdevelop scripts. In Fundamental Approaches to Software Engineering
(FASE), 2014. to appear.

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical ab-
stract domains for static analysis. In Computer Aided Verification, pages
661–667. Springer, 2009.

[JRL+08] Narendra Jussien, Guillaume Rochart, Xavier Lorca, et al. Choco: an
open source java constraint programming library. In CPAIOR’08 Work-
shop on Open-Source Software for Integer and Contraint Programming
(OSSICP’08), pages 1–10, 2008.

[Mic] Microsoft. Touch Develop environment. http://www.touchdevelop.com/.
[Online; accessed 06-April-2014].

[Min06] Antoine Miné. Symbolic methods to enhance the precision of numerical
abstract domains. In Verification, Model Checking, and Abstract Interpre-
tation, pages 348–363. Springer, 2006.

[Min12] Antoine Miné. Inferring sufficient conditions with backward polyhedral
under-approximations. Electronic Notes in Theoretical Computer Science,
287:89–100, 2012.

[Riv05] Xavier Rival. Understanding the origin of alarms in astrée. In Static Anal-
ysis, pages 303–319. Springer, 2005.

[TMdHF11] Nikolai Tillmann, Michal Moskal, Jonathan de Halleux, and Manuel Fah-
ndrich. Touchdevelop: Programming cloud-connected mobile devices via
touchscreen. In Proceedings of the 10th SIGPLAN symposium on New
ideas, new paradigms, and reflections on programming and software, pages
49–60. ACM, 2011.

[ZFC12] Matteo Zanioli, Pietro Ferrara, and Agostino Cortesi. Sails: static analysis
of information leakage with sample. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, pages 1308–1313. ACM, 2012.

http://www.touchdevelop.com/

	1 Introduction
	1.1 Motivation and Goals
	1.2 Outline

	2 Background
	2.1 TouchDevelop
	2.2 Sample and TouchBoost

	3 Foundations
	3.1 Forward Abstract Interpretation
	3.2 Backward Abstract Interpretation
	3.3 Refining Backward Interpretation
	3.4 Illustration of Approach

	4 Backward Analysis in TouchBoost
	4.1 The TouchBoost Abstract Domain
	4.1.1 Domain Structure
	4.1.2 Backward Semantics for Product Domains

	4.2 Semantic Domain
	4.2.1 Numerical Domain
	4.2.2 Invalid Domain
	4.2.3 String Domain

	4.3 Heap Domain
	4.4 Greatest Lower Bounds
	4.5 Native Method Semantics
	4.6 Support for Non-Determinism
	4.6.1 Non-Determinism in TouchDevelop
	4.6.2 Approach

	4.7 Interprocedural Analysis
	4.7.1 Concrete and Abstract Execution Model
	4.7.2 Method Summaries and Forward Method Call Semantics
	4.7.3 Backward Summaries
	4.7.4 Interprocedural Error Investigation Strategies

	4.8 Collections

	5 Counterexample Generation
	5.1 Concretization of Entry States
	5.1.1 Numerical Domain
	5.1.2 Invalid Domain
	5.1.3 Heap Domain
	5.1.4 Solver Search Strategy

	5.2 Testing

	6 Evaluation
	6.1 Randomly Selected Cloud Scripts
	6.1.1 Script aanja
	6.1.2 Script aaoweirj
	6.1.3 Script aaib

	6.2 Counterexamples for Numerical Errors
	6.2.1 Motivating Example

	6.3 Detection of False Alarms
	6.3.1 Imprecision Due to Joins
	6.3.2 Imprecision Due to Widening
	6.3.3 Interprocedural Detection of False Alarm

	7 Conclusion
	7.1 Related Work
	7.2 Open issues and Future Work
	7.3 Acknowledgements

	A Notation Overview
	B Infrastructure Work
	B.1 Move to Mercurial and SBT
	B.2 End-to-End Tests for TouchBoost
	B.3 Syntax highlighting

