ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Master’s Thesis

Verification of Finite Blocking in
Chalice

Robert Meier

Superuvisor:
Prof. Dr. Peter Miiller

Chair of Programming Methodology
Department of Computer Science
ETH Ziirich

September 2, 2015

Abstract

In this report we describe the implementation of obligations in Chalice. This
verification technique [BM15] is used to prove finite blocking, that is, every
operation that potentially blocks a thread is eventually going to terminate. A
previous project [Klal4] introduced several Silver extensions to enable the en-
coding of obligations in Chalice. In light of recent changes in the theoretical
background of obligations, we adapted this encoding and were able to success-
fully reduce the number of necessary Silver extensions while simultaneously
making the analysis more accurate and user friendly.

Contents

1 Introduction

1.1 Related Work
2 Background
2.1 Viper
2.1.1 Silver
2.1.2 Silicon
2.2 Chalice
2.2.1 Channels
2.2.2 Forking and Joining . .
3 Obligations
3.1 Lifetime
3.2 Types of Obligations
3.3 Leak Checks.
3.3.1 Method Calls
3.32 Loops
3.3.3 Rule of Consequence . .
3.4 Unbounded Obligations
3.5 Creation of Obligations
3.6 Consumption of Obligations . .
4 Silver Extensions
4.1 For All References
4.2 Behaviour of Perm Expression .
4.3 Removed Extensions

5 Encoding of Obligations in Silver

5.1 Encoding Obligations
5.2 Transfer of Obligations
5.2.1 Inhale
522 Exhale.
5.2.3 Termination Obligation
5.3 Leak Check
5.4 Lifetime

5.4.1 Initialising the Lifetime
5.5 Methods

5.6 Method Call
57 Fork
58 Loops
5.9 Send and Receive
5.10 Acquire and Release

6 Evaluation
6.1 Deviation From Original Scheme
6.2 Comparison to Earlier Version
6.3 Error Messages

6.4 Cancellation

6.5 Existing Test Suite

7 Conclusion
7.1 Future Work

1 Introduction

Finite blocking is a property denoting that no thread is ever blocked indefinitely.
To show this in a system with fair scheduling, one has to prove that every
operation that can potentially block a thread is eventually going to terminate.
In this report we present a verification technique [BM15] that uses so-called
obligations to achieve this goal. An obligation forces a thread to perform some
action that will unblock another thread. An intuitive example is an obligation to
release a lock. A thread obtains this obligation as soon as it performs a locking
operation and it can get rid of it by releasing the lock again. If a thread fails to
satisfy an obligation, the verification will fail as there exists the possibility that
some thread might not make progress on account of not being unblocked.

While there exist solutions that are able to prove deadlock freedom for termi-
nating programs ([WTEO5]), these analyses are often not equipped to cope with
real-world applications that contain potentially non-terminating threads. One
can think of a background process that is never shut down and keeps exclusive
access to some resource. If another thread tries to access this shared resource,
it cannot succeed since the resource is never released. This scenario is not com-
prised of a deadlocking situation, which could easily be statically detected by
existing tools, but nevertheless shows a thread that is unable to make progress.
The proposed verification technique provides a way to modularly prove the ab-
sence of such errors.

Relying on modular verification has the advantage that every method can be
analysed in isolation without relying on the implementation of the context it
is used in. On one hand this simplifies the maintenance as there is no need to
re-verify the complete system after some parts have been adapted. On the other
hand, such techniques are especially appealing in systems where the interacting
components are not be known or their implementation is unavailable.

In this report we present an encoding of obligations in the Viper verification
infrastructure [JKM*14]. We will show changes made to the Chalice language
that allow obligations to be incorporated in this front-end language. To fully
support the concept, we introduce extensions to the Silver language and Silicon
verifier. To evaluate our project we will show the verification of larger examples
and compare our encoding to previous work [Klal4] that encoded obligation
under differing theoretical assumptions.

Outline. The remainder of this report is structured as follows. Assuming a min-
imal background in software verification techniques, we will summarise relevant
background information for this project in Section 2 and introduce obligations
in Section 3. To make the implementation of obligations possible, we extended
the Silver language as described in Section4. The final encoding of obligations
is then described in Section 5 and evaluated in Section 6. We summarise our
project in Section 7 and discuss possible next steps.

1.1 Related Work

A previous master’s thesis [Klal4] thesis describes an implementation of obliga-
tions in Chalice. To ultimately encode obligations in Silver, it was necessary to
enhance the language in several ways. It is important to note, that the theory
behind obligations changed substantially over time which made it apparent that
not all extensions were needed any more. This current thesis re-visits the same
topic in light of this new theoretical background.

The Chalice language and verification is described in great detail in [LMS09]
and [LMS10]. An important part is the handling of the so-called waitlevels.
This concept can be used to statically detect deadlocking programs which are
ignored in our current project.

Static deadlock detection is, for example, described in [WTEO05] where the anal-
ysis of Java libraries is presented. Compared to this analysis we do not rely on
terminating threads however.

2 Background

In this section we present relevant background information for this project.
First we will describe the Viper verification infrastructure [JKM™14] where we
will focus mostly on the Silver language. At the end of this section, we will
introduce the Silicon verifier and present Chalice. We will then use this language
throughout this report to express input programs that are translated to Silver
and verified by Silicon.

2.1 Viper

Figure 1 shows an overview of the Viper verification infrastructure [JKM™14].
At the heart lies Silver, an intermediate language designed specifically for pro-
gram verification. In Section 2.1.1 we will introduce Silver and its most impor-
tant concepts to provide a basic understanding of how it can be used to verify
programs.

The two back-ends, Silicon and Carbon, can be used to verify programs written
in Silver. Both of them rely ultimately on the Z3 solver [DMBO08], however
they use different verification techniques: Silicon uses symbolic execution, while
Carbon is based on verification condition generation. In this report we will focus
solely on Silicon and introduce the basic concepts in Section 2.1.2.

Programs can either be written directly in Silver or one can use different front-
ends to translate Java, Scala or Chalice code. In this report we will focus
on the Chalice2Silver tool that compiles Chalice programs to Silver. Relevant
information about Chalice can be found in Section 2.2 and in Section 5 we will
further describe the way we translate Chalice to Silver.

2.1.1 Silver

Silver is a permission based verification language. It is intended as an in-
termediate language and was designed to be as simple as possible while still
providing enough functionality to encode numerous source level programming
constructs.

Throughout this section we will use the term source program to denote a
program that is translated to Silver by a front-end. It is important to keep
in mind that Silver is intended as an intermediate language and we will often
switch our point of view when we describe its basic concepts.

Types. The built-in primitive types are Int, Bool, Perm and Ref. The Perm
type denotes permission amounts and we will describe it in more detail in the
next paragraph. Ref types denote references in general. In particular there is
no information about the type of object the reference points to.

Figure 2 shows the translation of the two classes A and B. Silver has no notion
of class, instead the field identifier denotes a memory location that can be

Chalice2Silver

Silver
Parser

Figure 1: (Simplified) Viper Architecture Overview [JKM™14]

1| class A {
var x : int;
3 var y int;
}
class B {
7 var f : bool;
var g : bool;
ol }

(a) Two Chalice Classes

~

//class A:
field Ax : Int

field Ay : Int

//class B:

field Bf : Bool

field Bg : Bool

(b) Silver Translation

Figure 2: Translation of Chalice Fields

N

field x : Int
field y : Int

method f(r : Ref)

requires r != null && acc(r.x, write) && acc(r.y, write/2)
{
r.x :=r.y
}
method g(r: Ref)
requires r != null && acc(r.x, write) && acc(r.y, write/2)
ensures acc(r.x, write) && acc(r.y, write/2)
{
r.x :=r.y
}
7| method caller(r : Ref)
requires r != null && acc(r.x, write) && acc(r.y, write/2)
{
g(r)
f(r)
//f(xr) ; £(r) //error!
}

Figure 3: Access Permissions

accessed by using a reference. Or in other words, the definition
field Ax : Int

announces that there exists a field Ax of type Int, but there is no knowledge
about the class the field belongs to. In this example, every Silver reference r
could be used, as far as Silver is concerned, to access every field: r.f, r.g,
r.x, r.y. It is up to the front-end to enforce type-safety and correctly encode
different types.

Access Permissions. Every access to a memory location needs a positive
amount of permissions. To be able to write to a location we need full permission
while reading requires only a fraction of the full permission. The creation of
an object provides us with full permission to all fields and whenever we call a
method we may give some of our permission amount away. As mentioned above,
variables of type Perm store permission amounts.

For example, assume we have p permissions to location r.x. If we call a method
that requires ¢ permissions to r.f we are left with p — ¢ permissions, because
we gave g away to the method we called.

We can have at most one full permission to a location and the amount of per-
mission cannot be negative. In turn this means that whenever we hold any
permission to a location, we know that there cannot exist any other thread that
has full permission. This is the central property that enables the reasoning
about values in a concurrent setting because we know that whenever we can
read a location, no other thread can alter the values concurrently.

Consider the example in Figure 3. Line 5 ensures that method f gets full access

to r.x (the keyword write denotes full access) and read access to r.y. This
precondition shows the fractional nature of permissions: to get read access to
r.y we take "half of a full permission”.

Method g is almost the same as h, however there is one key difference: the
postcondition of g makes sure that the caller has access to r.x and r.y, respec-
tively, after the method has terminated. In other words, the method returns
the permission to the caller while £ consumes it.

This means that we can call method £ at most once for any given argument,
since it consumes one full permission to r.x. On the other hand, method g
can be called any number of times because it returns all the permissions it
gets.

Pointers to more detailed descriptions of permission based reasoning can be
found in Section1.1.

Inhale, Exhale. Just as many first-order verification languages make heavy use
of assume and assert statements, Silver provides the permission-aware inhale
and exhale counterparts. The statement

inhale A

behaves like an assume statement if A is pure, i.e. if A does not contain any
accessibility predicates. Similarly, the exhale statement is essentially an assert
statement if its argument is pure.

If the arguments of the statements contain accessibility predicates, i.e. are not
pure, the permission amounts are added or subtracted from the current amount.
For example the statement

inhale acc(r.f,write)

adds a full permission to the location r.f. Therefore, after this statement was
executed, we have permission to access this memory location. Analogously, the
exhale statement checks that we have enough permissions and then removes it
them from our current amount.

Consider again the example in Figure 3. On line 20, we call method g. This call
gets automatically translated to the following two statements:

exhale r | =null && acc(r.x, write) && acc(r.y, write/2)
inhale acc(r.x, write) && acc(r.y, write/2)

This corresponds to the typical translation of a method call: the assertion
(exhale) of the precondition and the assumption (inhale) of the postcondi-
tion.

When we look at line 23 of Figure 3 it becomes clearer why method f can only
be called at most once: the exhale statement of the precondition removes one
full permission for r.x and ”half of a full permission” for r.y. Since the post-
condition does not exits, i.e. is equal to true, we do not get any permission back.
Therefore the second call cannot be verified since the exhale of the precondition
cannot remove enough permissions from the current state.

N

field £ : Int

method headache(r : Ref)

requires r != null

requires (perm(r.f) == none) ==> acc(r.f, write)
{

//have full control over r.f
}

method caller(r : Ref)
requires r != null
requires acc(r.f, write)

fork headache (r)

//have full control over r.f

Figure 4: Unsoundness Due to perm Expression

Current Permission. If we are interested in the current permission amount
for a reference we can use the perm statement:

perm(z.f)

This deceptively simple statement must be used with caution as the example
in Figure4 shows. The precondition of method headache gives the method
full access to the field r.f: in the beginning, the method has no access to r.f
(represented by the keyword none) and thus satisfies the antecedent of the im-
plication which leads to the permissions being inhaled. On the side of the caller
however the situation is completely different as the antecedent will evaluate to
false. Consequently the permission will not be exhaled and the caller keeps full
control over r.f. This behaviour is unsound because we have effectively cre-
ated permission out of thin air and two threads have full access to the same
reference.

To avoid these kinds of problems, perm expressions were originally forbidden
in the specifications of methods. However, in the context of this project we
had to lift this ban and make the front-ends responsible for producing sound
programs.

Predicates. The main purpose of predicates is to provide a way to specify
access permissions to an unbounded number of heap locations. However, in
this report we focus on another property, namely that it is possible to store
more than a full write permission to a predicate. Consider the example shown
in Figure5. When executing the statement on line 11 we use the predicate to
store a total of (5*write) permission amount in it. This means that when we
exhale one full write permission, we still have (4xwrite) permission amount
left.

Since the verifier can keep track of aliasing information, we basically get a way to
perform bookkeeping with references. Say we are interested in an integer value
p that is assigned to every reference. By using multiples of full permissions, we
can use predicates to represent this integer value p. Figure 6 shows an example

10

1| predicate p(x Ref) {
true
s}
5| method f(r Ref, s Ref)
requires s != null
71 {
9 //
11 inhale acc(p(r), 5*write)
13 exhale acc(p(r), write)
//still have 4x*full
15
exhale acc(p(s), 2*xwrite)
17
}

Figure

5: Silver Predicates

predicate p(x Ref) {
2 true
}
1
method f(r Ref, s Ref)
6 requires s != null
{
8 assume r == s
10 inhale acc(p(r), bxwrite)
12 exhale acc(p(s), 2*xwrite)
14 assert perm(p(r))
}

== perm(p(s)) && perm(p(r))

3*xwrite

Figure 6: Silver Predicates to Do Calculations

11

N

function m(a : Int, b : Int): Int {
a>b ? b : a

;| ¥

function p(x : Int) : Bool
requires x >= 0

method f() {

var a : Int := 4

var b : Int := 5

exhale m(a,b) == m(b,a)
inhale p(2) == true
inhale p(3) == true
inhale p(5) == true
inhale p(7) == true
inhale p(9) == false
exhale p(2) == p(1+6)
exhale p(11) //Error!

Figure 7: Silver Functions

of this technique. The statement on line 10 increases the value p of reference r
by 5, while the statement on line 12 decreases it again by 2. Since r and s are
aliases (line 8), the assertion on line 14 can be verified.

Functions. A function definition consists of a name, parameter list, return type
and optional pre- and post-conditions. Figure 7 shows how Silver functions can
be used. The first three lines define the function m that calculates the minimum
of its parameters by using the ternary ?7: operator.

The second function differs from the first one in that it is underspecified: the
precondition requires that the argument is not negative, but the body is not
defined. This allows us to axiomatise the function ourselves throughout the
program, as shown on lines 15-19. Since the function is only partially defined,
the verifier cannot prove the assertion on line 22.

Functions provide a way define recursive specifications, for our purposes how-
ever, we do not need these properties and use them simply as a means to keep
track of values assigned to references. As with predicates, the verifier automat-
ically makes use of aliasing information which greatly facilitates our bookkeep-
ing.

Paired Assertions. If an assertion needs to behave differently depending on
whether it is being inhaled, or exhaled, we can use paired assertions. This
special type of assertions is of the following form

= [a, f]

when ¢ appears in an inhale statement, it is replaced by « and if it is exhaled,
it is replaced by S.

12

A natural example for this is induction:
[Vn>0:P(n),P(0)AVYn>0:P(n) — P(n+1)]

Whenever this assertion is exhaled we need to provide the proof by induction
and when we inhale it we can assume that Vn > 0 : P(n) holds.

2.1.2 Silicon

Silicon is a verifier back-end for Silver that is based on an earlier verifier for
Chalice [Sch11]. Compared to Carbon, the second verifier for the Silver language
that generates a Boogie [BCDT06] encoding to verify Silver programs, this solver
is based on symbolic execution. Silicon itself does not perform any theorem
proving but instead passes all generated queries to the Z3 solver [DMBO0S].

For our project we need not worry about the exact details of the Silicon veri-
fication process. The most important thing is the representation of the heap.
To represent the heap during the verification, the notion of a heap chunk is
introduced. A heap chunk is a mapping from a field reference to a symbolic
value and the amount of permission that is currently held for that field:

r.f — t#p

where

r := object reference (symbolic)
f := filed identifier
t := field value (symbolic)

p := amount of permission (symbolic)

The heap is then essentially a list of these heap chunks. This representation is
important to keep in mind as we present the extensions to the Silver language
in Section 4.

2.2 Chalice

In this section we will briefly describe Chalice [LMS09]. This permission based
language was created to study the verification of concurrent programs. We will
only cover selected features that are directly relevant for our project. This means
we will present concepts that introduce blocking operations to the language.
For example, when waiting for a message on a channel, the thread gets blocked
until another thread unblocks it by performing a send operation. Note that the
examples shown in this section are written in Chalice without any extensions
introduced later in this report.

2.2.1 Channels

Channels offer a way for threads to communicate with each other via message
passing. Each channel defines the kind of message that can be transmitted. For

13

N

channel C(x:int) where x >= 5;

class A {
method f(c : C) returns (res:int)
requires c¢ != null
ensures res >= 4
{
receive res := ¢
}
method g(c : C)
requires c¢ != null
{
var data : int := 2
send c(data) //error: invariant not satisfied
}
}
Figure 8: Chalice: Sending and Receiving Messages
example:

channel C(n:int) where n > 0;
—_—
channel invariant

Defines a channel type that can be used to send positive integers. The channel
invariant makes it possible to reason about the message that is transmitted
over the channel: on the sending side, the invariant has to be verified and on
the receiving end, it can be assumed.

Consider the example shown in Figure8. Method f receives a message over
channel c. Since the channel invariant can be assumed when receiving a message,
the postcondition res >= 4 can be verified. On the sending side, in method g,
the verification will fail since the channel invariant is not satisfied.

2.2.2 Forking and Joining

Unlike Silver, Chalice has a built in notion of executing methods asynchronously.
The fork statement executes a method in another thread and returns a token
that can be used to join the thread later. Consider the example shown in
Figure9. On line 11 we fork method f and join it again on line 14 by using the
token t. As soon as we join, we inhale the postcondition of the method which
allows us to verify the assertion on line 16.

Note that a token can be joined only once. This is critical since the postcondition
is inhaled at the place we join. If it were possible to join a thread multiple times
and the postcondition of that method contained access permissions, we would
have a way of duplicating these permissions, which would be unsound.

14

N

class A {

method f(x : int) returns (n:int)
ensures n == x + 1

{
n = x + 1

}

method main() {

fork t := f(5)
var res : int
join res := t
assert res == 6

Figure 9: Forking and Joining in Chalice

15

=

3 Obligations

In this section we will describe the concept of obligations as introduced by
Bostrém and Miiller [BM15]. This verification technique is used to modularly
prove finite blocking for non-terminating programs. The term ’finite blocking’
refers to all threads being able to make progress: whenever an operation is exe-
cuted that can potentially block the execution of a thread, we have a guarantee
that it is going to terminate, thereby ensuring that the thread is not blocked
indefinitely. Compared to terminating programs, it does not suffice to simply
show the deadlock freedom to prove finite blocking. Imagine a background pro-
cess that continuously updates a log file and in doing so keeps exclusive access
to this resource. A thread that tries to exclusively access this resource may
never succeed as the logging thread will potentially not terminate and hence
never release the resource. This is not a deadlocking situation and therefore not
easily detectable by conventional analyses.

The proposed technique is modular which means that we can verify each method
independently from the implementation of other methods. One key advantage of
modular approaches is that the verification of a particular method does not have
to be repeated if the implementation of other parts of the software is changed.
Additionally the complexity of the analysis is greatly reduced since we never
try to analyse the system as a whole.

The central idea behind obligations is that every operation that blocks a thread
can only be executed if there is a guarantee that it will eventually terminate,
i.e. that the thread is not blocked indefinitely. For example we can only receive
a message over a channel if we know that there exists another thread that is
going to send a message over this channel at some point. In general, every
operation that causes any thread to block, generates a corresponding obligation
to unblock the thread.

Consider the example in Figure 10, that shows a simplified Chalice program.
The locker method first acquires the lock on its argument. Since locking an
object can cause other threads to block, the statement generates a corresponding

class Lock {

method unlock(l : Lock)
requires mustRelease (1)
{

release 1;

}

method locker(l : Lock)

//some preconditions have been omitted
{

acquire 1

call unlock(l)

Figure 10: Basic Release Obligation

16

obligation to ensure that the lock is eventually released. This means that after
we successfully locked the object, we inhale a so-called release obligation.

Let us now take a closer look at the precondition of method unlock. At the call
site we exhale the precondition which causes the caller to give away its release
obligation. In the callee however, we get a release obligation as we inhale the
precondition. We have therefore essentially transferred the obligation from the
caller to the callee. The lock is then finally released on line 6, which satisfies
the obligation.

In summary we see that any thread that is blocked by the locking of the object
on line 12, will eventually be unblocked.

Side note: the acquire operation on line 12 could cause the current thread to
be blocked. However since the locking of an object always generates a corre-
sponding release obligation, we know that the statement will eventually termi-
nate.

3.1 Lifetime

To ensure that obligations are satisfied eventually, we associate a termination
measure with each obligation. This measure is an expression that evaluates to a
value in a well-founded set [BM15]. As soon as an obligation is passed to another
context, say to another method, or between loop iterations, this measure has to
strictly decrease. This rule guarantees that the measure will eventually reach
1, at which point it must be satisfied.

It is important to note however that this lifetime cannot be mapped directly to
a notion of ”real-time”. For example, the obligation:

mustSend(c, 1,5)

denotes an obligation to send one message over channel c with the measure
5. This does, for example, not mean that the message will have been sent after
the next 5 statements have completed. The measure simply ensures that the
obligation gets satisfied eventually since it cannot be postponed indefinitely.
We will cover lifetime expressions and their initialisation in more detail when
we describe the encoding of the different statements in Section 5.4. The creation
of obligations and the situations in which it is necessary to consider the lifetime
expressions will be covered in Section 3.5.

3.2 Types of Obligations

In this subsection we describe the different kinds of obligations we are working
with in the context of this work. One can certainly think of other useful types
of obligations, however the focus of this work is to present techniques to handle
obligations in general, rather than to give a complete set of use cases.

mustRelease(r,t) A release obligation forces a thread to release the lock on r
within time ¢. As we saw in the example shown in Figure 10, this type of obli-
gation is generated by every acquire statement and it is consumed by release
statements.

17

mayReceive(c,n) As the name suggests, this kind of obligation does not enforce
any kind of behaviour. It simply gives a thread permission, or credit to receive n
messages over channel c. The creation and consumption of this kind of obligation
is a bit more involved and will be covered later in Sections 3.5 and 3.6.

mustSend(c,n, t) Send obligations guarantee that (at least) n messages are sent
over channel ¢ within time ¢ and are therefore the counterpart to receive credits.
Since the creation and consumption of these obligations is connected to receive
credits, it will also be covered later in Sections 3.5 and 3.6.

mustTerminate(¢) Termination obligations force methods to terminate within
time t. This means that each loop inside the method must terminate and each
method that gets called must terminate too. Whenever a method gets called
that ”promises” to terminate, i.e. if its precondition takes a termination obliga-
tion, the obligation is copied rather than given away. As a direct consequence,
this kind of obligation cannot be consumed, i.e. a method cannot get rid of it
by passing it to another method. The only way to fulfil this obligation is by
actually terminating.

3.3 Leak Checks

Consider again method locker in Figure 10. Had we not called method unlock,
there would have been one release obligation left at the end of the method. This
behaviour is unsound and has to be prevented because otherwise the complete
concept of obligations is useless, if a method is free to ignore them. To enforce
that all obligations are satisfied, we perform so-called leak checks at the end
of each method to ensure that no more obligations are held. This leak check,
albeit necessary, is not enough however to ensure correctness. There are several
other situations that require a leak check.

3.3.1 Method Calls

If we call a method that promises to terminate by requiring a mustTerminate
obligation, we may keep some obligations in the caller. Since the method is going
to terminate, we know that there will be a possibility for the caller to satisfy
them eventually. On the other hand, if the method cannot give a termination
guarantee, we cannot keep any obligations in the caller as there might not exist
a possibility to satisfy them. Therefore, whenever a non-terminating method is
called, a leak check has to be performed at the call site.

Forking a method is no problem since the method will execute concurrently in
another thread and the caller is not blocked.

3.3.2 Loops

The situation with loops is similar to method calls. If a loop does not promise
to terminate, we have to perform a leak check before we enter it. Additionally
however, we need to perform a leak check at the end of the loop body to ensure
that no obligations are leaked throughout the loop body.

18

channel C(x : int);

;| method normal(c : C)

requires c¢ != null

{
//leak check causes no problems

}
method stronger(c : C)
requires c¢ != null

requires mustSend(c, 1, 1)

//leak check will fail

Figure 11: Violation of the Rule of Consequence

To summarise, we note that we need a leak check before every non-terminating
loop, at the end of each loop body, before every call of a non-terminating method
and at the end of every method.

3.3.3 Rule of Consequence

One central rule in Hoare logic is the Rule of Consequence [Hoa69]:

P— P AP} S {QIAQ —Q
Py 5 {Q}

If the execution of a program S results in a state that satisfies Q' then it is also
admissible to say that the program results in a state satisfying @ if Q' — Q.
Similarly, if P’ is the precondition of S, then if S is executed in a state P, where
P — P/, it will result in a state that satisfies Q’. In other words, it is always
legal to strengthen the precondition and weaken the postcondition.

A fundamental problem of the leak checks is, that it violates the Rule of Con-
sequence. Consider the example shown in Figure11l. Method normal passes
the leak check at the end of its body without problems. The second version of
the method has a stronger precondition that implies the first one. However the
leak check of this method will fail as the obligation is not satisfied. We have
therefore created a situation where it is no longer possible to blindly strengthen
any precondition. Side note: This is an intrinsic property and does not depend
on the specific implementation of the leak check.

The verifiers used in the Viper framework do not make use of this property
and we will therefore not run into problems in the context of our verification.
However it is worth noting that in general, if the concept of obligations is im-
plemented, the verification technique might need to be adapted to account for
this innateness.

19

N

class Data {
var ready : bool
var data : int

}

class Consumer {

method waitUntilReady(d : Data)
requires d != null && mustRelease(d,2)
ensures mustRelease(d,1)

{
var wait : bool := true
while (wait)
invariant mustRelease(d,1)
{
//give another thread the chance to
//write the result
release d
acquire d
//check if data is ready
if (d.ready) {
wait := false;
}
}
}

}

Figure 12: Unbounded Obligations

3.4 Unbounded Obligations

Consider the example in Figure 12 which shows method waitUntilReady that
waits until the data field of its argument is ready for consumption. Note that
neither the loop, nor the method promises to terminate. It is therefore perfectly
acceptable that we wait indefinitely. A comparable situation could for example
arise in a control process that regularly checks a consistency criterion and it is
reasonable that such a process never terminates.

As we defined the lifetime of an obligation so far, this example would not verify:
the lifetime expression of the release obligation does not decrease throughout the
loop. The problem is that the expressions of different obligations are compared.
In the the loop we release the lock and re-acquire it. This means that in the
meantime, other threads are unblocked. As soon as we get hold of the lock
again, we are left with another release obligation. That means that the lifetime
mentioned in the invariant does not apply to this fresh obligation.

To differentiate between these two kinds of obligations, unbounded, or fresh
obligations were introduced. This kind of obligations are not associated with a
lifetime expression and are therefore exempted from lifetime checks.

Throughout this report we will use the terms unbounded and fresh interchange-
ably.

20

N

channel C(x:int)

class A {

method f(c : C)

requires c¢ != null
{
var n : int
receive n := ¢ //wait indefinitely
//satisfy obligation to send
send ¢ (0)
//leak check succeeds
}

Figure 13: Receive Statements Must Not Produce Obligations

3.5 Creation of Obligations

There are essentially three ways to create obligations. The first one is by ex-
ecuting designated statements. We have already encountered this case in the
form of the acquire statement in the example shown in Figure 10: whenever
we lock an object, we get an obligation to unlock it eventually.

Note, that the receive statement, used to get a message over a channel, does
not create an obligation to send a message. If we are in a state where we
hold no mayReceive credit and a receive statement is executed we produce a
verification error. Figure 13 shows an example of why this is necessary. If the
receive statement on line 9 would produce an obligation to send, we could simply
satisfy it later and the leak check would pass. It is obvious however that the
receive statement would not terminate.

The second way of generating obligations is by executing methods, or to be
more specific, by exhaling their precondition. While calling methods might also
consume obligations as described in Section 3.6, there is also a situation that
produces obligations. Consider the example shown in Figure14. By giving
method g credits to receive a message, we generate an unbounded obligation to
send a message.

The most interesting way of generating obligations is by inhaling them. This
can happen in three situations:

Inhaling Preconditions. If the precondition specifies obligations we inhale
them at the beginning of the method body. All obligations that are inhaled in
this way are bounded by a lifetime expression. Originally [BM15], unbounded
obligations could be mentioned in the preconditions and would then get trans-
formed to bounded ones with a lifetime of T. Since the implementation cannot
rely on such a maximum value, we decided to be more restrictive and only allow
bounded obligations. In practice this is not a problem as the expressiveness is
not limited.

If we have more than one obligation for the same object, for example:

21

N

channel C(x:int)
class A {
method g(c:C)

requires c¢ != null
requires mayReceive(c, 1)

{
//
}
method f(c:C)
requires c¢ != null
{
fork g(c)
//satisfy obligation
send c (1)
}

Figure 14: Exhaling Credits

requires mustSend(c, 1, %)

requires mustSend(c, 1, t,)

the lifetime corresponds to the minimum:

tp := min(ty, ..., t,)

Inhaling Loop Invariants. In this case the actions are similar to inhaling
obligations from the method precondition. The lifetime of the bounded obliga-
tions is stored in a separate value that is later needed to check that the lifetime -
expression has decreased at the end of the loop, to prevent the obligations from
being passed from iteration to iteration indefinitely. Similar to preconditions,
we disallow unbounded obligations in invariants.

Inhaling Postconditions of Called Methods. After a method m terminates
we inhale its postcondition p,,. Inhaling obligations mentioned in this way is
straightforward because their lifetime can be ignored as they are inhaled. This
means that the lifetime we stored for our bounded obligations does not change.
To understand why ignoring the lifetime is admissible, consider the following
two cases:

1) The obligation we inhale from p,,, was originally inhaled in the precondition of
m. This means that we originally passed it to m when we called it. In that case
we effectively treat the method call as a ”no-op” that happened instantaneously
and had no effect on the lifetime.

2) The obligation was fresh in m and then converted to a bounded obligation in
the postcondition p,,. By replacing the exact value of the inhaled lifetime [y with

22

the lifetime [y stored for our bounded obligations, we may effectively increase [
if 1 > lyp. However, if we think of m as being inlined at the call site, the fresh
obligation is effectively converted directly to a bounded one with lifetime /;. It
is essential that it gets bounded, but the exact lifetime is secondary.

Both cases highlight the fact mentioned earlier, that the lifetime expression does
not directly correspond to a notion of real-time. The key property of lifetime
expressions is that bounded obligations are never converted to unbounded ones
and that the lifetime always decreases when they are moved to another context,
to avoid that they are passed around indefinitely.

3.6 Consumption of Obligations

There are two ways of getting rid of obligations. The first one is by satisfying
them by executing particular statements. For example the release statement
will satisfy the mustRelease obligation.

Each such statement can satisfy both bounded and unbounded obligations. Say
we are in the following state:

o1 := {mustSend(c, 1, T)}

where we have an unbounded obligation to send one message over channel ¢ and
we execute the following statement:

send c(msg)

This will satisfy the obligation and it does not matter if the obligation is bounded
or not.

If we are in a state where we hold bounded and unbounded obligations at the
same time, it is advantageous to satisfy the bounded obligations first since
they need to be satisfied ’earlier’; i.e. they cannot be passed to any other
context.

Another possibility to decrease the number of obligations is to pass them to
other methods. When exhaling the precondition of the methods it is necessary
to look at bounded and unbounded versions at the same time. Consider the
following state:

o9 := {mustSend(c,2, T), mustSend(c,3,t1)}
where we have three bounded and two unbounded send obligations for channel
c. If we call method £ with the following specification:

method f(c : C)
requires mustSend(c, 4, t3)

we are forced to compare the lifetimes ¢; and t5. There are two cases:
case a if t; > tq

case b if t; < tq

23

In case a, the lifetime check succeeds and we can transfer all our bounded
obligations. In the second case we cannot pass our bounded obligations to this
method, because that would essentially increase their lifetime. In either case we
have not enough obligations to satisfy the precondition of £. The key idea here is
that unbounded obligations are normal bounded obligations with an extremely
high lifetime. That means that every lifetime check will automatically succeed.
We can therefore substitute bounded obligations with unbounded ones if we
need to (it is always acceptable to satisfy an obligation earlier than needed).
Consider again the two cases:

Case a. We have already exhaled three bounded obligations and can substitute
the remaining one with an unbounded obligation. The resulting state is

Oq 1= {mustSend(Q 17 T)}

Case b. Since we have exhaled no bounded obligation we need to substitute
with our two unbounded obligations. However we are still short two obligations.
Since there are no more obligations in our current state, we can generate receive
credits now. The resulting state is

op := {mustSend(c, 3,¢1), mayReceive(c, 2}

In general the approach is always the same: first we try to get exhale all bounded
obligations and if there are not enough, we substitute with unbounded ones. If
there still not enough obligations, we can generate credits. If credits are not
allowed, we generate a verification error. In Section5.2.2 we will describe in
detail how the exhale statements are generated.

24

4 Silver Extensions

In this section we describe the extension to the Silver language that enables the
encoding of obligations. One of the core requirements of this project was to keep
the necessary changes to Silver to a minimum and to remove earlier extensions
that were no longer necessary.

4.1 For All References

The main extension to Silver is the forallrefs expression, originally introduced
by Klauser [Klal4]. The expression

forallrefs|fi, fo,..., fn] 71 €

makes it possible to evaluate e for all objects in the heap that have at least one
of the fields f1, fo,..., fn- The expression is instantiated for every applicable
heap chunk and the place-holder r is then replaced by the reference to that
object.

The main purpose of this expression is to be more efficient than a quantification
over the complete heap, as we only need to consider heap chunks that have
specific fields.

Predicates. For the purpose of this project we enhanced the forallrefs ex-
pression in a way that made it possible to reason about predicates too. Consider
the example shown in Figure 15. Line 13 shows an application to all fields f:
we check that, if we have access to a field r.f, we have full access to it. Note
that since we have no access to y.f, the property is not checked for reference y
and the statement yields true.

On line 14 we see an application of the expression that references the predi-
cate p. Because in general predicates can have multiple parameters of different
types, we restrict the applicable arguments to predicates that take only one
argument of type Ref. In Section 7.1 we will discuss how this restriction could
be lifted.

In-Place Evaluation. Consider the example shown in Figure 16. On line 14 we
first exhale one full permission to the field and then check whether it is smaller
than 10000 or not. To avoid problems with access permissions, the exhaling of
the permission takes effect after all properties have been checked.

Internally we keep a copy of the heap in the pre-state before the exhale and
check all properties on this copy. All statements that modify the heap (i.e. all
acc statements) are executed on the 'real’ heap. After the exhale has completed,
the copy is thrown away and changes to the heap become visible.

In the context of the forallrefs expression we need the expression to be ex-
ecuted on the partially consumed heap instead of the copy. Lines 16-20 show
exactly this behaviour. On line 16 we first exhale one full permission and then
check the property x.f < 100 for all remaining references. Similarly, the prop-
erty on line 19 can still be checked, since it is evaluated on the heap in the

25

predicate p(r : Ref) { true }
field £ : Int
4
method g(x : Ref, y : Ref)
6 requires x != null && acc(x.f)
requires y != null
8
{
10 inhale acc(p(x), 3*write)
inhale acc(p(y), 2*xwrite)
12
assert forallrefs [f] r :: perm(r.f) == write
14 assert forallrefs [p]l r :: perm(p(r)) >= 2xwrite
16 assert forallrefs [p] r :: perm(p(r)) == 2*write //Error!
}

Figure 15: Reasoning About Predicates With forallrefs Expression

field £ : Int
method g(r : Ref, s : Ref, t : Ref, u : Ref)
4 requires r != null && acc(r.f, write)
requires s != null && acc(s.f, write)
6 requires t != null && acc(t.f, write)
requires u != null && acc(u.f, write)
g {
r.f := 9973
10 s.f := 997
t.f := 97
12 u.f :=7
14 exhale acc(r.f, write) && r.f < 10000
16 exhale acc(s.f) && (forallrefs [f] x :: x.f < 100)
exhale (forallrefs [f] x1 :: x1.f < 100) &&
18 acc(t.f) &&
t.f < 100 &&
20 (forallrefs [f] x2 :: x2.f < 10)
}

Figure 16: In-Place Evaluation of forallrefs Expression

26

pre-state and the last forallrefs expression on line 20 also yields true as it is
executed on the partially consumed heap.

Outlook: ~ This new behaviour makes it possible to implement some of our
ideas in the first place. Consider the leak check, for example. To enforce that
no obligation gets leaked at the end of the method, we iterate over all obliga-
tions using the forallrefs expression. This leak check needs to be done after
the postcondition has been exhaled. The only way to achieve this, apart from
manually exhaling the postcondition, is to encode the leak check as part of the
postcondition itself as described in detail in Section5.5. Because the postcon-
dition can transfer some of the obligations back to the caller, the leak check
must not check the pre-state of the exhale, but rather the current state after
the remaining obligations may have been returned.

Implementation. As explained above, to evaluate the expression
forallrefs [F|r e

we need to iterate over all applicable heap chunks in the partially consumed
heap h,. As an optimisation, we only consider chunks that have a field listed in
the parameter list F'. The expression e is then evaluated in every state where
the place-holder r has been replaced by the reference to the heap chunk. The
pseudocode of this algorithm looks like this:

op //state with partially consumed heap
var result : bool := true
Ve € chunks

var temp : bool := cfield € F
oy = op[r + c.reference]
result := temp A [e]o,

4.2 Behaviour of Perm Expression

As mentioned before, we lifted some restrictions with respect to the usage of
the perm expression. In particular, we allow the expression to appear in method
specifications and loop invariants. This is vital for our encoding and enables,
for example, the transfer of obligations between methods via the pre- and post-
condition.

To further facilitate our encoding we changed the behaviour of the perm ex-
pression. Similar to the evaluation of the forallrefs expression, perm is now
executed in-place on the partially consumed heap. This change was necessary
since we must be able to make decisions ’in the middle’ of executing exhale
expressions. For example, this needs to be done when exhaling loop invariants
before the entry of the loop. If a termination obligation has been exhaled, there
is no need for a leak check, but this can only be detected if the perm expression
is evaluated on the partially consumed heap.

27

4.3 Removed Extensions

Compared to an earlier version of the implementation of obligations [Klal4],
we were able to remove all extensions that were related to the so-called ’to-
ken amounts’. Originally, there was a need to keep track of negative obliga-
tion amounts and the ’token fields’ were introduced to handle this requirement.
These were another type of field for which it was possible to hold positive and
negative permission amounts. Along with this new kind of field came two other
extensions, the token predicate’ and the 'token amount term’, which made it
possible to perform efficient calculations with the token fields.

In newer versions of the concept of obligations it was no longer necessary to
work with negative values, which rendered these extensions superfluous.

28

5 Encoding of Obligations in Silver

In this section we will describe how Chalice programs are translated to Silver
and how the concept of obligations is encoded. We will not cover the complete
translation of Chalice programs, but focus on the interesting parts related to
obligations. This means that the aspects that are not mentioned in this report
remain unchanged compared to earlier versions of Chalice2Silver.

5.1 Encoding Obligations

There are two types of obligations we need to encode: ’boolean obligations’
that are either true or false, or 'numeric obligations’ that are associated with an
integer amount. For example, the obligation to send n messages over channel
c in time t, is a numeric obligation because we essentially have n obligations
to send 1 message over c. On the other hand, we cannot release a lock multi-
ple times, which means that release obligations can be represented by boolean
values.

We distinguish these types because depending on the kind of obligation we are
dealing with, we have to use different mechanics to encode them. The underlying
idea is the same in both cases: we use access permissions to represent the
amount of obligations that are held in the current state. Throughout this project
we only use non-negative multiples of full permissions, i.e. neither case makes
use of fractional permissions.

Boolean Obligations. In Silver we can have at most one full access permission
to a field £. Intuitively, our encoding uses the following mapping to represent
boolean values:

(perm(x.f) = none) — false

(perm(x.f) = write) — true

If we have full access to the field, we interpret it as the value true whereas no
permission means false.

Numeric Obligations. To represent numeric values we use Silver predicates
of the following form:

predicate p(r : Ref) {true}

The amount of permission that is stored with a predicate p represents the
amount of obligations we currently hold. For example:

(perm(p(c.f)) = 3 xwrite) — 3 obligations

If we have (i * write) permission, we interpret this as a state in which we hold
i obligations. If we need to add, say two obligations, to our current state, we
can simply execute the following statement

inhale acc(p(x.f), 2*write)

Which increases the current amount of permission by (2 * write).

29

The following table summarises the types of the chalice obligations and are how
they are encoded in Silver:

Chalice Obligation Type Silver
mustSend(c, n, t) mustSendBounded
Messages mustSend(c, n) numeric | mustSendUnbounded
mayReceive(c, n) mayReceive
Locks mustRelease(o, t) boolean mustReleaseBounded
mustRelease (o) mustReleaseUnbounded
Termination | mustTerminate (t) numeric | mustTerminate

Aside from the termination obligation, all types are straightforward and directly
dictated by the usage of the obligation. Although termination is a boolean
property, we often run into situations where a binary value is insufficient to
represent this kind of obligation. In Section 5.5 will describe in detail why the
numeric property is needed.

Consequences. Encoding release obligations using Silver fields has subtle con-
sequences when verifying methods. Consider the following method:

method f(a : A, b : A)
requires a != null && mustRelease(a, 1)
requires b != null && mustRelease(b, 1)

(...}

Because we inhale an obligation for each reference at the beginning of the
method body, which is essentially executing:

inhale acc(a.mustReleaseBounded, write)

inhale acc(b.mustReleaseBounded, write)

we implicitly excluded the possibility of a and b being aliases. Since we sepa-
rately inhaled full access for the field mustReleaseBounded for both references,
the verifier can conclude that the references must be to different objects, because
we can have at most one full access permission to a field.

This simplifies our encoding since there is no need to explicitly check for the
possibility of aliasing because we know that a caller can never satisfy the precon-
dition if the method is called with aliasing parameters. On the other hand, from
the point of view of the method, if we assume that the parameters are aliases,
the precondition is equal to false and the body will verify in any case.

5.2 Transfer of Obligations

Silver provides a wide variety of built-in concepts such as methods with pre- and
postconditions, loop invariants, etc. and it is beneficial to use these mechanisms
as often as possible since verifier back-ends handle them automatically. For
example, a method call is automatically replaced by the exhaling (assertion) of
the precondition and the inhaling (assumption) of the postcondition.

30

Depending on whether we inhale obligations, or exhale them, we need to perform
different actions. To correctly encode this behaviour we make use of two desig-
nated macros that can produce assertions that can be inhaled/exhaled.

This idea of using parametrised macros [BM15] to produce assertions that are
specially tailored for the context they are used in, is useful since it provides a
way of treating all obligations in a uniform way.

We will now describe how these macros work and how they are used to en-
code the transfer of obligations by method specifications and loop invariants.
Throughout this description we will omit small implementation details, like
the encoding of specific obligations, and focus on the general techniques. We
will often refer to the predicates/fields used to represent the obligations as
fields’.

When we present the pseudo code of the macros, we use code written in italics
to denote the parts that are executed by the front-end. The code written in
typewriter-font denotes the Silver code that is generated by the macro.

5.2.1 Inhale

The first macro produces assertions that can be inhaled. This is relatively
straightforward as we essentially just have to increase the amount of the obli-
gation. The complete algorithm can be found in Figure17. Parameter a is a
multiple of a full write permission that represents the amount of obligations
we inhale, r is reference to an object and f denotes the field representing the
obligation that is increased. Since the macro is used by the front-end to gener-
ate these inhalable assertions, the argument types symbolise types of the Silver
AST. Note that we omitted implementation details to distinguish between fields
and predicates. The body of the macro consists of one statement on line 3, which
leads to an access permission being inhaled.

Depending on the kind of obligation we need to inhale, we call the macro with
different arguments. For example, if we need to inhale a bounded release obli-
gation for object r and time ¢:

mustRelease(r, t)

we would use the macro like this:

inhale inhaleMacro(write, r, mustReleaseBounded)
which produces the following statement that inhales one write permission for
the field mustReleaseBounded of reference r:

inhale acc(r.mustReleaseBounded, write)

The termination obligation uses a special argument, this, since it is not tied to
an object, but rather the current thread. In Section 5.2.3, after the description
of the exhale macro, we will shortly explain why this exceptional treatment is
necessary.

Figure 18 summarises all possible calls of the inhale macro. The Identifier "In-
hale’ represents the translation of expressions used in inhale expressions.

31

inhaleMacro(a : PermExp, ™ : Ref, f : Field) =

acc(r.f, a)

Figure 17: Inhale Macro

W = write wM := inhaleMacro
Inhale(mustSend(r, a)) := iM(a, r, mustSendUnbounded)
Inhale(mustSend(r, a, t)) := 4M(a, r, mustSendBounded)
Inhale(mayReceive(r, a)) := iM(a, r, mayReceive)
Inhale(mustRelease(r)) := iM(w, r, mustReleaseUnbounded)
Inhale(mustRelease(r, t)) := iM(w, r, mustReleaseBounded)
Inhale(mustTerminate(t)) := 4M(w, this, mustTerminate)

Figure 18: Usage of the Inhale Macro, Depending on the Obligation

5.2.2 Exhale

Compared to the inhale macro, the macro to produce assertions that can be ex-
haled, is much more complex. Several different tasks may need to be performed,
depending on the kind of obligation we exhale:

e Decrease the amount of obligations
e Perform lifetime checks
e Generate credits

There is an inherent problem with the generation of credits, since the term
‘generation’ implies an operation that increases some value. However, as this
assertion is exhaled, all operations that are performed are negative: we can only
give away permission to fields/predicates. This mismatch leads to implemen-
tation problems and it becomes necessary to split the exhale operation into
multiple statements. We will therefore first describe the theoretical idea of the
exhale macro and then highlight some implementation details.

Theoretical Idea. When exhaling an obligation, it is necessary to look at
the bounded and unbounded versions at the same time. For example, when
exhaling the obligation mustSend(c, 1, 1), we check whether we have such
an obligation or not. If we have no bounded obligation, we can still exhale an
unbounded one, since it is simply an obligation with an arbitrarily high lifetime.
If we are in a state where there is also no unbounded obligation, we generate a
credit.

Similarly, if we exhale a bounded obligation, we may need to perform a lifetime
check. If this check fails, i.e. the exhaled obligation has a higher lifetime than
our bounded one, we can still try to exhale an unbounded obligation, for which
the lifetime check would succeed by definition, before generating a credit.

32

N

ezhaleStageOne(a : PermEzp, t : IntExp, performLTCheck : Boolean
r : Ref, bf : Field, df : Field, cf : Field) =

ezhaleStageTwo (a : PermEzp, r: Ref, df : Field, cf : Field) =

ezhaleStageThree(a : PermExp, r : Ref, cf : Field) =

Figure 19: Interfaces of the Three Exhale Stages

Both cases suggest the same underlying structure: whenever the exhale of a
bounded obligation fails, we may try to substitute it with its unbounded version.
If this second exhale fails too, we can generate a credit (if they are allowed), or
produce a verification error.

It is interesting to note that a similar idea can be applied to the exhaling of
credits. Compared to obligations, there is no unbounded version, which means
that if there are no credits to exhale we directly generate obligations. Aside
from disregarding 'unbounded credits’, the only difference is that this assertion
will never fail when it is exhaled.

The fundamental idea of the exhale macro is to think of it as a combination of
three designated stages where each individual stage performs one task:

e Stage One: perform lifetime checks and exhale bounded obligations
e Stage Two: exhale unbounded obligations
e Stage Three: generate credits

The first stage tries to exhale bounded obligations and if it succeeds we are
done. This stage might fail due to an insufficient number of obligations, or
due to the lifetime check if the exhaled lifetime is bigger than the one of our
bounded obligations. In either case, there are some obligations left that need
to be exhaled and they are passed on to the second stage.

The second stage tries to exhale unbounded obligations. This stage might fail
due to an insufficient number of unbounded obligations. If that is the case,
all remaining obligations that need to be exhaled are passed on to the third
stage.

The third stage is concerned only with the generation of credits. We know at
this point that there are no more obligations left that could be exhaled and
all additional obligations we exhale will generate credits. As mentioned above,
there is a problem with the generation of credits at this point as we are still
in an exhale statement. However, we will ignore this for now and explain the
solution to it below.

Depending on the kind of obligation we exhale, we skip certain stages and
depending on the context, we may omit the lifetime check in stage one.

Figure 19 shows the interfaces of the three stages. Parameter a is straightforward
and denotes the number of obligations that need to be exhaled. Since we may
need to perform a lifetime check in the first stage, the integer expression t
corresponds to the lifetime of the obligation that is exhaled. That means that

33

for the lifetime check to succeed, the exhaled lifetime t must be smaller than
the one of our bounded obligations tb:

thb >t

The lifetime of our bounded obligations tb is stored by using a domain function
that is axiomatised at the beginning of each method. In Section5.4 we will
describe in detail how this lifetime is calculated. For now we can assume that
this value is available and the comparison can be executed.

Depending on the context we may omit the lifetime check altogether which can
be controlled by the flag performLTCheck.

The three parameters bf, df and cf represent the bounded field, dual field
and credit field, respectively. The bounded field is the name of the field that
stores the bounded obligations, while its dual field keeps track of the unbounded
obligations. For example, if we have

bf := mustSendBounded
its dual field would be:
df := mustSendUnbounded

The credit field is straightforward and denotes the field that stores credits.

Depending on the kind of obligation that is exhaled, some fields may not exist.
For example, the credit field has no dual field. This is no problem however
since the macro is never used in a way that would require these non-existing
fields.

To exploit the previously mentioned underlying structure of the exhale state-
ment, we must also be able to express the exhaling of credits in terms of these
fields. The field we need to decrease first is the credits field, that means we
set

df := mayReceive

Because credits are unbounded we can directly start in the second stage with
the dual field and ignore the non-existing ’bounded credits’. If we exhale more
credits than we currently have, we must generate obligations. That means if we
set

cf := mustSendUnounded

we will automatically generate obligations if the amount of credits exhaled is
too high.

Figure 20 summarises how the different obligations are exhaled, i.e. how the
exhale macro is used depending on the obligation. To keep the overview read-
able we introduced abbreviations for the macro- and field/predicate names.
The value null marks non-existing fields, as for example for the termination
obligation, for which neither the dual predicate nor the credit predicate ex-
ist. The identifier ’Exhale’ represents the translation of expressions in exhale
statements.

Similar to the inhale macro, the termination obligation is tied to the this
reference. In Section 5.2.3 we will describe the reasons for this choice.

34

N

IS

10

esl := exhaleStagelUne es2 := exhaleStageTwo

mr := mayReceive mt := mustTerminate

msb := mustSendBounded msu := mustSendUnbounded

mrb := mustReleaseBounded msu := mustReleaseUnbounded

W = write pc := performLifetimeCheck
Exhale(mustSend(r, a), _) := es2(a, r, msu, mr)
Exhale(mustSend(r, a, t), pc) := esi(a, t, pc, r, msb, msu, mr)
Exhale(mayReceive(r, a), _) = es2(a, r, mr, msu)
Exhale(mustRelease(r), _) := es2(w, r, mru, null)
Exhale(mustRelease(r, t), pc) := es!(w, t, pc, r, mrb, mru, null)
Exhale(mustTerminate(t), pc) := es? (w, t, pc, this, mt, null, null)

Figure 20: Usage of the Exhale Macro

echaleStageOne(a : PermEzp, t : IntExp, performLTCheck : Boolean

(performLTCheck ==> tb > t) 7 (

(perm(7.bf)) > a) 7 (

)
) o (

//lifetime check has failed

ezhal

T : Ref, bf : Ftield, df : Field, cf : Field) =

//enough obls. are avatilable to exhale
acc(r.bf, a)

(

//exhale remaining obls. from dual field
ezhaleStageTwo ((a-perm(r.bf)), r, df, cf) &&
//set f to zero

acc(r.bf, perm(r.bf))

eStageTwo (a, v, df, cf)

Figure 21: Stage One of the Exhale Macro

35

N

ezhaleStageTwo (a : PermEzp, r: Ref, df : Field, cf : Field) =

if (df 1= null) {
(perm(r.df) > a) 7 (
//enough obls. are available to ezhale
acc(r.df, a)
)+«
//generate credits with remaining obls.
erhaleStageThree ((a-perm(r.df)), r, cf) &&
//set df to zero
acc(r.df, perm(r.df))
)
} else {
//termination obligation wasn’t exhaled
//not necessarily an error
true

Figure 22: Stage Two of the Exhale Macro

ezhaleStageThree(a : PermErp, v : Ref, cf : Field) =

if (cf != null) {
//generate credits: increase the wvalue of cf
acc(r.cf, -a)

} else {

(a == none)
}

Figure 23: Stage Three of the Exhale Macro

Stage One. Figure 21 shows the first stage of the exhale macro. Note the usage
of the ternary operator 7: that has standard semantics. If the lifetime check
fails we directly continue with the second stage on line 17. If it succeeds, or there
is no need to perform one, we check if there are enough bounded obligations to
exhale (line 6). If there are, we exhale them on line 8 and if not, we compute how
many are still missing (a - perm(bf)) and propagate this amount to the second
stage (line 11). After the second stage has completed we exhale all remaining
bounded obligations on line 13.

Stage Two. The second stage is similar to the first one and it its pseudocode
can be found in Figure 22. The 1 f statement on line 3 is executed by the front-
end and checks if this stage needs to be executed at all. This is the case if a
termination obligation is being exhaled and the lifetime check in the first stage
fails. Please refer to Section 5.2.3 for more details and why we allow this case
at all.

If we have enough unbounded obligations we exhale them on line 6. If there
are not enough obligations we start the third stage to generate an appropriate
amount of credits (line 9). After the third stage has finished we exhale all
unbounded obligations on line 11.

Stage Three. Figure 23 shows the third stage. If there are no credits allowed
for this obligation (c¢f = null) we assert that the amount is zero (line 7). This

36

means that at this point we must have gotten rid of all obligations, otherwise
we have a verification error. If credits are allowed we generate them on line 5.
Note that we hinted at the credit generation by exhaling a negative amount,
thereby increasing the value of cf (this is impossible in Silver however).

Implementation Details. As mentioned several times, the exhale macro can-
not be directly implemented as presented in the previous section. The sole
reason for this is the statement on line 5 in Figure23. Before we sketch the
solution to this problem it is worth noting that, depending on the situation,
we may not even need to deal with this problem. For example, at the end of
a method, when we exhale the postcondition, we know that the generation of
a fresh obligation is forbidden since it would directly lead to a violation of the
leak check. In that case we can simply exhale false in stage three which results
in a verification error. To switch between these two possibilities we introduced
a boolean flag that can disable the third stage by exhaling false, or use the
solution presented next.

Consider the following method:

method f(a : A, b : Bool, i : int)
requires i > 0
requires mustSend(a, 5)
requires b ==> mustSend(a, i)

(..

Statically we can compute ¢, the symbolic sum of all exhaled amounts mentioned
in obligations:
@ = 1i+b

Since all amounts must be positive we know that the overall sum will be positive.
When exhaling the precondition of £, we give away at most ¢ send obligations.
In turn this means that the exhale statement can generate at most ¢ send
credits. This knowledge allows us to temporarily use an ’inverted encoding’.
Instead of directly using the credit field in stage three, we use a ’guard predicate’
that gets decreased. Before the exhale, we initialise this guard such that we have
exactly ¢ full access permissions to it. After the precondition has been exhaled,
we calculate by how much it has been decreased, which equals the number of
obligations that have been generated. For the previous example this would look
like this:

@ = (i + B) * write

inhale acc(guard(a), ¢)

f(a,b,i) //exhales the precondition
n := ¢ - perm(guard(a))

inhale acc(mayReceive(a), n)

Since we might generate credits and obligations in an exhale, we use two separate
guards to calculate the correct results:

predicate creditGenerationGuard(r: Ref) { true }

predicate obligationGenerationGuard(r: Ref) { true }

This approach can suffer when we are dealing with aliasing parameters. If
multiple parameters are aliases, the initialisation before the exhale statement

37

may inhale too much permission because it is executed multiple times for the
same object. Consequently we must adapt the calculation after the exhale to
deal with possible aliasing parameters.

We will present the idea for this adaptation for the case of two aliasing pa-
rameters and later sketch the general case. Assume we are given the following
method:

method f(a : A, b : A, i : int, j : int)
requires i > 0 && j > O
requires mustSend(a, i)
requires mustSend(b, j)

(..

The maximal number of credits that can be generated by this method is
p=1+]

this means that whenever we call this method, we perform the following initial-
isation of the guard predicate:

p = (1 + j) * write

inhale acc(guard(a),)

inhale acc(guard(b),)

f(a,b,i,j) //exhales the precondition

Assume now, that a and b are aliases. In that case we will have initialised the
guard twice, resulting in a state where:

perm(guard(a)) == perm(guard(b)) == 2 * ¢

To account for this and all other cases of aliasing, we execute the calculation of
the credits as follows:

if(a '=b) {
inhale acc(mayReceive(a), ¢ - perm(guard(a))
inhale acc(mayReceive(b), ¢ - perm(guard(b))
}
if(a == b) {
inhale acc(mayReceive(a), 2*p - perm(guard(a))
}

This case distinction ensures that we inhale the correct amount of credits in
every case. As an optimisation we only have to compare parameters of the
same type, since obligations for different kinds of objects are unrelated. The
drawbacks of this computations are obvious however. Since we have to consider
all possible aliasing situations, we effectively have to consider all partitions of
the input parameters which results in an exponential runtime of the algorithm.
The sole consolation is that when we are dealing witch realistic examples, the
number of parameters of the same type will typically be very small.

38

method f(a : bool, b : bool)
requires a ==> mustTerminate (1)
requires b ==> mustTerminate (10)

{1

method g(a : bool, b : bool)
requires mustTerminate (20)
{
call f(a,b)
}

Figure 24: Multiple Termination Obligations

5.2.3 Termination Obligation

Since we use access permissions to encode our obligations we always need an
object to which we can tie the fields/predicates. This is problematic for the
termination obligation since it is a property of a thread, rather than an object.
As indicated earlier, we use the this reference for this property since it exists
for every method and is always non-null. The biggest advantage is related to
its scope. Because it is an argument of the method, both the caller and the
callee have access to it which enables the transfer of the obligation in the first
place.

The drawback is related to methods that are called on other objects. Since the
this reference passed to the method is the object reference, the caller needs to
copy the termination obligation and tie it to that reference.

Implementation Details and Deviation From Original Scheme. Com-
pared to the original scheme we must internally allow states in which we hold
multiple termination obligations. Consider the methods shown in Figure 24.
Method g inhales one termination obligation from its precondition and, de-
pending on the values of a and b, might give away two termination obligations
as it calls £.

Since we cannot hold a negative permission amount to a predicate, we must
make sure that we have enough obligations to give away when we execute the
call statement. To avoid any problems, we simply inhale ’enough’ obligations
before the call statement and then restore the original value afterwards. To
determine how many obligations we need to inhale, we can syntactically check
how many termination obligations could possibly be exhaled and then inhale
this amount.

It might also be possible to encode the precondition in such a way that it only
exhales a termination obligation if there is one available. However, the caller
needs to inhale a termination obligation in some cases anyway. For example, if a
non-terminating method calls a terminating one, it must give away a termination
obligation. To ensure that this works we need to inhale one extra obligation.
Because of this, we decided to keep the encoding of the specifications as simple
as possible and push the complexity to the caller.

As mentioned in Section 5.2.2, we allow the possibility that the lifetime check

39

can fail when we exhale a termination obligation. This is necessary since we
allow the transfer of multiple termination obligations. If the lifetime check fails,
there might still be another termination obligation that gets transferred later
in the exhale and hence we cannot automatically assume an error.

5.3 Leak Check

The task of the leak check is to detect if we are in a state where there are any
obligations left. In the context of our encoding, we have to check if we hold any
permission to a predicate that corresponds to an obligation. To achieve this, we
use the forallrefs extension described earlier in Section4.1.

The complete leak check A would then look like this:

A1 := forallrefs [mustSendBounded] rl1 :: false

Ao := forallrefs [mustSendUnbounded] r2 :: false

A3 := forallrefs [mustReleaseBounded] r3 :: false
Ay := forallrefs [mustReleaseUnbounded] r4 :: false

A=A && Ao && A3 && Ay

Whenever we encounter a reference, for which we would have to evaluate the
expression we know that we will fail (since we cannot assert false). This means
that if there are any permissions left to any fields, or predicates, we will produce
a verification error.

In Section 5.6 we will describe how the leak check is integrated in the encoding
of method calls, in Section 5.5 we will describe how they are incorporated to
ensure that no obligation gets leaked at the end of a method and finally in
Section 5.8 we will discuss their usage in the context of loops.

5.4 Lifetime

As mentioned in Section 3.1, each obligation has an expression associated with
it that ensures that it gets satisfied eventually. Whenever the obligation is
passed to another context, for example to another method, this expression must
strictly decrease. As soon as this expression reaches zero, the obligation must
be satisfied, otherwise we get a verification error.

For our purposes this means that we need to perform lifetime checks whenever
a method is called/forked and at the end of each loop body, when we exhale the
loop invariant.

To store the lifetime, we use special functions for each kind of obligation. In
our case this corresponds to the following three domain functions:

function lifetimeTerminates() : Int
function lifetimeMustSend(r : Ref) : 1Int
function lifetimeMustRelease(r : Ref) : Int

For example, if we have the following method specification

40

method f(c : Channel)
requires mustTerminate(n)
requires mustSend(c, 1, 1)

We would initialise the lifetime functions as follows:

inhale lifetimeTerminates() == n

inhale lifetimeMustSend(c) ==

This lifetime is initialised once at the beginning of the method body and at
the beginning of each loop body, for the obligations mentioned in the loop
invariant.

Whenever we exhale an obligation the lifetime function is available and the
lifetime expression of the exhaled obligation can be compared to it in the first
stage of the macro, as described in Section 5.2.2.

5.4.1 Initialising the Lifetime

There are two main problems when initialising the lifetime functions: alias-
ing parameters and obligations that are guarded by implication. Consider the
following two methods:

method g(a : Channel)
requires mustSend(a, 1, 1)

(..

method f(a : Channel, b : Channel)
requires mustSend(a, 1, 5)
requires mustSend(b, 1, 1)
{call g(a); ...}

Should the call statement in £ be allowed? Or to be more specific, is it safe to
pass the obligation to send a message over a to method g7 The answer is no. If
a and b are aliases for the same object, the lifetime would not decrease as the
obligation is passed to another context. If we take aliasing into account, the
initialisation of the lifetime functions for method f look like this:

inhale (a == b) ==> lifetimeMustSend(a) == min(1, 5)
inhale (a !'= b) ==> lifetimeMustSend(a) 5 &&
lifetimeMustSend (b) 1

No matter what objects the parameters point to, we are always on the safe side
and there is no way of circumventing the lifetime check. To show the problem
with implications, consider the following example:

41

method g(a : Channel)
requires mustSend(a, 1, 1)

(...}

method f(a : Channel, x : bool)
requires mustSend(a, 1, 5)
requires x ==> mustSend(a, 1, 1)
{call g(a); ...}

Again, the call is unsafe since the lifetime functions must be initialised as fol-
lows:

inhale (a && !'x) ==> lifetimeMustSend(a) == 5
inhale (a && x) ==> lifetimeMustSend(a) == min(1, 5)

Next we will describe the algorithm used to create the list of statements that
initialise all lifetime functions.

Algorithm. We explain the idea for the initialisation of the lifetime functions
for a method, but it is essentially the same when we are dealing with loops. To
simplify the explanation we assume that we are given a method of the following
form:

method £(...)
requires by — mustX(cy,...,t1)

requires b, = mustX(c,,...,t,)
Additionally make the following assumptions:

1. All receiver expressions ¢; are of the same type. This simplifies the ex-
planation of the algorithm and in practice, when there are parameters of
multiple types, we have to execute the algorithm for each type of parame-
ter separately. This is an optimisation since it is unnecessary to compare
the lifetimes of obligations for different kinds of objects, since they are
completely independent.

2. All obligations mustX are the same. The reason for this is that the lifetimes
of different obligations are independent and there is no need to compare
them. Again we can easily lift this restriction in practice.

3. All obligations are guarded by implications. This assumption simplifies
the explanation, but is not a requirement in practice. Note that if an
obligation is not guarded by an implication, we simply assume that is the
consequence of an implication where the antecedent equals true.

Before we show the actual initialisation we explain the helper functions shown
in Figure 25. The first three functions are straightforward. The idea of the last
one, function init2, is to compute a ’conditional minimum’ of its arguments
t1,t2, where the value t; only contributes to the minimum if the condition b;
is true. The value that is passed to the function min2 depends on the value
of b;. If this condition is true, we consider the value t; and if it is false, we
pass the maximum of all inputs to the minimum function, thus ignoring ¢;. If

42

// If-Then-Else

function ite(b : Bool, x : Int, y : Int) : Int {
(b ? x : y)

}

// Calculate the minimum of 2 numbers

function min2(a: Int, b: Int): Int {
(a>b ? b : a)

}

// Calculate the maximum of 2 numbers

2| function max2(a: Int, b: Int): Int {

(a >b ? a : b)

}
;| function init2(bl : Bool, t1 : Int, b2 : Bool, t2 : Int) : Int {
min2(ite(bl, t1, max2(t1,t2)), ite(b2, t2, max2(tl,t2)))
}

Figure 25: Helper Functions for Lifetime Axiomatisation

all conditions b; are false, the function will return the maximum of its input
parameters.

In general we use versions of these helper functions with more parameters, but
the idea is exactly the same. We then simply change the suffix to denote the
arity of the function. For example,

initN
would denote the init function that computes the ’conditional minimum’ of n
parameters.

The axiomatisation of the lifetime functions is done at the beginning of the
method body, after the precondition has been inhaled. At this point we have
already inhaled the obligations mentioned in the specification. Since we use
Silver fields and predicates for our bookkeeping, the verifier will have already
taken care of aliasing for us. For example the execution of the following Silver
statements, where mustSendBounded is a predicate:

assume a ==
inhale acc(mustSendBounded(a), write)

inhale acc(mustSendBounded(b), write)
will lead to a state that satisfies
assert perm(mustSendBounded(a)) == 2*write

In our context this means that we can use the forallrefs expression at the
beginning of the method body to iterate over the current heap and check for
which references we have inhaled an obligation:

forallrefs [mustSendBounded] r :: «

43

In combination with the helper functions shown in Figure 25, we can initialise the
lifetime function of obligation mustX by executing the following statement:

inhale (forallrefs [mustSendBounded] r ::
lifetimeX(xr) ==

initN(((r == ¢1) && b;),t1,...,((r == ¢,) && bp),t,))

Using the forallrefs expression we make sure that the function lifetimeX is
initialised for all references for which we hold an obligation. The value is equal
to the ’conditional minimum’ of all lifetimes ¢; mentioned in the precondition.
The heart of this computation is the condition according to which the values
are selected for the minimum. The condition:

((r == ¢;) && b;)

is true if r is an alias for ¢; and the guard b; is true. Consequently we initialise
the lifetime of the obligation to the minimum of all relevant lifetimes.

5.5 Methods

Compared to the original translation of methods without obligations, there are
three additional tasks that need to performed when dealing with obligations.
We need to inhale obligations via the precondition, perform a leak check at the
end of the method and maybe perform a leak check at the call sites.

Inhaling the Precondition. The use of the precondition is twofold. At the
call site we need to exhale it and at the start of the method body we need to
inhale it. To translate this behaviour correctly, we use paired assertions in com-
bination with the macros defined in Section 5.2. To translate the precondition
a, we generate the following expression in Silver:

[Inhale(«), Exhale(«)]

At the start of the method body we inhale the correct amount of obligations and
at the call site we correctly exhale the precondition, which may involve lifetime
checks, etc. At the beginning of the method body we initialise the lifetime
functions as described in Section 5.4.

Since it is allowed for the exhaling of the precondition to produce fresh obliga-
tions in certain situations, we enable the third stage for this exhale. This means
that whenever credits or obligations are generated, they can be inhaled after-
wards. We will describe this in more detail in Section 5.6 and Section 5.7 where
we describe the encoding of the call and fork statements, respectively.

We deviate from the original scheme when dealing with the termination obli-
gation. Because the precondition can contain multiple termination obligations,
we could end up with more than one obligation to terminate. To avoid this
situation inhale a termination obligation only if needed. To determine this, we
use the perm expression and check if we already have an obligation to terminate
or not.

44

Leak Check at the Call Site. At the end of the precondition, after it has
been exhaled, we may need to perform a leak check. If the callee might not
terminate, we must enforce that the caller does not retain any obligations. To
achieve this, we add a leak check at the end of the precondition that checks if
the termination obligation has decreased. If it has, a termination obligation has
been exhaled and there is no need for a leak check. If no termination obligation
has been exhaled, we know that we need to perform a leak check since the
method might not terminate.

This leak check is also encoded using paired assertions to assure that it only
applies to the call site:

[true, (might not terminate) — A]

There is a difference between calls and forks of the method. If the method is
forked there is no need to perform a leak check as the forking method is not
blocked. Since the leak check is encoded in the precondition of the method
there must be a way to distinguish between these two situations. This simple
predicate

predicate callleakCheckGuard() {true}

is used as a flag to indicate if the method is called or forked. If we have access
permission to the predicate, the method is called and if not, the method is
forked. This means that in the caller we must inhale permission before calling
the method and in the forker we can simply ignore this aspect.

There would also be the possibility to let the caller worry about the leak check.
This solution would have several drawbacks since it is not evident how the caller
could readily perform the leak check after the precondition of the called method
has been exhaled.

Regardless of whether the leak check at the call site is encoded in the precon-
dition or performed manually, the caller of the method has to perform some
additional actions besides simply calling the method. Therefore it seems rea-
sonable to keep this auxiliary work confined to the calling method such that the
fork statement is not affected.

Leak Check at the End of the Method. Because it is possible to transfer
obligations in the postcondition, the leak check has to be performed after the
postcondition has been exhaled at the end of the method body. To achieve this,
we encode the leak check as part of the postcondition of a method.

If we are given a postcondition 3, we enhance the postcondition like this:
B’ = B A [true,)]

Note the use of the paired assertion that ensures that the leak check is only
evaluated when the postcondition is being exhaled. It becomes apparent why
the forallrefs expression needs to be executed on the partially consumed
heap. If this were not the case, the leak check could not be executed like this
because it would always fail.

As mentioned earlier, it is never allowed for the postcondition to produce fresh
obligations. To easily encode this, the third stage is disabled for this exhale as
described in Section 5.2.2.

45

Summary. If we are given a method
method f() requires a ensures S {S}

We enhance it as follows

method f()
requires [Inhale(«), Exhale(«)]
requires [true, lterminates —)|
ensures f A [true,)]

//initialise lifetime functions
//inhale termination obligation if needed

S
¥

and then continue with the normal Chalice2Silver translation.

5.6 Method Call

Since the verification is modular, we do not care how a method is implemented.
The specification is the only relevant information that is needed to translate a
method call. If we are given the call

call £()

the statement will be replaced by the exhaling of the precondition and the
inhaling of the postcondition:

exhale prey

inhale posty

As discussed previously, the exhaled precondition is generated by the exhale
macro. Since this exhale might generate new obligations or credits, for example
when exhaling an obligation in a state where we have no such obligation, we
may need to inhale these afterwards. As described in detail in Section 5.2.2,
we cannot handle the generation exclusively in the exhale macro. In the case
of the method call, we check if credits/obligations should have been generated
and then inhale them after the method call. To make this check possible we
initialise the ’creation guards’ before the method call and afterwards check if
they have decreased. If they did, we know that credits/obligations have been
generated and we can inhale them.

The second problem with exhaling the precondition is that there might be multi-
ple termination obligations transferred. Since the current thread has a maximum
of one termination obligation this might not be possible. To avoid problems in
advance we simply inhale ’enough’ termination obligations so the exhale will
succeed in any case. This is a syntactic check of the precondition that counts
the number of termination obligations that appear in the expression and then
inhales the corresponding number of termination obligations. After the method
call we restore the termination obligation to the original value.

46

If the method does not promise to terminate, the caller needs to perform a leak
check at the call site. This leak check has to happen after the precondition of the
called method has been exhaled. To achieve this we encode this check as part of
the precondition of the method. This is described in more detail in Section 5.5.
For the caller, this means that we have to initialise the callLeackCheckGuard,
which is a simple inhale of one full access permission.

Summary. If we have the following call statement
call £Q)
we will enhance it as follows and then continue with the normal translation:

//inhale enough termination obligations
//inhale generation guards

//inhale callLeackCheckGuard

call £()

//inhale pending credits/obligations
//exhale callLeackCheckGuard

//restore termination obligation to original

5.7 Fork

The Silver language has no direct concept of executing a method asynchronously
and it is up to the front-end to correctly simulate the behaviour of forked meth-
ods. Similar to a normal method call, the precondition needs to be checked at
the fork site. This exhale operation might generate obligations/credits which
means that after the fork has happened, they must be inhaled.

Since the method is executed in another thread, we cannot simply inhale the
postcondition when the method is forked. This can be done only after we have
joined the method at a later point. To make this possible, the fork statement
returns a token.

Summary. The following statement
fork tok := £()

is replaced by the exhaling of the precondition and initialisation of a token.

exhale prey
//initialise the token tok

5.8 Loops

When translating loops we try to use as much of the existing Silver machinery
as possible. For loops, this specifically includes the handling of loop-invariants.
The following general loop statement

while (A)
invariant 7

{s}

47

will internally be translated to the following statements:

exhale 7
while (A)
{

inhale 7

S

exhale 7

}

inhale 7

The encoding of a loop combines several aspects of method calls and the trans-
lation of method bodies: before we enter the loop, we check if it terminates.
If it does, we are allowed to retain some obligations as there is a chance to
satisfy them after the loop. On the other hand, if the loop does not promise
to terminate, we must perform a leak check before entering. Inside the loop we
first inhale the invariant which may include obligations. At the end of the loop
body, after we exhaled the invariant, we must perform a leak check to ensure
that no obligations are leaked.

We will now briefly explain how these different tasks are encoded, but we omit
certain details as the techniques are essentially the same as before.

Leak Checks. Similar to the leak check performed when calling a method
(Section 5.5), we need to assert that there are no obligations leaked before a
loop is entered that does not promise to terminate. That means that, after
the invariant has been exhaled before the loop, we may need to perform a leak
check.

The second leak check needs to be performed after the loop invariant has been
exhaled at the end of every loop iteration. This ensures that no obligation gets
leaked throughout the loop body.

As with earlier leak checks, we encode them as part of the loop invariant. There
is a problem however: the first one is optional and the second one has to be
executed after every loop iteration. To distinguish between these situations we
introduce a local variable that signals if we are inside the loop or outside:

var check : Bool := false
while (A)

invariant 7
{

check := true

S
}

If the check variable is set, we execute the leak check and if it is not set, we
execute the leak check only if no termination obligation has been exhaled. The
following additions to the loop invariant will achieve exactly this:

[true, (!check && !'terminates) — Al
[true, check — Al

48

Lifetime Functions. To ensure that the obligations mentioned in the invari-
ant are not passed from iteration to iteration indefinitely, their lifetimes must
decrease. To achieve this, we initialise the lifetime of each obligation in the loop.
At the end of the loop body we perform the exhale operation with a lifetime
check that compares to these lifetimes. This means that if a lifetime will not
have decreased throughout the loop body, it cannot be exhaled and the leak
check will fail.

Because we use functions to encode the lifetime, we need to use separate func-
tions for each loop/method body. This is simply because we cannot assume
different initialisations for a function. For example, if we were to use the same
function to store the lifetime of bounded obligations for method bodies and loop
bodies, we would execute both of these statements at some point:

inhale lifetimeMustSend(x) == t; //start of the method
inhale lifetimeMustSend(x) == i, //start of the loop

This means that we have lifetimeMustSend that maps one argument to two
values. In particular, this is no longer a function which means the verifier is
essentially inhaling false.

5.9 Send and Receive

Send. The encoding of the send operation is straightforward. There are three
steps that need to be taken:

e Assert that the channel object is not null
e Exhale the channel invariant
e Exhale one bounded send obligation

Internally we use a lifetime of 0 for the exhaled obligation to make sure that
the exhale operation will always succeed. Otherwise, if we hold obligations with
a bounded lifetime of 1, the exhale would try to substitute with unbounded
ones.

Summary Send. The following send statement
send c(x)

will be translated as follows:

assert c¢ != null
exhale Exhale(I.) //exhale channel invariant
exhale Exhale(mustSend(c, 1, 0))

Receive. To receive a message we need to perform the following steps:
e Assert that the channel object is not null
e Assert that we have at least one receive credit
e Exhale one receive credit

e Inhale the channel invariant

49

Note that we first assert that we have at least one receive credit before exhaling
it. This is indispensable since it must not happen that the exhale statement
produces an obligation afterwards (which would be unsound). Since we know
that there is at least one credit, we can directly exhale it and there is no need
to use the exhale macro described earlier.

Summary Receive. The following receive statement
X := receive c

will be translated as follows:

assert c¢ != null

assert perm(mayReceive(c)) > none

exhale acc(mayReceive(c), write)

inhale Inhale(I.) //inhale channel invariant

5.10 Acquire and Release

Compared to the original translation of the release and acquire statements we
simply need to inhale or exhale an obligation, respectively. To summarise, the
statement

acquire a

will be enhanced with the addition inhale statement
inhale acc(mustReleaseUnbounded(a), write)
that makes sure that the lock is released eventually. To handle the release
release a

we add the following exhale that makes sure that we get rid of the release
obligation
exhale Exhale(mustRelease(a, 0)

Again we use a lifetime of 0 to ensure that the exhale will also consider bounded
obligations.

50

6 Evaluation

In this section we will show larger examples and discuss how our solution can
handle them. We will compare our solution to the existing one and discuss
strengths and weaknesses of our design decisions.

6.1 Deviation From Original Scheme

In the original scheme, method preconditions and loop invariants could contain
unbounded obligations. The lifetime of these obligations is assumed to be T.
Since our encoding uses integer measures, there is a problem with implementing
this maximal value. The advantage of using the mathematical value T is that
all lifetime checks automatically succeed since every other element in the lattice
is, by definition, smaller.

One possibility would be to use a special value, say —1, to simulate this top
value. This would be possible since the integer measures are always positive
and hence there would be no conflicts. However, it seems a bit cumbersome
since we would then have to explicitly cover this possibility in every lifetime
check. In practice, this restriction does not pose any problems when expressing
programs.

6.2 Comparison to Earlier Version

In this paragraph we will compare our encoding to an earlier project ([Klal4])
that implemented obligations, but originally relied on different theoretical as-
sumptions.

Producer-Consumer. Consider the example shown in Figure 26 that shows
a classical producer-consumer scenario. The channel C is used to send the data
and the necessary credits to receive further messages. If the producer decides
to terminate, it can simply send next = false over the channel which signals
the consumer that no more data will be available and simultaneously prevents
it from trying to receive messages.

In previous versions it was not possible to verify this example because of the
loop invariant in the producer method. In our encoding this is no longer a prob-
lem since we have completely decoupled the encoding of credits and bounded
obligations. At the end of the loop body we will have one fresh send obligation
that gets converted to a bounded one when the loop invariant is exhaled and
the leak check succeeds.

Well-Formedness Check. Previously it was necessary to explicitly perform
well-formedness checks at the Silver level. The reason for that was that the
method specification was encoded manually, meaning that a Silver method of
the form:

o1

19

19

channel C(x:int, next:bool) where next ==> mayReceive (this,

class A {

method consumer (c:C)
requires c¢ != null
requires mayReceive(c, 1)

var x : int
var running : bool

receive x,running := c

while (running)
invariant running ==> mayReceive(c, 1)
{
receive x,running := ¢
}
}

method getNextNumber (x:int)
returns (y:int)
requires mustTerminate (1)

{
y = x + 2
}
method producer(c:C)
requires c¢ != null
{
var next : int := 0
var running : bool := true
fork consumer (c)
while (running)
invariant running ==> mustSend(c, 1, 1)
{
call next := getNextNumber (next)
if (next % 2 == 1) {
running := false
} else {
running := true
}
send c(next, running)
}
}

1);

Figure 26: Example: Producer Consumer

52

method £ ()
requires «
ensures [

{s}

was transformed to:

method f()
requires true
ensures true

inhale «

S
exhale [

}

If a method was called, the pre- and postconditions were explicitly exhaled or
inhaled, respectively. This made it possible to verify methods of the following
form

method f()
requires acc(x.f) //assuming x.f is an integer field
ensures x.f >= 5

{s}
This is problematic since the postcondition is not ’self-framing’, meaning that a
caller cannot inhale it because it does not contain the necessary access permis-
sion to x.f. To avoid these problems the well-formedness checks were manually
encoded in the Silver program by the front-end.

However, encoding the well-formedness check at the Silver level is difficult and
imposes additional restrictions on the programmer. For example it was neces-
sary to repeat certain properties in the postcondition. Consider the example
shown in Figure27. As a consequence of the implementation of the check, the
knowledge n >= 0 was lost in the postcondition of method fibSeq and needed
to be repeated.

Silicon automatically performs this well-formedness check for pre- and postcon-
ditions. Since our encoding fully uses the method specification to encode the
transfer of obligations, we need not worry about self-framing explicitly. This
makes it possible to handle examples that were previously not verifiable.

Handling Predicates. Similar to the earlier implementation, we suffer from
the same limitation when an obligation is mentioned inside an unfolding expres-
sion. Consider the example in Figure 28. The idea is to perform some work on
a node in a binary tree while two worker threads recursively work on the child
nodes. To enforce termination we use the level of the tree, denoted by height.
We have to use the same trick ([Klal4]) to avoid problems with unfolding pred-
icates by using a separate parameter that is equal to the current height of the
node (line 20). Otherwise the termination obligation on line 21 would have to
be inside an unfolding expression.

Aliasing Release Obligations As described in 5.1, our encoding implicitly
excludes the possibility of aliasing release obligations. Consider the example
shown in Figure 29. If a and b were aliases, the call statement on line 17 would

53

~

N

N}
~

class Test {
var f: int;

function fib(n: int): int

requires n >= 0
{

n <2 ?mn : fib(n - 1) + fib(n - 2)
}

method fibSeq(m: int) returns (r: int)
requires n >= 0
requires acc(this.f)
ensures acc(this.f)

//previous error: n >= 0 had to be repeated

ensures r == fib(n)
{
if (n < 2) {
r :=n
} else {
var f1: int; var f2: int
call f1 := fibSeq(n - 1)
call f2 := fibSeq(n - 2)
r := f1 + f2
}
}

Figure 27: Chalice2Silver Test ’'workitem-10200.chalice’: Well-Formedness
Check Succeeds

54

class Tree {

var left : Tree
var right : Tree
var height : int

predicate valid {
acc(left) && acc(right) && rd(height) && height >= 0 &&

(left != null ==> left.valid &&
rd(left.height) &&
left.height == height -1) &&
(right != null ==> right.valid &&
rd(right.height) &&
right.height == height -1)

}

method work(callHeight : int)
requires valid
requires callHeight >= 0

requires unfolding valid in height == callHeight
requires mustTerminate (callHeight+1)
ensures valid
{
var tl : token<Tree.work>
var t2 : token<Tree.work>
if (callHeight > 0) {
unfold valid
if (left !'= null) {fork t1 := left.work(callHeight-1)}
if (right !'= null) {fork t2 := right.work(callHeight-1)}
//work
if (left != null) { join t1 }
if (right != null) { join t2 }
fold valid
}
}

Figure 28: Parallel Tree Processing [Klal4]

55

N

-

class A {

method rel(a : A)

requires a != null
requires mustRelease(a, 1)
{
release a
}
method f(a: A, b : A)
requires a != null
requires b != null

requires mustRelease(a, 1)
requires mustRelease (b, 2)

release a
call rel(b)

Figure 29: Aliasing Release Obligations

channel C(x:int);

class A {
method f(c:C)
requires ¢ != null && mustSend(c, 1, 1)
{1}
}

Figure 30: Leaking Obligation

not be allowed: the meet of the lifetimes is 1 and hence the measure would not
decrease as the obligation is passed to method rel. However, since we know
that we cannot hold a lock multiple times, we can exclude the possibility of a
and b being aliases.

The original encoding did not automatically exclude this possibility which means
that the verification of this example would lead to an error. It is important to
note however, that this does not make the original analysis unsound, it is simply
imprecise in certain situations.

6.3 Error Messages
In this paragraph we will shortly discuss the error messages that are generated
when using our encoding of obligations.

Consider method £ shown in Figure 30. The method receives a send obligation
from the caller but fails to fulfil it which will be caught by the leak check. If we
try to verify this method we will get the following error message:

56

N

class A {

method g(a : A)

requires a != null && mustRelease(a, 1)
{

release a
}
method f(a : A)

requires a != null && mustRelease(a, 1)
{

call g(a)
}

Figure 31: Fail of Lifetime Check

Postcondition of Af might not hold. Assertion
(forallrefs [mustSendBounded] r :: false)
might not hold.

The error occurs in the verification of the postcondition where the leak is en-
coded (Section5.5). For the careful reader of this report, this message might
be meaningful since this assertion was presented in Section 5.3. However for a
person unfamiliar with the implementation details of our encoding, this error
message provides few pointers as where to begin the debugging process.

Consider the example shown in Figure 31. Method £ tries to pass its release obli-
gation to method g but this is impossible since the lifetime would not decrease
during this transfer. When we try to verify this example we get the following
€rror message:

The precondition of method Ag might not hold. Assertion
1 * write - perm(a.mustReleaseUnbounded) == none
might not hold.

This error message is produced by the third stage of the exhale macro (Figure 23,
page 36, line 7). Since the lifetime check fails in the first stage, the second stage
tries to substitute with the unbounded field (Figure 22, page 36, line 4) and
fails too, since there is no unbounded obligation. From the point of view of the
macro, all remaining obligations produce credits. However, since there are no
'release credits’ (¢f == null), the third stage tries to assert that there are no
remaining obligations and fails.

Compared to the first example, this error message is even worse for the user
since it inadvertently draws attention to unbounded obligations, even though
there appear no such obligations in the example.

Both examples show one major drawback of using Silver mechanisms to simulate
a high-level concept such as obligations. If an error is discovered, it is reported
in terms of the Silver statement that is failing. However, for a user it might be
hard to draw a connection between this 'low level’ error message and the error
in the higher level concept.

57

channel C(x : int)

;| class A {
method g(c : C)
requires c¢ != null && mustSend(c, 1, 5)
requires mustTerminate (1)
{ /%« ... %/}

method f(c : C)
requires c¢ != null
requires mustSend(c, 1, 1)

call g(c)

Figure 32: Unsoundness Due to Cancellation of Obligations and Credits

Of course this design has the big advantage of keeping the intermediate language
as thin as possible. This greatly facilitates the design and maintenance of the
complete verification infrastructure.

6.4 Cancellation

The cancellation of credits and obligations is forbidden because it is unsound
as the example in Figure 32 suggests. The call statement on line 13 produces
a credit since we exhale an obligation with a larger measure (5) than the one
we currently have (1). If cancellation were allowed we could use this credit to
remove the obligation in f that was inhaled with the precondition. This means
we have found a way to replace our old obligation with another one that has
a larger measure. Consequently we can arrange a sequence of method calls in
such a way that an obligation is passed from one method to the next, without
ever getting satisfied.

It is possible to avoid this unsoundness by allowing situations where the obli-
gation that gets cancelled has a strictly larger measure than the measure of the
exhaled obligation that created the credit in the first place [BM15]. Since this
is rather impractical and requires large additional effort, cancellation is simply
forbidden in general.

There are situations where cancellation would be desirable as shown in Figure 33
and Figure 34. The idea is the following: we have two threads, a producer and
a consumer that can communicate with each other by using two channels of dif-
ferent types. The consumer, shown in Figure 33, continuously asks the producer
for new data (line 28) and in doing so, creates a send obligation for itself. When
the data is received the consumer automatically gets a fresh permission for the
next message.

If the consumer decides to quit the execution, modelled with method enough (),
it simply sends the receive credit back over the channel on line 35 and then
stops its execution.

58

channel C(x : int) where mayReceive(this, 1);
channel D(c:C)
where (c == null ? mayReceive(this, 1) : mayReceive(c,

class Consumer {

method enough() returns (b:bool)
requires mustTerminate (1)

{
b := false
}
method consumer (input : C, output : D)
requires input != null && output != null
requires mustSend (output, 1, 1)
requires mayReceive (input, 1)
{
var run : bool := true
while (run)
invariant run ==> mustSend(output, 1, 1)
invariant run ==> mayReceive (input, 1)
{
//continue?
call run := enough()
if (run) A{
//signal producer for more data
send output (null)
//get data
var d : int
receive d := input
} else {
//signal end of run
send output (input)
}
}
}

1));

Figure 33: Producer-Consumer With Cancellation, Part 1

59

30

channel C(x : int) where mayReceive(this, 1);
channel D(c:C)
where (c == null ? mayReceive(this, 1) : mayReceive(c, 1));

class Producer {

method producer (input : D, output : C)
requires input != null && output != null
requires mayReceive (input, 1)
requires mustSend (output, 1, 1)

var run : bool := true
while (run)
invariant run

==> mustSend (output, 1, 1)
invariant run ==> mayReceive (input, 1)

//check if we need to produce
var answer : C
receive answer := input

run := (answer == null)

if (run) {
//produce data
send output (151)
} else {
if (answer == output) {
//the credit cancels our obligation
send output (0) //cancellation would be nice
} else {
//error! cannot cancel obligation
assume false

Figure 34: Producer-Consumer With Cancellation, Part 2

60

Not Related | 304 uzﬁgznfgd 21922
Existing Test Suite | 353 5
. . changed 38
Previous Project | 49
broken 11

Table 1: Overview of Adaptation of Existing Test Suite

The producer, shown in Figure 34, produces more data on line 25 if needed. As
soon as the consumer signals the end of its execution, the producer has received
its own receive credit back over the input channel. In this situation it would be
convenient (and safe) to cancel the credit with the obligation. However, since
cancellation is not allowed, we need to send a dummy message on line 29.

Note that we need the if statement shown on line 27. Since the verifier has no
knowledge about the reference the method receives, we need to insert some form
of error handling. In this example we simply ignore it by inhaling false on line
32.

6.5 Existing Test Suite

To test our implementation we added 181 new methods in 31 files to the test
suite. Some tests of the existing test suite had to be adapted slightly to handle
the new analysis. For example we often encountered release obligations that
were leaked at the end of the method. Most often these tests were added to test
future implementations, for example, in combination with waitlevel violations.
Since this analysis is not yet implemented, the test cases often failed due to
leaks and we could simply add the corresponding annotations. Most of these
unrelated tests could be left unchanged, however. Table 1 shows a summary of
the changes we made.

The existing project already provided many tests that could easily be adapted
for our purposes. These were mostly syntactic changes, since the previous
project used a different notation to express obligations in Chalice. Additionally
we had to swap error messages since the encoding is different. By far the most
common changes we made had to do with the transfer of obligations. Since we
encoded everything in the specification, our error messages were related to the
invariants, pre- and postconditions rather than explicit in- and exhale state-
ments that were previously used to explicitly simulate the specification.

Some tests from the previous project had to be ignored completely and are
marked as "broken” in Tablel. Frequently this was because in our encoding
it is not allowed to transfer release obligations to other threads, a restriction
that was not in place in the original analysis. Some errors were also related to
aliasing release obligations. As mentioned in 5.1, our encoding implicitly forbids
the possibility of aliasing release obligations and hence does not suffer from this
problem.

61

7 Conclusion

We have presented an encoding of obligations for the Viper verification frame-
work. Compared to earlier solutions we were able to make use of more Silver
mechanics and remove several extensions which is important to keep the inter-
mediate language as lean as possible. The removal of extensions results in a
more complex encoding, a cost that is ultimately paid by the user when dealing
with the generated error messages that require a detailed understanding of the
implementation. Overall we were able to make the analysis more accurate (alias-
ing release obligations) and lift restrictions that often forced the programmer to
come up with crafty workarounds (producer-consumer).

7.1 Future Work

Deadlock Detection. The most important next step is to add deadlock
detection to the analysis. Obligations by themselves are not able to completely
proof finite blocking. Consider the two methods shown in Figure35. Since
method f terminates, we can call it inside of g and retain some obligations.
Inside £ we try to acquire a lock on the argument but this will of course fail and
we have a deadlock.

There already exists a solution [BM15] to this problem and in combination
with the so-called ’waitlevels’ of Chalice this would be a viable addition to the
verification infrastructure.

Arrays. Arrays are of course omnipresent in computer programming and so
far we have not addressed them at all. Depending on how obligations for array
elements are ultimately encoded we might run into problems when initialising
the lifetime functions. As the algorithm is presented so far, it cannot handle an
unspecified number of references, as they might appear in arrays, since we are
generating code statically.

Behaviour of Leak Checks. As mentioned in Section 3.3, adding leak checks
to the end of method bodies leads to a direct violation of the Rule of Conse-
quence. Since this rule is of such importance and leak checks are of course an
integral part when dealing with obligations, it seems reasonable to further inves-
tigate the interaction between obligations and Hoare Logic. Precisely because
leak checks are indispensable for obligations it is important to know how this
verification technique can be soundly combined with other techniques, or if this
does not affect other analyses.

Error Handling. The implementation of obligations as presented in this re-
port is an encoding in the truest sense of the word. We take available Silver
concepts and use them differently as they were originally intended to simulate
our desired behaviour. As a consequence, the generated error messages are very
unintuitive and it requires a detailed understanding of the implementation to
fully understand them.

Since one of our goals was to use as few Silver extensions as possible, this is
at first unavoidable. However it would make the verification process more user

62

class A {

method f(a:A)
requires a != null
requires mustTerminate (1)

{
acquire a
release a
}
method g(a:A)
requires a != null
{
acquire a
call f(a)
release a
}

Figure 35: Deadlocking Methods

friendly if there was a way to add some sort of error message to Silver statements.
For example, one could think of a construct similar to a try-catch block:

execute {

S
} alert {

"Error in block S"
}

Where all statements in the execute-block are executed normally and if an error
occurs in S, the error message in the alert-block is printed.

Such a mechanism would be very useful, not just for this work, but also for any
other encoding that uses Silver concepts to simulate some behaviour.

ForallReferences Expression. As mentioned in Section4.1 we enhanced the
forallrefs expression to enable predicates in the parameter list. The restric-
tion we imposed on the predicates was that they had to take one parameter of
type Ref. To make the forallrefs expression more user friendly this restriction
could be lifted in the future. Say we had the following predicate:

predicate p(r : Ref, i : Int, b : Bool) {...}

One possibility to allow the iteration over such predicates could be to use one
bounded variable that is essentially a place holder for a heap chunk. This
bounded variable could then be used to refer to the arguments of the predi-
cate:

forallrefs [p] x :: x.r != null & r.i < 5 && r.b

This possibility only works if we iterate over one argument at a time because
otherwise the argument names and types could lead to conflicts.

63

Another approach might be to restrict the arguments in advance and use some
sort of pattern matching to filter the applicable heap chunks:

forallrefs x [p(x, 7, false)] :: x != null

which would only consider references x that appear in a predicates p where i
== 7 and b == false.

Both possibilities are just sketches and there needs to be more work to discern
which solution would be more useful. Side note: both ideas are appealing for
the Silicon verifier, since they fit quite naturally into its heap representation.
An implementation for Boogie might not be as intuitive.

64

Acknowledgements

First and foremost I would like to thank Prof. Dr. Peter Miiller for supporting
me throughout this project and for many helpful discussions. Additionally I
would like to mention the welcoming atmosphere of the complete Programming
Methodology group which made the work on this project immensely enjoyable.
In particular I would like to thank Malte Schwerhoff for his patience and many
helpful explanations of the internal workings of the Silicon verifier. Special
thanks go to my family and friends for their continued support throughout this
period.

65

References

[BCD*06]

[BM15]

[DMBOS]

[Hoa69]

[TKM*14]

[Klal4]

[LMS09]

[LMS10]

[Sch11]

[WTEO5]

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. Boogie: A modular reusable verifier
for object-oriented programs. In Proceedings of the jth Interna-
tional Conference on Formal Methods for Components and Objects,
FMCO’05, pages 364387, Berlin, Heidelberg, 2006. Springer-Verlag.

P. Bostrom and P. Miiller. Modular verification of finite blocking in
non-terminating programs. In J. Boyland, editor, European Confer-
ence on Object-Oriented Programming (ECOOP), Lecture Notes in
Computer Science. Springer, 2015.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver.
In Proceedings of the Theory and Practice of Software, 14th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin,
Heidelberg, 2008. Springer-Verlag.

C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576-580, October 1969.

U. Juhasz, I. T. Kassios, P. Miiller, M. Novacek, M. Schwerhoff, and
A. J. Summers. Viper: A verification infrastructure for permission-
based reasoning. Technical report, ETH Zurich, 2014.

Christian Klauser. Modular verification of finite blocking. Master’s
thesis, ETH Ziirich, 2014.

K. R. M. Leino, P. Miiller, and J. Smans. Verification of concurrent
programs with Chalice. In A. Aldini, G. Barthe, and R. Gorrieri, edi-
tors, Foundations of Security Analysis and Design V, volume 5705 of
Lecture Notes in Computer Science, pages 195-222. Springer-Verlag,
2009.

K. R. M. Leino, P. Miiller, and J. Smans. Deadlock-free channels and
locks. In A. D. Gordon, editor, Furopean Symposium on Program-
ming (ESOP), volume 6012 of Lecture Notes in Computer Science,
pages 407-426. Springer-Verlag, 2010.

Malte Schwerhoff. Symbolic execution for chalice. Master’s thesis,
ETH Ziirich, 2011.

Amy Williams, William Thies, and Michael D. Ernst. Static deadlock
detection for Java libraries. In ECOOP 2005 — Object-Oriented
Programming, 19th European Conference, pages 602-629, Glasgow,
Scotland, July 27-29, 2005.

66

ETH

Eidgenossische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis,
Master's thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

| hereby confirm that | am the sole author of the written work here enclosed and that | have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

| Verification of Finite Blocking in Chalice

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):
Meier Robert

With my signature | confirm that

- | have committed none of the forms of plagiarism described in the ‘Citation etiguette’ information
sheet.

- | have documented all methods, data and processes truthfully.
- | have not manipulated any data.
- | have mentioned all persons who were significant facilitators of the work.

| am aware that the work may be screened electronically for plagiarism.

Place, date Si;)?ture(s)

Zumikon, 2.9.2015 K_ei'@,?_

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

	Introduction
	Related Work

	Background
	Viper
	Silver
	Silicon

	Chalice
	Channels
	Forking and Joining

	Obligations
	Lifetime
	Types of Obligations
	Leak Checks
	Method Calls
	Loops
	Rule of Consequence

	Unbounded Obligations
	Creation of Obligations
	Consumption of Obligations

	Silver Extensions
	For All References
	Behaviour of Perm Expression
	Removed Extensions

	Encoding of Obligations in Silver
	Encoding Obligations
	Transfer of Obligations
	Inhale
	Exhale
	Termination Obligation

	Leak Check
	Lifetime
	Initialising the Lifetime

	Methods
	Method Call
	Fork
	Loops
	Send and Receive
	Acquire and Release

	Evaluation
	Deviation From Original Scheme
	Comparison to Earlier Version
	Error Messages
	Cancellation
	Existing Test Suite

	Conclusion
	Future Work

