
Towards Customizability of a
Symbolic-Execution-Based Program Verifier

Bachelor Project Description

Robin Sierra
Supervisors: Malte Schwerhoff, Vytautas Astrauskas, Peter Müller

ETH Zürich, Switzerland

24.3.2017

1 Motivation

Viper [1] is a verification infrastructure that is being developed at ETH
Zurich that provides tools for encoding and automatically reasoning about
properties of a wide variety of concurrent and heap-manipulating programs.
A core concept of Viper is the notion of permissions to control access to re-
sources such as fields (e.g. this.val), recursive predicates and magic wands,
all of which can be used to control access to complex data structures and
enforce an orderly modification thereof.

To achieve automated verification of the aforementioned properties, Viper
includes Silicon [2], a verifier that is based on a technique called symbolic
execution. Silicon internally manages the resources as sets of chunks that
contain the permission to read/write the represented resource and a sym-
bolic value, e.g. for the value of a heap location.

For each resource, Silicon defines its own rules for handling chunks. For
example, permissions to fields are represented as values between 0 and 1,
where 0 denotes no permission, 1 denotes full read/write permission and a
value in between is a read permission. Consider two fields x.f and y.f with
respective permission values px and py. If one knows that px + py > 1, one
can conclude that x 6= y. For predicates, however, this is not generally true
since there is no general upper bound for permissions to predicates. There
also exist rules that are the same for both fields and predicates. Consider
the locations denoted by x.f and y.f whose symbolic heap values are v and
w. From learning that x = y it follows that the heap location must be the
same as well, i.e. v = w. The same is true for predicates: if one has predi-
cate instances pred(x) and pred(y) and x = y, the heap values the predicate
instances abstract over must also be equal.

1



Occasionally, one might want to change or adapt the rules for handling
chunks or extend Silicon with new resources. This, however, is currently
difficult to do, since each chunk and its handling is hard-coded into the ver-
ifier. Achieving extensibility and customizability of Silicon with respect to
resources, chunks and their handling therefore is the goal of this bachelor’s
thesis.

2 Core Goals

The overall goal is to extend Silicon with a method to define customized
resources in a more convenient way. This involves the following steps:

• Classify the currently supported kinds of resources by identifying their
similarities, differences and in general customizable properties in both
their representation as chunks and the operations they allow. Exploit
the similarities and design a common way of representing and managing
these resources. We expect that this will lead to a reduction of chunk
types and unify their management rules.

• Develop an approach that provides users with the possibility to easily
add custom resources to Silicon or change the handling of existing ones.
Depending on the complexity and the needs the approach might be in
the form of a config file or a plugin-like interface with a well-defined
API.

• Evaluate the newly developed approach by integrating it into Silicon
and basing Silicon’s currently available resources on it. This involves
refactoring the current chunks and their handling to use the new ap-
proach.

• Illustrate the remaining customization effort by changing the handling
of existing chunks or adding support for new resources (and potentially
chunks).

• Integrate gaining and losing permissions (chunks) into the new ap-
proach.

3 Extension Goals

• Investigate the feasibility for systematically deriving quantified chunks,
i.e. chunks that represent sets of resources, from their respective non-
quantified representation.

• Scan permission-logic-related publications, e.g. [3] or [4], for additional
resources that could be added to Silicon via the newly developed ap-
proach.

2



References

[1] P. Müller and M. Schwerhoff and A. J. Summers: Viper: A Verification
Infrastructure for Permission-Based Reasoning (VMCAI), 2016.

[2] M. Schwerhoff: Advancing Automated, Permission-Based Program Veri-
fication Using Symbolic Execution (PhD Thesis), 2016.

[3] A. J. Summers, P. Müller: Actor Services. In: Thiemann P. (eds) Pro-
gramming Languages and Systems. ESOP 2016. Lecture Notes in Com-
puter Science, vol 9632. Springer, Berlin, Heidelberg, 2016.

[4] M. Doko and V. Vafeiadis, Tackling Real-Life Relaxed Concurrency with
FSL++ (ESOP), 2017.

3


