
Method-specific encodings for
Gobra structs

Bachelor Thesis

René Čáky

September 5, 2023

Advisors: Prof. Dr. Peter Müller, Dionisios Spiliopoulos

Department of Computer Science, ETH Zürich

Abstract

Gobra is a program verifier designed for the Go language. Its workflow
involves translating Gobra programs into the Viper intermediate verifi-
cation language and subsequently performing the verification process
on this intermediate representation. Given that the verification of large
programs can introduce some peformance bottlenecks, it is desirable
to address them. The objective of this bachelor thesis is to optimize
the verification process for Gobra programs by improving the encod-
ing of Gobra structs into Viper. The next objective is to extend Gobra
to be able to handle alternative encodings for Gobra features concur-
rently, thereby further enhancing the versatility and efficiency of the
verification process.

i

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 Go . 3
2.2 Structs . 3
2.3 Gobra . 4

2.3.1 Permissions and Heap-Manipulation 6
2.3.2 Predicates in Gobra . 6
2.3.3 The Difference between Functions and Methods 6
2.3.4 The Difference between Function-Like and Method-Like

Predicates . 7
2.4 Viper . 7

2.4.1 Method and Function Calls in Viper 9
2.4.2 Domains . 9

3 Current Struct Encoding 11
3.0.1 Shared Struct domain 11
3.0.2 Tuple domain . 13

4 Optimizations 15
4.1 Eliminating Rev Functions and Injectivity Axioms 15
4.2 Replacing Multiple Get and Rev Functions with Offset-Based

Functions . 17
4.2.1 Tuple Domain . 18
4.2.2 Shared Struct Domain 20

5 Supporting Different Encodings for Some Features Simultane-
ously in Gobra 23
5.1 General Idea . 23

iii

Contents

5.2 Coding the Concept into Reality 25

6 Future Work 27

Bibliography 29

iv

Chapter 1

Introduction

When it comes to software development, the significance of program correct-
ness cannot be overstated, as it guards against the introduction of bugs. This
important role is undertaken by verification languages, designed precisely
for this purpose. Furthermore, when dealing with extensive programs, the
performance of verification introduces a crucial aspect to consider.

Go [3], a widely used open-source programming language, was created by
Google. It boasts built-in concurrency primitives, providing a significant
advantage in building scalable concurrent programs. At ETH Zürich, a ver-
ification language named Gobra [15] was developed, aimed at ensuring the
correctness of Go programs predominantly through adding method precon-
ditions and postconditions to the Go code. The verification process of Gobra
consists of translating the code into an intermediate verification language
called Viper [9] , also crafted at ETH Zürich. Viper, serving as an infras-
tructure for permission-based reasoning, leans on the capabilities of SMT
solvers to validate proof obligations. The SMT solvers are automated tools
for solving logical formulas.

When it comes to developing software with Gobra, one potential issue to
consider is the implementation of structs. Structs are collections of variables
of different types, also called struct fields. Gobra’s struct syntax can result
in suboptimal code when compiled to Viper. The resulting Viper code may
contain a significant amount of inefficient code that could be optimized for
a faster verification. It’s natural to want to optimize verification to ensure
it runs as efficiently as possible. Faster verification times can make a big
difference in the interactivity of the verifier. A current limitation of Gobra
is that the encoding of some features can create overhead in the verifica-
tion time, even if the whole encoding is not needed for a specific function.
This presents the opportunity to investigate whether different encodings for
some features can be used in a way that will speed up verification. To
that end, we will focus on how structs are implemented in Gobra and com-

1

1. Introduction

piled to Viper. By analyzing and optimizing struct-based codes, we can not
only reduce the verification time of Gobra programs but also gain insight
on whether the use of different encodings for the same feature is a valid
optimization strategy.

Moreover, our objective is to enhance Gobra’s capabilities by ensuring its
proper handling of various encodings. This entails enabling the integration
of methods that utilize diverse encodings for specific features. Leveraging
distinct encodings under specific conditions can result in improved verifi-
cation performance. Thus, the potential benefits are substantial. However,
a challenge arises when a method employing a specific encodings is called
inside of a method that uses different encoding, potentially leading to com-
patibility issues. This solution to this issue is a part of this thesis’ efforts.

2

Chapter 2

Background

This chapter establishes the fundamental groundwork for deepening unde-
standing of the topics investigated within this bachelor thesis. It explains the
relevant aspects of the programming languages Go, Gobra, and Viper. Fur-
thermore, it explores structs and their functionalities in Go, acknowledging
their importance as a central theme.

2.1 Go

Go [3] is a popular systems open-source programming language designed
by Google that has great advantages for the development of scalable concur-
rent programs thanks to its built-in concurrency primitives, such as channel-
based communication. These properties make Go an excellent tool for ad-
dressing challenges introduced by multithreaded program execution.

2.2 Structs

In Go, a struct is a composite data type that contains a collection of fields,
each with a specific type. They provide a convenient way to group related
data together. An example of a struct in Go is demonstrated in listing 1.
Struct literals in Go allow us to create instances of a struct by directly speci-

1 type Vertex struct {

2 X int

3 Y int

4 }

Listing 1: Example of Go Struct

fying the values for its fields, as depicted in listing 2. If we omit the values

3

2. Background

of certain fields during initialization, Go will automatically assign default
values to those fields. This behavior is demonstrated in lines 2 and 3 of
listing 2.

1 func main () {

2 v1 = Vertex{1, 2}

3 v2 = Vertex{X: 1} // Y:0 is implicit

4 v3 = Vertex{} // X:0 and Y:0

5 }

Listing 2: Example of Struct Literals in Go

Let’s now explore the functionalities of Go structs. Firstly, we can access a
field of a struct using a dot notation, such as v.X = 4, where v is a struct of
type Vertex, and this assignment statement sets the value of the X field.

Secondly, in Go, we can create pointers to structs by using the ampersand
(&) symbol, as illustrated in listing 3 on line 3. Conversely, we can derefer-
ence the pointer without using the asterisk (*) symbol as we would in the C
language, as shown in line 4 of the same example.

1 func main() {

2 v := Vertex{1, 2}

3 p := &v

4 p.X = 1e9

6 }

Listing 3: Pointers to Structs in Go

2.3 Gobra

Gobra [15] is an open-source automated verifier of correctness and secu-
rity properties for Go programs. The verification of Go programs relies on
the Viper infrastructure and uses separation logic [10]. In Gobra, which sup-
ports a substantial portion of Go, the verification process involves translating
the Go program into the Viper intermediate language. Afterward, the pro-
gram goes through a verification procedure utilizing an existing SMT-based
verification backend, which is a tool for solving logical formulas. Gobra also
allows developers to add contracts for the functions that can formally spec-
ify the intended behaviour of the program. The contracts consist of pre- and
postconditions. Requires clauses specify preconditions that must be true at
the beginning of a function, while ensures clauses specify postconditions

4

2.3. Gobra

that must be true at the end of a function.

Additionally, Gobra offers support for assert statements, allowing develop-
ers to verify conditions at specific points in their program. Moreover, it
includes loop invariants, assume statements, and inhale and exhale state-
ments, providing powerful tools for program analysis, verification, and data
handling.

1 type pair struct {

2 left, right int

3 }

5 // incr requires permission to modify both fields

6 requires acc(&x.left) && acc(&x.right)

7 ensures acc(&x.left) && acc(&x.right)

8 ensures x.left == old(x.left) + n

9 ensures x.right == old(x.right) + n

10 func (x *pair) incr(n int) {

11 x.left += n

12 x.right += n

13 }

Listing 4: Gobra example program illustrating main Gobra functionalities

Listing 4 from Gobra tutorial [4] shows an example of a program written
in Gobra. The program defines a struct type called pair with two integer
fields: left and right. The program also defines a method called incr on
the pair type. The method takes an integer parameter n and is associated
with a pointer receiver (denoted by *pair). This means it operates on a
mutable instance of the pair struct. The method has certain pre and post-
conditions. The precondition specifies that the method requires write access
(acc(&x.left) && acc(&x.right)) to both the left and right fields of
the x instance. This means that the caller must have permission to modify
both fields. The ensures clauses specify the guarantees that hold after the
method is called. It ensures that the write access permissions are maintained
(acc(&x.left) && acc(&x.right)). Additionally, it ensures that the left
field of x is updated correctly (x.left == old(x.left) + n) by adding
the value of n to the original value. Similarly, it ensures that the right field
of x is updated correctly (x.right == old(x.right) + n) by adding the
value of n to the original value.

In summary, the program defines a method incr that takes an integer and in-
crements both the left and right fields of a pair struct by that value, while
enforcing permission requirements and ensuring the expected behavior of
the modifications.

5

2. Background

2.3.1 Permissions and Heap-Manipulation

Gobra utilizes implicit dynamic frames [13] to facilitate reasoning about mu-
table heap data. Heap locations can be considered as addresses of pointers
and each heap location is linked to an access permission.. The ability to
access a pointer x is represented by the accessibility predicate acc(x). Gobra
also introduces fractional and quantified permissions. When dealing with
fractional permission, each permission amount is represented as a rational
number in interval from 0 to 1. Complete permission (acc(x, write)) is nec-
essary for modifying the value of a heap location, while any non-zero per-
mission amount suffices for reading from a heap location. When specifying
permissions to a number of heap location we can use quantified permissions.
The approach involves placing the resource assertions within the body of a
forall quantifier, which is a fundamental concept in Gobra.

2.3.2 Predicates in Gobra

Predicates are parameterized assertions marked using the keyword pred.
The number of parameters for a predicate is arbitrary. Their bodies consist of
assertions that can only use these parameters as variable names. Recursive
predicate definitions are supported, enabling them to represent permissions
of recursive heap structures like linked lists and trees. Listing 5 presents
a recursive predicate that grants access write permissions to the value and
pointer of the next node for all nodes within a linked list.

1 type node struct {

2 value int

3 next *node

4 }

6 pred list(ptr *node) {

7 acc(&ptr.value) && acc(&ptr.next) && (ptr.next != nil ==> list(ptr.next)

)

8 }

Listing 5: Gobra program with a Function-like Recursive Predicate

2.3.3 The Difference between Functions and Methods

In Gobra, functions and methods are both marked using the keyword func.
Their distinction lies in the arrangement of arguments. Functions feature a
listing of all arguments following the function name. Conversely, methods
incorporate an initial argument called the receiver preceding the method
name, with the remaining ones succeeding it. This pattern is evident in the

6

2.4. Viper

example provided in listing 6, where add is a function and incrby operates
as a method.

Furthermore, Gobra encompasses both pure functions and pure methods.
This mirrors the distinction between regular functions and methods, but
the inclusion of the term pure indicates that their bodies consist of simple
return statement with a pure expression.

1 type node struct {

2 value int

3 next *node

4 }

5 func add (a int, b int) int {

6 return a+b

7 }

9 func (ptr *node) incrby (a int){

10 ptr.value += a

11 }

Listing 6: Function and Method in Gobra

2.3.4 The Difference between Function-Like and Method-Like Pred-
icates

To discern between predicates, we apply a comparable approach used in
distinguishing functions from methods. If the predicate definition contains
a receiver, it denotes a method-like predicate; whereas, the absence of the re-
ceiver signifies a function-like predicate. In reference listing 5, the predicate
is labeled as a function predicate. Furthermore, the shift from this function
predicate to a method predicate is observable in reference listing 7.

1 pred (ptr *node) list () {

2 acc(&ptr.value) && acc(&ptr.next) && (ptr.next != nil ==> ptr.next.list

()

3 }

Listing 7: Method-like Predicate in Gobra

2.4 Viper

Viper [9] is a verification infrastructure for permission-based reasoning de-
veloped at ETH Zurich. It consists of an intermediate verification language
and corresponding verifiers that prove correctness of Viper programs. Viper
can be used to implement verification techniques for sequential and concur-

7

2. Background

rent programs with mutable state, as well as encode verification problems
manually. Viper has several other front-ends besides Gobra for Go, like
Prusti [7] for Rust and Nagini [8] for Python. Viper is also used in vari-
ous research projects and teaching institutions worldwide. Viper provides 2
backends: Silicon [2] and Carbon [1]. The Carbon backend uses a technique
called verification condition generation. The Silicon backend, on the other
hand, uses symbolic execution. Both backends rely on the Z3 SMT solver to
check the validity of the proof obligations. The choice of which backend to
use depends on the nature of the program being verified and the verification
goals. Viper uses pre- and postconditions and loop invariants to specify the
intended behavior of the program.

1 field f: Int

3 method client(a: Ref)

4 requires acc(a.f)

5 {

6 set(a, 5)

7 a.f := 6

8 }

10 method set(x: Ref, i: Int)

11 requires acc(x.f) && x.f < i

12 ensures acc(x.f) && x.f == i

13 {

14 x.f := i

15 }

Listing 8: Viper example program

The program in listing 8 from Viper tutorial [6] defines a field f of type Int
and includes two methods: client(a: Ref) and set(x: Ref, i: Int).
The client method takes a reference a as a parameter and requires that a.f
(the f field of object a) is accessible. Within the client method, it invokes
the set method with a as the first argument and 5 as the second argument,
which sets a.f to 5. It then updates a.f to 6 using the assignment operator
:=.

The set method takes a reference x and an integer i as parameters. It re-
quires access to x.f and that x.f is less than i. The method ensures that
after its execution, x.f remains accessible and its value becomes equal to i.
It accomplishes this by updating x.f to i using the assignment operator :=.

In summary, the provided Viper program demonstrates the manipulation of
the f field of objects through the set and client methods. The program
includes preconditions and postconditions to ensure the correctness of the
program according to the specified requirements.

8

2.4. Viper

2.4.1 Method and Function Calls in Viper

A particularly interesting aspect related to the verification process in Viper,
to be later explored in this thesis, involves the fact that when verifying a
method or function call, Viper only considers the pre- and postconditions of
the respective calls.

2.4.2 Domains

Domains in Viper provide the means to define additional types, mathemat-
ical operations, and fundamental principles that establish their properties,
which is the role of axioms. Structurally, domains consist of a name and
a section within which various domain function declarations and axioms
can be introduced. The functions stated within a domain possess a global
scope: they can be employed in any other part of the Viper program. Do-
main functions are devoid of preconditions. They can be employed in any
state. Additionally, they are abstract, meaning they lack a specified body.
The approach to attributing significance to these functions that lack clear
interpretation is by means of domain axioms.

Domain axioms also possess a global influence. They establish characteris-
tics of the program that are presumed to be true in all states. As axioms
are not limited to specific states, they must be well-defined across all states.
Consequently, domain axioms cannot reference the values of heap locations
or permission levels. Normally, domain axioms are conventional assertions
in first-order logic, often quantified. Axiom names are optional and utilized
solely to enhance the program’s readability. Listing 9 shows an example of a
simple Viper domain. Equally, there exist domains in Gobra with the same
syntax and functionalities.

2 domain MyDomain {

3 function foo(): Int

4 function bar(x: Bool): Bool

6 axiom axFoo { foo() > 0 }

7 axiom axBar { bar(true) }

8 axiom axFoobar { bar(false) ==> foo() == 3 }

9 }

Listing 9: Viper example Domain

9

Chapter 3

Current Struct Encoding

This chapter offers insight into the current translation of Go structs into
Viper, supporting a wide range of struct functionalities in Go. The encoding
primarily facilitates an automated conversion of structs from Gobra into
Viper.

Presently, the usage of structs in Gobra may result in the generation of two
potential domains in Viper, contingent on the circumstances. If struct literals
are employed in the program, a Tuple domain will be created. Conversely,
using pointers to a struct will generate a Shared Struct domain.

3.0.1 Shared Struct domain

Let’s examine the translation of Gobra structs to Viper with a concrete ex-
ample. Consider the Gobra program in listing 10 that defines a struct called
Person with two string fields: FirstName and LastName.

1 type Person struct {

2 FirstName string

3 LastName string

4 }

Listing 10: Gobra Struct example

When we utilize this struct in a Gobra program that undergoes verifica-
tion under the circumstances mentioned above resulting for the struct to
be stored on the heap, it generates the corresponding Shared Struct domain
in the Viper program shown in listing 11 . It’s crucial to emphasize that
regardless of the quantity of such structs with 2 fields present in the Gobra
program, a single Shared Struct will be formed in the Viper program, rep-
resenting all of them. Equally if there is a struct with more or less fields,

11

3. Current Struct Encoding

an adequate Shared Struct domain will be created with the same amount of
fields. In this domain, we observe that for each field, there exists a pair of
functions: a get function and a rev function. The get function of the first
field with a two-field Shared Struct domain as an input will return the first
field, while the rev function of the first field given the first field as an input
will return the Shared Struct that this field is part of. The rev functions play
a crucial role in defining the injectivity axioms. Injectivity [11] refers to the
property of a function where distinct inputs yield distinct outputs. The in-
jectivity axioms define the injectivity of every field of a Shared Struct, with
injectivity being a property that ensures that for each location of a field there
only exists one struct that has that field. Meaning it cannot happen that 2
different Shared Structs have a field with the same location. Additionally,
in every Shared Struct domain, there is an equality axiom, which states that
two structs are equal if and only if all fields at a specific position are equal.

1 domain ShStruct2[T0, T1] {

3 function ShStructget0of2(x: ShStruct2[T0, T1]): T0

5 function ShStructget1of2(x: ShStruct2[T0, T1]): T1

7 function ShStructrev0of2(v0: T0): ShStruct2[T0, T1]

9 function ShStructrev1of2(v1: T1): ShStruct2[T0, T1]

11 axiom {

12 (forall x: ShStruct2[T0, T1] ::

13 { (ShStructget0of2(x): T0) }

14 (ShStructrev0of2((ShStructget0of2(x): T0)): ShStruct2[T0, T1]) == x)

15 }

17 axiom {

18 (forall x: ShStruct2[T0, T1] ::

19 { (ShStructget1of2(x): T1) }

20 (ShStructrev1of2((ShStructget1of2(x): T1)): ShStruct2[T0, T1]) == x)

21 }

23 axiom {

24 (forall x: ShStruct2[T0, T1], y: ShStruct2[T0, T1] ::

25 { (eq(x, y): Bool) }

26 (eq(x, y): Bool) ==

27 ((ShStructget0of2(x): T0) == (ShStructget0of2(y): T0) &&

28 (ShStructget1of2(x): T1) == (ShStructget1of2(y): T1)))

29 }

30 }

Listing 11: Shared Struct domain with 2 fields

12

3.0.2 Tuple domain

If we work with struct literals that are stored on the stack, a Tuple domain
will be created in the Viper program. This domain exhibits specificity in
terms of the number of fields, requiring a new Tuple domain for verification
purposes for each distinct number of fields. To illustrate this, listing 12
presents an example of such a Tuple domain.

1 domain Tuple2[T0, T1] {

3 function get0of2(p: Tuple2[T0, T1]): T0

5 function get1of2(p: Tuple2[T0, T1]): T1

7 function tuple2(t0: T0, t1: T1): Tuple2[T0, T1]

9 axiom getter_over_tuple2 {

10 (forall t0: T0, t1: T1 ::

11 { (tuple2(t0, t1): Tuple2[T0, T1]) }

12 (get0of2((tuple2(t0, t1): Tuple2[T0, T1])): T0) == t0 &&

13 (get1of2((tuple2(t0, t1): Tuple2[T0, T1])): T1) == t1)

14 }

16 axiom tuple2_over_getter {

17 (forall p: Tuple2[T0, T1] ::

18 { (get0of2(p): T0) }

19 { (get1of2(p): T1) }

20 (tuple2((get0of2(p): T0), (get1of2(p): T1)): Tuple2[T0, T1]) == p)

21 }

22 }

Listing 12: Tuple domain with 2 fields

We can see the get functions, which are the same as in the Shared Struct
domain and an additional tuple function that takes all of the fields as an
input and returns a Tuple instance. In this domain there are 2 axioms. The
first axiom getter over tuple2 states that for any two values t0 and t1

of types T0 and T1 respectively, if we create a Tuple2 instance using these
values (tuple2(t0, t1)), then retrieving the 0th element of this instance
using the get0of2 function should yield the value t0, and retrieving the 1st
element using the get1of2 function should yield the value t1. The second
axiom tuple2 over getter states that for any Tuple2 instance p, if you re-
trieve the 0th element of p using the get0of2 function, and you retrieve the
1st element of p using the get1of2 function, then creating a new Tuple2
using these two retrieved values should result in the same Tuple2 instance
p.

13

Chapter 4

Optimizations

The central objective of this thesis is to explore alternative encodings of Go-
bra structs to Viper, potentially improving the overall performance of the
verification process. This chapter presents two primary approaches that
were explored to achieve the aforementioned goal. The first approach fo-
cuses on eliminating rev functions and injectivity axioms within the Viper
Shared Struct domain, if they are not necessary for the verification of the
program. The second approach involves replacing multiple get and rev

functions in the Shared Struct and Tuple domain with individual functions
that leverage an offset mechanism. These strategies were implemented and
evaluated to optimize the encoding and subsequently enhance the efficiency
of verification procedures.

4.1 Eliminating Rev Functions and Injectivity Axioms

As demonstrated in chapter 3, within the current Shared Struct domain,
there exist numerous rev functions and corresponding injectivity axioms.
However, in some cases, the requirement of injectivity may not be neces-
sary for the program verification process. Consequently, we can eliminate
the rev functions and the injectivity axioms from the Shared Struct domain,
especially when their presence is unnecessary. This optimization becomes
particularly beneficial when dealing with large Shared Struct domains that
possess numerous fields, therefore numerous rev functions and injectivity
axioms. By removing the rev functions and injectivity axioms, we can sig-
nificantly reduce the size of the codebase, potentially leading to improved
performance during the verification process.

While not all situations might allow for the application of the new encoding,
Chapter 5 will demonstrate that using multiple diverse encodings simulta-
neously within a single codebase is indeed achievable.

15

4. Optimizations

Necessity of the Injectivity Axioms

Let’s consider an example where the injectivity axioms are required to verify
a function in Gobra. listing 13 illustrates such a scenario. The function f
takes two pointers to a struct and then compares the adresses of the x field
of these structs and tries to prove that these structs are the same struct. In
this case, it becomes crucial to have a syntactic check that can identify the
need for injectivity axioms to decide if the new encoding is suitable. In this
case it needs to recognize that the original encoding must be utilized. This
check is necessary to maintain the integrity of the encoding and ensure the
accuracy of the verification process.

1 type A struct {

2 x int

3 y int

4 }

6 func f (z *A, w *A) {

7 if (&z.x==&w.x)

8 { assert (z==w)}

9 }

Listing 13: Example of a Gobra program, where injectivity axioms are
needed

Evaluation

For the evaluation, I focused on assessing the optimization primarily on the
programs extracted from the VerifiedScion GitHub repository, specifically
the slayers module. VerifiedScion [5] is a project developed at ETH Zurich by
Programming Methology Group for verifying the SCION Next-Generation
Internet architecture. It serves as a good benchmark due to its engagement
with large structs. The table below presents the obtained results. The values
presented in the table represent the average of five test runs. Employing
multiple runs for testing enhances the dependability of result consistency.
Through these multiple runs, variations arising from external factors like
system load are smoothed out, resulting in a more precise depiction of the
overall performance.

The slayers module took around 100 seconds to verify using the original Go-
bra implementation. With the optimization, we observed an improvement
of approximately 3 seconds. Furthermore, when verifying an example func-
tion of the dataplane.go file, the optimization resulted in an improvement of
around 1 second, which is a speedup of 1,67%

To further examine the effectiveness of the optimization, I created a test pro-

16

4.2. Replacing Multiple Get and Rev Functions with Offset-Based Functions

gram that extensively utilizes the features targeted for optimization. This
program contains large structs and numerous field accesses within a func-
tion. The optimization yielded an improvement of approximately 5 seconds
for this particular test program, which is a speedup of 3,97%

In the final scenario, I created programs that include a single large struct
along with a corresponding function. This struct consists of approximately
60 fields in the first program. Similarly, I created a second program with
around 85 fields. The corresponding function repeatedly accesses fields of
the struct and assigns values to them. However, there is still a very small
improvement.

Original Gobra [s] Optimization [s]
slayers module 100.2 97.2

dataplane.go- example function 66.8 65.7
test program 125.8 121

struct with 60 fields 79.5 76.5
struct with 85 fields 186.8 183

Conclusion

The evaluation reveals that the impact of the optimization scales with the
size of the testing programs. However, when considering the overall size of
the programs, the benefits of the optimization become negligible. Moreover,
to ensure the proper functioning of this optimization, it would be necessary
to implement a syntactic check for the abstract syntax tree. This check would
determine whether the rev functions and injectivity axioms are essential for
the verification of a given program and assess the feasibility of applying
this optimization. Nevertheless, as the enhanced encoding didn’t appear to
yield a significant speedup, I refrained from diving deeper into this syntactic
check.

4.2 Replacing Multiple Get and Rev Functions with
Offset-Based Functions

Depending on the circumstances, a Gobra struct can lead to the generation
of two domains: Shared Struct and Tuple. In the previous section, we ex-
plored an optimization exclusively on the Shared Struct domain, while in
this section, we focus on both domains. Our objective is to replace multi-
ple get and rev functions with offset-based functions in the Shared Struct
domain, whereas in the Tuple domain, we exclusively replace get functions,
since there aren’t any rev function inside of the Tuple domain. We saw the
current implementation of both of these domains in chapter 3.

17

4. Optimizations

4.2.1 Tuple Domain

For the new encoding we are going to use a slightly changed idea from
Robin Sierra’s master thesis [12]. In listing 14 we can see the final looks of
the new encoding.

1 domain Struct {

3 function struct_loc(s: Struct, m: Int): Int

4 }

6 domain StructOps[T] {

8 function default_tuple(l: Int): Struct

10 function struct_gettup(l: Int): T

12 function struct_lengthtup(x: Struct): Int

14 function struct_settup(s: Struct, m: Int, t: T): Struct

16 axiom axiom3 {

17 (forall m: Int ::

18 { (default_tuple(m): Struct) }

19 m == (struct_lengthtup((default_tuple(m): Struct)): Int))

20 }

22 axiom get_set_0_ax {

23 (forall s: Struct, m: Int, t: T ::

24 { struct_loc((struct_settup(s, m, t): Struct), m) }

25 (struct_gettup(struct_loc((struct_settup(s, m, t): Struct), m)): T)

==

26 t)

27 }

29 axiom get_set_1_ax {

30 (forall s: Struct, m: Int, n: Int, t: T ::

31 { struct_loc((struct_settup(s, n, t): Struct), m) }

32 m != n ==>

33 struct_loc(s, m) == struct_loc((struct_settup(s, n, t): Struct), m))

34 }

35 }

Listing 14: Replacement for the Tuple domain

The given program snippet introduces two new domains, namely Struct and
StructOps[T], which serve as replacements for the original Tuple domain.
This restructuring allows for more organized handling of struct variables.
The Struct domain is responsible for defining the type for all struct variables,
providing an unified approach. On the other hand, the StructOps[T] domain

18

4.2. Replacing Multiple Get and Rev Functions with Offset-Based Functions

contains the necessary operations and functionalities related to structs. This
approach brings about an improvement by consolidating multiple Tuple do-
mains with varying numbers of fields into just two domains.

The program adds a layer of indirection by adding the struct loc function
in the Struct domain, which takes a struct and a field index and maps it
to an location, which is an integer. Instead of passing the field index as an
input of the get function, we pass it this location and return the value that is
stored at that location. When setting a value, the program specifies that the
locations do not change, instead of specifying that the values don’t change,
which ensures that the get function will still return the same value. The
axioms describe the behavior of the StructOps operations: struct gettup

and struct settup.

The get set 0 ax axiom states that if we set the mth field of a struct s using
struct settup(s, m, t) and then retrieve the mth element of that struct
using struct gettup(struct loc(struct settup(s, m, t), m)), then we
should get back t. This essentially means that setting the mth element of s
to t using struct settup correctly updates the state of s.

The get set 1 ax axiom states that if we set the nth field of a struct s using
struct settup(s, n, t) and then try to access the mth element of that
new struct using struct loc(s, m), we should get the same result as if we
had first created a struct s’ without setting the nth element of s to t using
struct settup(s, n, t), and then accessed the mth element of s’ using
struct loc(s’, m). However, this only holds if m is different from n. This
means that updating one element of the Struct using struct settup should
not affect the location of other elements in the Struct.

Two additional functions have been introduced to enhance the original Struc-
tOps[T] domain developed by Robin Sierra. These functions provide ex-
tended functionality and augment the capabilities of struct handling. The
first function, default tuple, serves as a partial replacement for the original
tuple function of the Tuple domain. It accepts the length of the struct as in-
put and generates a struct accordingly. The second function, struct lengthtup,
enables retrieval of the length of a struct. To establish the behavior and
functionality of these functions, the axiom3 axiom has been introduced.
This axiom precisely defines the underlying principles and operations of
default tuple and struct lengthtup.

Let’s illustrate the process of struct creation under the new encoding using
an example, since it is slightly different than the using the original encoding,
in contrast to other applications of functions which are similar. Previously,
if we wished to create a struct with two integer fields, such as 0 and 42, we
could simply use the tuple2(0, 42) syntax. However, with the updated en-
coding, this method is no longer applicable. Instead, we now employ a more
general approach to accommodate structs of varying lengths. For instance,

19

4. Optimizations

to create a struct of length 2 with fields 0 and 42, we would utilize the fol-
lowing syntax: struct settup(struct settup(default tuple(2), 0, 0),

1, 42) In this new encoding, we first initialize a struct of length 2 using
default tuple, which sets the initial values of the struct’s fields. Then, we
utilize the struct settup setter function to modify specific fields within the
struct.

4.2.2 Shared Struct Domain

We have previously observed the original encoding of a Shared Struct do-
main, as shown in listing 11. In order to enhance the Shared Struct domain,
I have decided to re-use the two separate domains idea for replacing the
Tuple domain as can be seen in listing 15. I retained the existing Struct
domain from this concept and refer to it as ShStruct to overcome overlap-
ping issues. As for the other domain, which will contain the necessary
operations for ShStruct, I called it ShStructOps[T]. In contrast to the previ-
ous approach where we had individual rev and get functions for each field
of a struct, I have now consolidated them into two functions: struct rev

and struct get. The struct get function operates based on an offset value,
which is passed indirectly using the shstruct loc function.

To assist in defining the axioms, I have introduced the struct length func-
tion. As we are now utilizing an offset for the get function, it is essential
to determine the maximum offset to define the axioms in the most compact
way possible. This approach allowed me to substitute the original Shared
Struct domain, which could have varying numbers of fields and numerous
instances with different field numbers, with just these two new domains.
Furthermore, we can now create a single rev function since the domain defi-
nition only includes one field, T.

We define the axioms in a similar manner to the original domain, but we uti-
lize the new functions. This provides the advantage of summarizing the po-
tentially numerous injectivity axioms, particularly when dealing with large
structs. I achieved this by employing a forall statement on the offset and es-
tablishing boundaries for that offset. The equality axiom also becomes more
concise, especially when working with large structs, thanks to the same tech-
nique I used for the injectivity axioms.

Evaluation

During the testing phase of this optimization, my focus was primarily di-
rected towards examining the performance on large structs, as they are ex-
pected to benefit the most from this new encoding technique. The test cases
conducted were the same as those employed for the first optimization dis-
cussed in this bachelor thesis, with the exception of excluding the router and

20

4.2. Replacing Multiple Get and Rev Functions with Offset-Based Functions

1 domain ShStruct {

3 function shstruct_loc(s: ShStruct, m: Int): Int

4 }

6 domain ShStructOps[T] {

8 function struct_get(l: Int): T

10 function struct_length(x: ShStruct): Int

12 function struct_rev(v: T): ShStruct

14 axiom {

15 (forall x: ShStruct, l: Int ::

16 { (struct_get(shstruct_loc(x, l)): T) }

17 l >= 0 &&

18 (l < (struct_length(x): Int) &&

19 (struct_rev((struct_get(shstruct_loc(x, l)): T)): ShStruct) == x))

20 }

22 axiom {

23 (forall x: ShStruct, y: ShStruct ::

24 { (eq(x, y): Bool) }

25 (eq(x, y): Bool) ==

26 ((struct_length(x): Int) == (struct_length(y): Int) &&

27 (forall l: Int ::l < (struct_length(x): Int) &&

28 (l >= 0 &&

29 (struct_get(shstruct_loc(x, l)): T) ==

30 (struct_get(shstruct_loc(y, l)): T)))))

31 }

32 }

Listing 15: Replacement for the Shared Struct domain

slayers module from the tests. It is worth noting that the results revealed a
noticeable increase in verification time when using the optimized encoding
compared to the original approach.

Original Gobra [s] Optimization [s]
dataplane.go - example function 64.1 66.2

test programs 125.8 138.9
struct with 60 fields 79.5 86.8
struct with 85 fields 186.8 199.9

Conclusion

The evaluation results clearly demonstrate that the optimized encoding per-
forms worse than the original encoding. Surprisingly, despite eliminating
certain domain functions, particularly the get functions replaced by a single

21

4. Optimizations

function with an offset, no significant performance benefits were observed.
This unexpected outcome suggests that the issue may lie in the repeated
access of a single domain when multiple structs are involved.

A closer analysis reveals that when only one struct is present, as observed in
the test programs with large structs, the performance difference between the
optimized and original encodings is smaller. However, even in this scenario,
there remains a performance loss compared to the original encoding.

In light of these findings, it appears that the primary advantage of this en-
coding lies in its ability to produce more compact programs rather than sig-
nificantly improving performance. The optimization may still find relevance
in cases where program readability is prioritized over runtime efficiency.

22

Chapter 5

Supporting Different Encodings for
Some Features Simultaneously in

Gobra

5.1 General Idea

Despite the extensive optimization efforts and the creation of new encod-
ings from Gobra to Viper, it has become evident that the performance bene-
fits of the optimizations presented until now are not significant. Therefore,
the focus of this bachelor thesis now shifts towards addressing another cru-
cial aspect. One of the main challenges lies in the fact that different func-
tions within a codebase may utilize different encodings for the same feature,
based on specific circumstances or requirements to ensure the most optimal
verification. This situation becomes problematic when one function calls an-
other function that employs a different encoding for the same feature. To
illustrate this issue, let’s consider the pseudocode example in listing 16.

2 requires A

3 ensures B

4 func f {

5 some body of the function

6 } //encoding 1

8 requires C

9 ensures D

10 func g {

11 f()

12 } // encoding 2

Listing 16: Pseudocode illustrating the problem of having 2 functions using
2 different encodings

23

5. Supporting Different Encodings for Some Features Simultaneously in

Gobra

Let’s consider a scenario where function f uses Encoding 1 for a certain
feature, while function g uses Encoding 2 for the same feature. The problem
arises when g calls f within its body, but their encodings are not compatible.
This means that the preconditions and postconditions of f are not compatible
with g, assuming the encodings are incompatible.

To address this issue, we can let the function f use Encoding 1 since it would
better suited for its verification, because there would normally be a program
choosing the most suitable encoding for the function f. However, to ensure
compatibility with g, we create a modified version of f, denoted as f , which
is abstract. The new function can be abstract, since the body of the function
f got already verified in the function definition and because of the fact that
Viper only cares about pre- and postconditions when verifying a function
call.[11] That’s why instead of verifying the entire body of f, we focus solely
on the preconditions and postconditions of f, meaning we call the function
f with modified pre- and postconditions of f, called A and B inside of the
body of g instead of calling f. These preconditions and postconditions are
encoded using Encoding 2, aligning them with the encoding used by g.

By separating the verification process for f and g, we can maintain the
desired encodings for each function while ensuring compatibility between
their preconditions and postconditions. This approach allows us to address
the challenge of using different encodings within a codebase, enabling the
verification of functions that rely on different encodings for the same fea-
ture. The pseudocode in Listing 17 illustrates the proposed implementation
described above.

1 requires A

2 ensures B

3 func f {

4 some body of the function

5 } //encoding 1

7 requires A_

8 ensures B_

9 func f_ // abstract function f encoded with encoding 2

11 requires C

12 ensures D

13 func g { f_() } // encoding 2

Listing 17: Pseudocode illustrating the problem

Additionally, the issue of encoding compatibility extends to other function-
alities within Gobra programs, such as methods, pure functions, pure meth-
ods, function predicates, and method predicates. We apply a similar ap-
proach as we described above with functions, with a minor distinction. For

24

5.2. Coding the Concept into Reality

methods, we employ the same methodology as we did for functions. How-
ever, there is a slight variation when it comes to pure methods, pure func-
tions, method-like predicates, and function-like predicates.

One challenge with pure functions and pure methods is that their calls are
considered expressions rather than statements, as in the case of function
calls. This means they can be nested within other expressions, such as ”1
+ return(),” where the pure function return() returns a numerical value. As
Viper requires the return value of these pure functions, when generating
a new version of the function in the program due to encoding mismatches,
we cannot eliminate the function body. The same applies to predicates when
utilizing the unfold statement, as we need to ascertain the contents of the
predicate.

5.2 Coding the Concept into Reality

In order to demonstrate the functionality of the general idea, we will assume
a specific encoding for the slice feature based on Zdenek Snajders’ bachelor
thesis [14]. This approach leads to two possible encodings for the slice fea-
ture in Go. Since these circumstances may require the presence of identical
functions in the program, it becomes necessary to distinguish between them
in the Viper program. To achieve this, we assign them unique names that
clearly indicate the encoding used.

To transform the general concept into a functional implementation, it is nec-
essary to annotate each function, method, and predicate that are nodes in
the abstract syntax tree with the appropriate annotation that describes the
encoding it utilizes. Our goal is to transform the original abstract syntax tree
by restructuring it and generating a new abstract syntax tree as the resulting
output. This process involves two main steps.

Firstly, we utilize Zdenek Snajdr’s syntactic check, which assigns annota-
tions to Nodes based on the encodings they employ. To achieve this, we
create new instances of the nodes that require annotation and then substi-
tute them within the abstract syntax tree.

In the rest of this chapter, we will further refer to functions, methods, pure
functions, pure methods, function predicates, and method predicates as
”members.” In the second pass, we provide the modified abstract syntax
tree to the program transformation. Here, we further modify the member
names by adding encoding annotation, as well as adjust their bodies to en-
sure they call the appropriate members, considering the name changes. If
a member called by another function does not use the same encoding and
has not yet been created with the correct encoding, we create new members
with the appropriate encoding, either abstract or not, depending on the type
of the member, in order to maintain consistency. By following this approach,

25

5. Supporting Different Encodings for Some Features Simultaneously in

Gobra

we effectively process the abstract syntax tree, ensuring that all members
align with the appropriate encodings while preserving the integrity of the
original structure.

The program follows the following process: We traverse each node of the
abstract syntax tree, performing a case distinction. If the node type is the
member we defined above, we first extend the name to indicate the encoding
it uses. Then we call a function that checks if there is a corresponding func-
tion with the correct encoding in the program for every member call within
a member’s body. If no such function exists, we create a new member with
the same preconditions, postconditions and termination measures possibly
with an empty body depending on the type of the member. Subsequently,
we invoke another function to transform statements within the member’s
body, such as function calls, by adding the corresponding encoding annota-
tion. This transformation involves appending an encoding annotation to the
corresponding call.

Additionally, it is necessary to transform and inspect member calls in pre-
conditions, postconditions, and termination measures, if they are part of a
member. This is important because these sections may contain member calls
that need to be accounted for. I also extended the functionalities of domains
in Gobra to make them compatible with the extensions described in this
chapter. The process of translating Gobra domains into Viper involves alter-
ing their names and introducing a default function that outputs the domain
type. In cases where domain function calls appear in the Gobra program,
these calls are expanded by appending an encoding annotation in both the
program and the domain structure. When additional encodings are required
for a specific function, the domain is expanded by incorporating all domain
functions with the new encoding. The axioms are then recreated utilizing
the functions from the new encoding. Importantly, the default function re-
tains its original form, thereby preserving the domain’s name as well.

To conduct thorough testing, I devised a comprehensive Gobra program
that encompasses various scenarios for member call placements. During the
first pass of the abstract syntax tree transformation, I randomly assigned
encoding values to the member annotations as a replacement for Zdenek
Snajdr’s syntactic check. Subsequently, I manually inspected the resulting
Viper program, ensuring that the encoding annotations remained consistent
throughout.

26

Chapter 6

Future Work

The optimization concepts explored in this bachelor thesis proved to be in-
effective, and it appears that further improvements cannot be made. Nev-
ertheless, we successfully extended Gobra to be able to support simultane-
ous handling of different encodings for a certain feature. This extension
holds promise for potential future use and can be readily expanded to ac-
commodate additional encodings per feature or even multiple encodings for
different features.

The primary objective of the extension was centered around creating pre-
cise annotations for different encodings. Nevertheless, a crucial task re-
mains when applying this functionality in practical scenarios. Should a new
method-specific encoding be introduced, my developed program would ex-
clusively annotate the corresponding parts of the Gobra program, enabling
effective differentiation between the encodings. This approach inherently
permits the exploration of new encodings and their combined integration.

27

Bibliography

[1] Carbon. https://github.com/viperproject/carbon/. [Online; ac-
cessed 7-August-2023].

[2] Silicon: A Viper Verifier Based on Symbolic Execution. https:

//github.com/viperproject/silicon. [Online; accessed 7-August-
2023].

[3] The Go Programming Language. https://go.dev. [Online; accessed
9-June-2023].

[4] Tutorial on Gobra. https://github.com/viperproject/gobra/blob/

master/docs/tutorial.md. [Online; accessed 9-June-2023].

[5] VerifiedSCION. https://github.com/viperproject/carbon/. [On-
line; https://www.pm.inf.ethz.ch/research/verifiedscion.html].

[6] Viper Tutorial. https://viper.ethz.ch/tutorial/. [Online; accessed
9-June-2023].

[7] Vytautas Astrauskas, Aurel Bı́lý, Jonás Fiala, Zachary Grannan,
Christoph Matheja, Peter Müller, Federico Poli, and Alexander J. Sum-
mers. The prusti project: Formal verification for rust. In Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal
Methods - 14th International Symposium, NFM 2022, Pasadena, CA, USA,
May 24-27, 2022, Proceedings, volume 13260 of Lecture Notes in Computer
Science, pages 88–108. Springer, 2022.

[8] Marco Eilers and Peter Müller. Nagini: A static verifier for python.
In Hana Chockler and Georg Weissenbacher, editors, Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the

29

https://github.com/viperproject/carbon/
https://github.com/viperproject/silicon
https://github.com/viperproject/silicon
https://go.dev
https://github.com/viperproject/gobra/blob/master/docs/tutorial.md
https://github.com/viperproject/gobra/blob/master/docs/tutorial.md
https://github.com/viperproject/carbon/
https://viper.ethz.ch/tutorial/

Bibliography

Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Pro-
ceedings, Part I, volume 10981 of Lecture Notes in Computer Science, pages
596–603. Springer, 2018.

[9] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Barbara
Jobstmann and K. Rustan M. Leino, editors, Verification, Model Checking,
and Abstract Interpretation - 17th International Conference, VMCAI 2016,
St. Petersburg, FL, USA, January 17-19, 2016. Proceedings, volume 9583 of
Lecture Notes in Computer Science, pages 41–62. Springer, 2016.

[10] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 55–74.
IEEE Computer Society, 2002.

[11] Kenneth H. Rosen. Discrete Mathematics and its Applications. McGraw
Hill, 2011.

[12] Robin Sierra. Verification of Ethereum Smart Contracts Written in
Vyper. https://ethz.ch/content/dam/ethz/special-interest/

infk/chair-program-method/pm/documents/Education/Theses/

Robin_Sierra_MA_Report.pdf, 2019. [Online; accessed 9-June-2023].

[13] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames.
ACM Trans. Program. Lang. Syst., 34(1):2:1–2:58, 2012.

[14] Zdenek Snajdr. Optimization of Slice Encoding in Gobra. [not yet pub-
lished].

[15] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn,
João Carlos Pereira, and Peter Müller. Gobra: Modular specifi-
cation and verification of go programs (extended version). CoRR,
abs/2105.13840, 2021.

30

https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Robin_Sierra_MA_Report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Robin_Sierra_MA_Report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Robin_Sierra_MA_Report.pdf

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Background
	Go
	Structs
	Gobra
	Permissions and Heap-Manipulation
	Predicates in Gobra
	The Difference between Functions and Methods
	The Difference between Function-Like and Method-Like Predicates

	Viper
	Method and Function Calls in Viper
	Domains

	Current Struct Encoding
	Shared Struct domain
	Tuple domain

	Optimizations
	Eliminating Rev Functions and Injectivity Axioms
	Replacing Multiple Get and Rev Functions with Offset-Based Functions
	Tuple Domain
	Shared Struct Domain

	Supporting Different Encodings for Some Features Simultaneously in Gobra
	General Idea
	Coding the Concept into Reality

	Future Work
	Bibliography

