
Software Engineering modules for Computer
Science Talent Scout

Roman Fuchs

Master Project Report

Chair of Programming Methodology
Department of Computer Science

ETH Zurich

http://pm.inf.ethz.ch/

August 2009

Supervised by:
Hermann Lehner
Prof. Dr. Peter Müller

Chair of Programming Methodology

http://pm.inf.ethz.ch/

2

“To be playful and serious at the same time is possible, in fact, it defines the ideal
mental condition.”

– John Dewey: How we Think[12]

4

Abstract

A majority of high school students has a very limited or wrong perception of a Computer Science
course of study. A good mean to counteract this situation is to provide them with interactive
learning environments that expose them to interesting and fundamental concepts of Computer
Science. We found that, among the topics of existing environments, the field of Software Engi-
neering is covered very briefly. In contrast, Software Engineering plays a key role in the work of
most Computer Science graduates that work in the industry after their studies.

In this thesis we extend the Computer Science Talent Scout with modules about Software
Engineering topics. This learning environment aims to both check key study skills and introduce
relevant and interesting topics in order to attract talented students to the field of Computer
Science. One topic we chose is White-box Testing, where the students learn the concept of code
coverage and apply several testing techniques. The functions to be tested are represented by flow
charts in order to facilitate the understanding of the control structures and to visualize the process
of testing and debugging. Another topic we cover is Tree Recursion, where the students need to
apply algorithmic thinking in the context of a recursive data structure.

We implemented two modules together with a suite of interesting problems. The module Tree
Recursion comes with a graphical editor that allows creating recursive algorithms without typing
code in order to simplify the task and to avoid syntax errors. Both modules provide a step-by-step
animation of the flow chart evaluation and the algorithm execution respectively. We also developed
a flow chart editor to easily create new flow charts using a graphical interface.

5

6

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Talent Scout . 11
1.3 Contributions . 13
1.4 Overview . 13

2 Learning environments in Computer Science Education 15
2.1 Visualization of algorithms . 15
2.2 Playful programming . 16
2.3 Theory of Computation . 18
2.4 Software Engineering . 20

3 Teaching Software Engineering 23
3.1 Computer Science Education . 24

3.1.1 Computer Science Model Curricula . 24
3.1.2 Fundamental Ideas of Computer Science . 26

3.2 Topics of Software Engineering . 27
3.3 Modules for Talent Scout . 28

4 Module White-box Testing 29
4.1 Definition . 29
4.2 Tasks . 30
4.3 Animation . 31
4.4 Flow Chart Editor . 33

5 Module Tree Recursion 35
5.1 Definition . 35
5.2 Tasks . 36
5.3 Language . 37
5.4 Graphical programming editor . 38
5.5 Animation . 39
5.6 Random tree generation . 40

6 Design and Architecture 41
6.1 System Architecture . 41
6.2 Visual Framework . 42
6.3 Implementation issues . 43

6.3.1 Flow chart representation . 43
6.3.2 Flow Chart Editor . 45
6.3.3 Graphical programming editor . 47

7 Conclusion 49

7

8 CONTENTS

A Sample XML file 51

B EBNF of recursive algorithm language 53

List of Figures

1.1 CS Talent Scout : The module Boolean Cube . 12

2.1 j-Algo : Dijkstra’s algorithm . 16
2.2 The Kara environment . 17
2.3 Scratch : Graphical User Interface . 18
2.4 GraphBench : Visualization for Traveling Salesman 19
2.5 Exorciser : Interactive state minimization . 20
2.6 SimSE : Graphical User Interface . 21

3.1 Algorithmization : a fundamental idea of Computer Science 27

4.1 White-box Testing : Bug Hunting . 30
4.2 White-box Testing : Minimize test cases . 31
4.3 White-box Testing : Equivalence classes . 32
4.4 White-box Testing : Step-by-step evaluation . 32
4.5 Flow Chart Editor : Context menu for conditions 33
4.6 Flow Chart Editor : Edit assignments of statement block 34

5.1 Tree Recursion : Find solution . 36
5.2 Tree Recursion : Find algorithm . 37
5.3 Tree Recursion : Variables . 37
5.4 Tree Recursion : Graphical programming editor . 39
5.5 Tree Recursion : Animated algorithm execution . 39

6.1 Model-View-Controller pattern . 42
6.2 The Visual Framework . 43
6.3 The flow chart representation . 44
6.4 The structure of the visual editor . 48

9

10 LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Studies have shown that a majority of high school students is unaware of the intellectual demands
posed by a Computer Science course of study.[44] As a common misconception Computer Science
is understood as the use of application programs, especially in the field of text editing, spreadsheet
processing and image editing. This distorted perception is mainly based on the Computer Science
classes being taught at high school. As a consequence students often don’t know what to expect
when choosing this discipline and high drop-out rates among Computer Science students are to
be expected. There is also a growing concern about the reduction in students choosing to study
Computer Science. Apparently, Computer Science fails to attract students of potentially high
aptitude.[9]

Part of the students’ disinterest in Computer Science is simply due to a lack of familiarity with
the subject. High School students are not provided with the opportunities to find out what the
field of computing encompasses. How are they to choose a study subject they know nothing about?
To influence a student’s choice of whether to pursue a major in the field of Computer Science, we
mainly have to address two factors: interest and self-efficacy, i.e. a student’s judgment of his or her
capability to perform well as a CS major.[2] Therefore, students need to be exposed to intriguing
topics, but also experience success. The tasks should be challenging, yet attainable. A good way to
both check key study skills and to introduce relevant and interesting topics are interactive learning
environments. With the Computer Science Talent Scout an appropriate tool exists, that covers
a few areas of Computer Science. By extending its current scope with interesting and relevant
concepts from Software Engineering we intend to arouse the interest of talented students to the
field of Computer Science.

1.2 Talent Scout

The Computer Science Talent Scout[31] (CS-TS) is a collection of Java Applets (called “modules”)
with interactive tasks, puzzles and games that can serve as a self-assessment aptitude test for
computer science. Mathematical maturity typical of high school will be expected to solve the
problems posed in the modules. However, they do not depend on previous knowledge in Computer
Science. All modules illustrate different concepts of relevance for a Computer Science course of
study. CS-TS should help students to get an understanding of the type of thinking and problem-
solving which is needed as a computer scientist. In this respect it also aims to change the perception
of the computer from a mere tool to an object worthy of profound study and ultimately to attract
bright students to the discipline of Computer Science.

There already exist five different modules for Talent Scout, which will be briefly described in
the following:

11

12 1 Introduction

Boolean Cube

A boolean cube is used as a visual aid to find a minimal formula for a boolean function. Each
face of the cube is denoted by either x, ∼ x, y, ∼ y, z or ∼ z. Each vertex of the cube is therefore
equivalent to an input configuration of a boolean function. For a given selection of cube vertices
the user has to find a minimal boolean formula representing this configuration. He can choose
between functions with three or four variables.

Figure 1.1: CS Talent Scout : The module Boolean Cube

Random Numbers

The goal of this module is to identify the imperfection of random numbers generated with a
deterministic algorithm. The Linear Congruential Method is used to generate a sequence of pseudo-
random numbers. The user can set the parameters of the generator formula

x = (a ∗ x + c) mod m

and observe its effects. The sequence of generated numbers is visualized by a hyperplane.
As one can see there is ultimately a cycle in the sequence of numbers. The distribution of the
generated numbers can be studied with the chi-square test that estimates the probability that a
real random sequence would accidentally have the observed properties.

Recursive Images

With this module the user can define a pattern of lines which will recursively replace all the lines
it contains. Using a set of parameters he can generate and modify the recursive image, e.g. specify
the iteration depth or change the color and opacity of the generated image. The user can also
learn about recursive grammars and the Chomsky hierarchy.

Image Compression

Data compression is an important field of Computer Science. As an application this module
presents two methods to efficiently reproduce the shape of a bitmap image. Using either rectangles
or QuadTrees one has to cover the shape of a two dimensional bit pattern with minimal number
of quadrilaterals. The compressed size and the compression ratio of the new representation will be
shown and the efficiency of the different methods can be compared. A board game called “Land
Grab” derived from the rectangle method lets the user compete against the computer that is using
a greedy strategy. As can be shown with a simple example, always covering the largest possible
rectangle is not optimal.

1.3 Contributions 13

Image Steganography

This module allows the user to encode a secret message or information within an ordinary image
using different steganography encode parameters (e.g. saturation and brightness). These can be
saved for later recovery. Contrary, he can also open a steganography image and try to find the
correct decode parameters to reveal the secret information. The module also contains a generator
where the user can practice with random steganography images.

1.3 Contributions

The goal of this master thesis is to design and implement Software Engineering modules for the
Computer Science Talent Scout in order to extend its current scope. The User Interface needs to
have a simple design, so that users don’t need much time to acquaint themselves. An important
aspect is the combination of interactive entertainment and education to increase the motivation of
the users. We assume that the students have an instructed tutorial about the underlying problem
before using these modules.

The modules have to cover different topics in the broader field of Software Engineering. On
the one hand that can include fundamental programming paradigms such as iteration or recursion,
algorithmic strategies or programming languages. On the other hand this also includes specific
subdisciplines of Software Engineering such as design (e.g. design patterns), testing or project
management. After doing a survey on current educational software and some research on Computer
Science education we eventually chose the topics White-box testing and Tree Recursion. The
concepts of the modules are elaborated in chapter 3.3.

1.4 Overview

Chapter 1 states the problem this work addresses and introduces the Computer Science Talent
Scout as the underlying framework of this project. Chapter 2 gives a survey of learning environ-
ments in Computer Science education. It presents the most popular fields and introduces some
sample applications. Chapter 3 investigates various aspects of Computer Science education and
how to teach Software Engineering. Chapter 4 gives an overview about the first module that is
concerned with White-box testing. The different tasks and the animation are described in some
detail as well as the Flow Chart Editor which we developed as an extension. Accordingly, chap-
ter 5 presents the second module which is about Tree Recursion. The included editor, its language
and the random tree generation are described in more detail. Chapter 6 introduces the basic
system architecture of both modules and describes the visual framework. It further presents some
implementation issues. Chapter 7 contains the conclusion and suggests some future work.

14 1 Introduction

Chapter 2

Learning environments in
Computer Science Education

Nowadays, computer-based learning environments can be found for a wide range of topics. They
are mostly designed to provide an engaging environment where learning involves more than just
receiving information. Interactive components promote student involvement and makes learning
the theory to be more fun.

Especially in Computer Science, educational software can be very beneficial for students that
have a hard time dealing with abstractions. The use of visualizations and multiple representations
helps to get a better understanding of abstract concepts.

There is a broad selection of topics in Computer Science currently addressed by computer-
based learning environments. However, while certain areas are very well covered, such as data
structures, others have almost been neglected. Three very popular classes of educational software
for Computer Science are visualization of algorithms and data structures, playful introduction into
programming, and topics from Theory of Computation. In the following we survey current state of
the art learning environments in these areas and conclude with an application covering a specific
Software Engineering topic.

2.1 Visualization of algorithms

Very popular forms of teaching applications are visualizations of algorithms. Visualization is re-
garded as an effective mean to facilitate the understanding of a workflow. We will briefly introduce
some current systems.

The ANIMAL system[37] is a multi-purpose animation tool which is so far focussing on al-
gorithm animation. It currently offers about 60 animations of algorithms and data structures.
Animations are created using a visual editor, by scripting or via API calls. Also existing anima-
tions can be edited visually on a drawing pane. It also supports embedding source code or pseudo
code that will be highlighted during execution. Individual execution time can be assigned to each
animation step.

JAWAA2 [36] (the acronym stands for Java and Web based Algorithm Animation) was created
at Duke University and uses a scripting language for defining algorithm animations. As a compo-
nent it contains the JAWAA editor that allows users to create animations by arranging graphical
objects, and then modifying them over time. A selection of sample animations for common data
structures such as Queue, Stack, Array and List as well as search and sort algorithms is available
on their website.

15

16 2 Learning environments in Computer Science Education

The animation system j-Algo[6] currently comprehends 7 modules that visualize classic algo-
rithms and data structures such as AVL trees, Heapsort and Dijkstra’s algorithm to solve the
shortest path problem for a graph (Figure 2.1). The execution of an algorithm can be shown as
an animation or step-by-step.

Figure 2.1: j-Algo : Dijkstra’s algorithm

While animated visualization tools are very useful to improve the understanding of dynamic
systems such as algorithms and data structures, a common problem is the passive role of the user.
Besides adjusting animation settings, they often involve very little input from students. We aim
for an application where the user has to actively understand and apply concepts, rather than only
seeing how it works. A type of such learning environments will be presented in the following
section.

2.2 Playful programming

There are a number of programming environments designed for young people or programming
beginners allowing them to get familiar with fundamental concepts of programming in a play-
ful manner. In an effort to reduce the complexity barrier that modern programming languages
represent for many beginners, various mini-languages[8] have been designed especially for an edu-
cational purpose. Following this approach programming can be learned using a small and simple
language to facilitate the first steps. In most cases the student can control an actor such as a
turtle or a robot acting in a microworld. The mini-language includes a small set of commands and
queries of the actor and several control structures. Due to the small syntax and simple semantics
students are able to familiarize themselves very quickly to these languages and can focus on the
logic and correctness of their programs.

A major influence for the development of the mini-language approach was given by turtle
graphics of Logo[25]. However, there were still several limitations when compared with newer sys-
tems such as the turtle of Logo being “blind”, i.e. it can’t check its surroundings in the microworld.
The first real mini-language Karel the Robot [33] was designed by Richard Pattis in 1981. Karel
contains all important control structures and teaches the basic programming concepts such as
sequential and conditional execution, procedural abstraction, and repetition.

2.2 Playful programming 17

To this day, many systems have been created in the tradition of Karel, some of which improved
considerably their visual interface. The aspect of visual illustration is not to be underestimated.
Visual actions help understanding the semantics of introduced language constructs and principles
of program structure and execution. Visualizations also make it easier to develop interesting
problems.

Even a step further goes the approach of visual programming. This approach, also called
drag-n-drop programming, removes the act of typing code and allows creating programs in a visual
editor only using the mouse. The underlying principle is the same: to teach algorithmic thinking
without the students being distracted by syntax.

We describe two representative systems for playful programming, Kara and Scratch, in more
detail.

Kara

Kara[16] is a programming environment based on finite state machines. The students can program
a virtual ladybug called Kara that lives in a simple, grid-like world (Figure 2.2). Kara can execute
a few primitive actions such as advance one square, turn right or pick up a cloverleaf and has
sensors that inform Kara about its immediate surroundings like mushroom in front? or leaf
on the ground?. Using these commands and sensors, finite state machines are specified in the
visual program editor. The use of finite state machines removes the complexity of a programming
language and eliminates syntax errors. Students can choose from a collection of exercises with
different levels of difficulty or they also create their own worlds and problem settings.

Figure 2.2: The Kara environment with the world (right) and the program editor (left)

Apart from the basic environment different ones have been implemented that offer playful
introductions to fundamental concepts of programming at different levels: MultiKara introduces
the basics of concurrent programming. Up to four ladybugs can be programmed and mechanisms
for temporal synchronisation or mutual exclusion solve problems where they interfere with each
other. JavaKara offers the possibility to write the programs in Java instead of finite state machines
in order to decrease the gap between programming in the learning environment and in a real world
environment. Other implementations with programming languages such as JavaScript, Python,
and Ruby have also been published most recently. The TuringKara environment allows students to
design and operate a two-dimensional Turing machine. Although a one-dimensional ”tape” would
be equally powerful, the use of a two-dimensional tape simplifies the solution for many problems.
Finally, LegoKara is an implementation of Kara as a Lego Mindstorm robot[38] and enables users
to test their programs on a physical robot.

18 2 Learning environments in Computer Science Education

Scratch

Scratch[26] is a simple visual programming language developed by the Lifelong Kindergarten[24]
research group at MIT’s Media Lab. It is mainly used as a teaching language for first-time pro-
grammers in introductory courses. The development environment provides code fragments (called
“blocks”) that can be dragged onto the script area and combined to create programs (Figure 2.3).
The method is called building-block programming. Among these blocks are such fundamentals
as statements, boolean expressions, conditions, loops, variables, threads, and events. The blocks
have different shapes and only fit together in syntactically-correct ways. This approach eliminates
syntax errors and type mismatches, allowing the students to focus on the problems they want to
solve, not on the syntax. Using these blocks the students can program one or more “sprites” (i.e.
characters) on a “stage” and therewith create animated stories, games or interactive art.

Figure 2.3: Scratch’s interface consists of a blocks palette (1), a scripts area (2), a selection area
(3), and a stage (4)

In contrast to traditional programming environments, where primary exercises usually involve
manipulation of numbers, strings or simple graphics, Scratch allows manipulation of rich media,
such as images, animations, movies, and sound. Another important aspect of Scratch is reusability.
Programs developed in Scratch can easily be copied in another project and recombined. The only
way to make a program available for use is by releasing the source for it.

In a similar way, also using the building-block approach, the 3D animation software Alice[11]
lets the students animate 3D objects in a virtual world. As it has shown, it made the process of
writing a program much more intriguing, especially for female students.[21]

2.3 Theory of Computation

Despite the combination of abstract topics and formality, Theory of Computation is one of the
best covered areas when it comes to interactive learning tools in the field of Computer Science.
One of the reasons is certainly that especially problems from graph theory and automata theory
are well suited to be visualized. In the following we introduce two popular learning environments
covering the area of Theory of Computation. Both of them have been developed at ETH Zurich
in the course of a doctorate.

2.3 Theory of Computation 19

GraphBench

GraphBench[7] is an learning environment for the theory of NP-completeness. It features eight
different NP-complete problems from graph theory (e.g. Traveling salesman, Graph coloring or
Independent Set) and nine different polynomial time reductions (e.g. reducing Satisfiability to
Clique).

The learning environment allows students to solve arbitrary examples by hand or to use built-
in solution algorithms. All featured NP-complete problems come along with various graphical
representations of the provided solution algorithms (i.e. exhaustive search and heuristics). In order
to support comprehension, the algorithms have a pseudo-code representation and an animated
visualization during execution (Figure 2.4). GraphBench also includes a simple programming
editor that allows students to implement their own graph algorithms in Java.

Figure 2.4: GraphBench : Visualization of the Backtracking algorithm for Traveling Salesman

To create further problem instances, GraphBench is capable to generate random examples
and also allows students to manually create examples of their own or to modify existing ones as
desired. Furthermore, GraphBench uses the concept of“selective level of detail”to hide unnecessary
information and to help students to cope with problem instances of large scale.

Exorciser

Exorciser [43] is a learning environment for an introductory course on the Theory of Computation.
It contains 25 interactive exercises and covers topics such as finite automata (Figure 2.5), context
free grammars and Markov algorithms. The students can generate an unlimited number of distinct
problem instances of various levels of complexity.

On request, an effective automated tutor provides meaningful feedback to every step of the
solution process. The ability to provide individual step-by-step feedback is based on the concept
of a solution space. The solution space for a given class of exercises is a structure that captures
all consistent sequences of operations for solving problems of that type by following appropriate
algorithms. The feedback provided to the student ranges from indicating the incorrectness of the
proposed solution to a full correction of the solution. In case of mistakes the tutor is able to
produce a counter example that proves the incorrectness of the solution.

20 2 Learning environments in Computer Science Education

Figure 2.5: Exorciser : Interactive state minimization

2.4 Software Engineering

While we found a variety of teaching applications for different areas of Computer Science, the
selection of educational software for specific Software Engineering topics was not as broad. How-
ever, there exist some Software Engineering simulation games and as an example we take a look
at SimSE.

SimSE

SimSE [28] is a simulation game for the software engineering process. The player takes on the role
of project manager of a team of developers that work on a software project. Management activities
include, amongst other things, hiring and firing of employees, assigning them tasks, purchasing
development tools, and monitoring the progress of the project. SimSE has a completely graphical
user interface that displays the virtual office where the software engineering process takes place
(Figure 2.6). It also shows relevant information about the employees (e.g. productivity, current
task, and energy level), the customers (e.g. satisfaction level), the projects (e.g. time and budget)
and tools (e.g. productivity increase factor). Using this information the player makes decisions
and takes actions that effect project attributes, such as cycle time, cost, and quality and drive
the simulation accordingly. While following good software engineering practices will lead to a
successful completion of the project, ignoring them will lead to failure. At the end of the game the
performance of the project is measured and the player receives a corresponding score. Furthermore,
an explanatory tool is accessible both during and after the game that provides the player with
further information about his game, including a trace of events and the state of various project
attributes over time. This should help the player to draw his conclusions about the cause-and-
effect relationships in the process (e.g. more employees leads to more parallel work, which leads to
more integration problems). Currently, there are six different models of the software development
process supported by SimSE: the waterfall model, an incremental model, a code inspection model,
a rapid prototyping model, a Rational Unified Process model, and an Extreme Programming (XP)
model.

2.4 Software Engineering 21

Figure 2.6: SimSE : Graphical User Interface

By providing a realistic high-level experience of the software engineering process, SimSE aims
to address the lack of process education in the regular software engineering course. While this
allows students to develop a better understanding of software process issues, it covers very broad
topics and the approach doesn’t seem suitable for high-school students. We also didn’t want
to cover the process activities of software engineering, but rather the underlying principles and
concepts. In order to enable high-school students to learn concepts from software engineering, we
therefore had to choose a specific subdiscipline. The didactic concept will be elaborated in the
following chapter.

22 2 Learning environments in Computer Science Education

Chapter 3

Teaching Software Engineering

The classical educational paradigm stated that the primary means to gain knowledge are listening
to lectures and reading books. This passive way of learning has been criticized since and the
dominant theory of learning today is called constructivism. This theory claims that learning
is more effective when students actively construct knowledge from their experience rather than
simply receive and store knowledge communicated by the teacher. According to the constructivist
paradigm, instructors have to take on the role of facilitators and not teachers. They should
create an environment where students develop their own understanding of principles, concepts,
and strategies. As a method of instruction constructivists often encourage the use of discovery
learning, where students are expected to discover knowledge by themselves.

Constructivism has had a wide ranging impact on learning theories and teaching methods
in education. One of the most widely known is constructionism, a learning theory developed
by Seymour Papert.[15] It takes the constructivist view of learning as a reconstruction rather
than as a transmission of knowledge and extends it with the idea that learning is most effective
when the learner constructs a meaningful product. Papert proposed using a computer-based
learning environment where students create programs in a microworld.[32] Based on these ideas
the programming language Logo was created for educational use.

But constructivism also faces a strong opposition, especially when the learning theory is applied
to teaching methods. Mayer (2004)[27], for example, criticizes the common view that equates
active learning with active teaching and concludes that “the formula constructivism = hands-on
activity is a formula for educational disaster”. Rather than putting the focus on behavioral activity,
learners should be “cognitively active” during learning. Furthermore, he stresses the importance
of instructional guidance and criticizes the use of pure discovery learning, where students work
with little or no guidance. He recommends the use of guided discovery, a mix of direct instruction
and hands-on activities, where the teacher helps guide the students in productive directions.

Kirschner, et al. (2006)[23] argue that unguided methods of instruction are only effective when
the learners’ prior knowledge is sufficiently strong to provide “internal” guidance and are not useful
for novices. Hereby they address a number of learning theories (discovery, experiential, problem-
based, and inquiry-based learning) that all promote the constructivist concept “learning by doing”.
For learners with little or no prior knowledge they suggest using more structured methods instead.

Generally, one can say that learning is most effective when being done actively. But students
should be assisted by guidance from the teacher or other support material. Also, the pre-existing
knowledge should also be taken into consideration and one needs to be aware of misconceptions
and needs to address them.

Another important prerequisite of successful learning is motivation. A place with extensive
expertise about motivation is the game industry. Game players usually have the attitude which
educators would like their students to have: interested, competitive, cooperative, results-oriented
and actively seeking information and solutions.[34] Therefore, the educational paradigm game-
based learning has been studied extensively in recent years in order to increase the motivation

23

24 3 Teaching Software Engineering

and the engagement of learners. Studies showed that for a successful implementation of this
approach, the player needs to be provided with clear goals, immediate and appropriate feedback,
and challenges that match his skill level.[22]

3.1 Computer Science Education

There is a significant amount of research in Computer Science education (CSE). The main motiva-
tion is to improve the quality of the teaching and learning of the subject in schools and universities.
It is important to distinguish CSE from work being done on computers in education, which usually
does not focus on the academic discipline of Computer Science.

A review of existing CSE literature shows a focus on a few topics such as course descriptions,
development of tools, and computer aided learning. Although these topics are of importance,
they are also relatively limited and the publications often do not include references to pedagogical
theory. Also, research tends to be grounded in the technology, rather than in the didactics of
Computer Science or educational theory.[17]

A substantial number of research publications are written by practitioners in CSE and are based
on their own experiences of teaching a certain course. They are often concerned with problems
such as high failure and drop-out rates in their introductory courses. However, the effectiveness of
the proposed changes are rather difficult to evaluate. Other research projects focus on computer
aided learning and developed intelligent tutoring systems as can be found e.g. in Exorciser. Some
publications also refer to learning theories like constructivism[5], discovery learning[4] or game-
based learning[22].

Another important aspect of CSE research appears by answering the traditional didactical
questions of why, what, how and for whom. Why should Computer Science be taught as a subject in
school, which topics should be covered and how can we build the desired knowledge? The question
for the receiver hereby provides the basis for answering the other three. These questions are
crucial for a successful coordination between teachers, policymakers and educational researchers.
However, if we look around at schools we can see that there is no consensus, which topics should
be at the core of each introduction into Computer Science. Let us look into some model curricula
that have been developed in an effort to reach such a consensus.

3.1.1 Computer Science Model Curricula

Different model curricula have been developed by various institutions to set standards in Computer
Science education. In the following we introduce two curricula that have been selected due to
prevalence (IFIP/UNESCO) and long tradition (ACM, first recommendation in 1968).

The International Federation for Information Processing, usually known as IFIP, is an NGO
established in 1960 under the patronage of UNESCO. In 2002 the IFIP published the latest curricu-
lum for information and communication technology (ICT) in secondary schools.[10] The curriculum
is structured into four modules:

• ICT Literacy
The first module is designed for students to discover different ICT tools, their functions and
how to use them. Therefore, basic ICT skills such as word processing, spreadsheets, and
creating presentations are taught as separate subject.

• Application of ICT in Subject Areas
The second module is designed for students to learn how to make use of ICT tools in the
different subjects studied in secondary school including mathematics, natural and social
sciences, languages, and art.

• Infusing ICT across the Curriculum
The third module is designed to demonstrate the use of ICT tools across different subjects
to work on real-world projects.

3.1 Computer Science Education 25

• ICT Specialization
This module is primarily designed for students who plan to go into professions with an
increased use of ICT such as engineering, business, and computer science. It covers topics
such as introduction to programming, top-down program design and foundations of software
development.

As one can see, in this arrangement “informatics” as a science is of less importance. The
acquisition of ICT skills is predominant, which leads to an application-oriented view of Computer
Science. This development can also be observed in many high schools and in political policies.[39]

The Computer Science Teachers Association (CSTA) published in 2003 the second edition of
the ACM Model Curriculum for K-12 Computer Science.[3] This curriculum consists of four levels
that can be teached from grade level K-8 to K-12 accordingly:

• Foundations of Computer Science
Level I should enable students to acquire basic skills in technology and to incorporate algo-
rithmic thinking as a general problem-solving strategy.

• Computer Science in the Modern World
Students at Level II should develop a fundamental understanding of the principles of Com-
puter Science and its applications and implement useful programs using simple algorithms.
This course should also include an overview of career possibilities and a discussion of ethical
issues related to computers. Since it will be the last encounter with Computer Science for
most students, it is considered as an important preparation for the modern world.

• Computer Science as Analysis and Design
Students who wish to study more Computer Science may elect the Level III course. It pro-
vides the students with an opportunity to explore their interest and aptitude for Computer
Science as a profession. The main focus lies on the scientific and engineering aspects of
Computer Science such as mathematical principles, algorithmic problem-solving and pro-
gramming, software and hardware design, networks, and social impact.

• Topics in Computer Science
Finally, the elective Level IV course aims to prepare the students for further studies at the
tertiary level or for the worklplace. It also gives the students the opportunity to explore topics
of personal interest in more detail. This course may either be an advanced placement course
with focus on programming and data structures or a project-based course in multimedia
design or a vendor-supplied course that leads to professional certification.

This curriculum is based on a “conservative” understanding of Computer Science and requires
the educational content to be geared to scientific principles and concepts. It also makes clear
that the occupation with technical details should be avoided and rather a concentration on basic
scientific principles and concepts should take place. As a general goal students should be enabled
to understand the nature of Computer Science and its place in the modern world.

The discrepancy of these two curricula shows the necessity of an international debate of com-
puter science as part of general education. The discussion whether Computer Science education
should be oriented more towards its applications or more towards its fundamentals or more towards
its social effects is still ongoing. From our perspective it is clear that the reduction of Computer
Science to mere computer handling skills has to be avoided. There should be a clear separation
between Computer Science and general computer literacy in high school education. In order to do
so, the value of Computer Science as a school subject has to be strengthened.

Another topic that is widely discussed, for example also in the ACM curriculum, is teacher
education. What is the technical and nontechnical knowledge required for a successful Computer
Science educator?[13] It starts with the formal education: While a doctoral degree in Computer

26 3 Teaching Software Engineering

Science is a reasonably obvious prerequisite for college-level teachers, the requirement for high
school-level teachers to be equipped with a Master’s degree in Computer Science is not always
recognized. In fact, this requirement is rarely met. Many Computer Science high school teachers
have not passed a full university education in that field. As a result, some teachers lack a compre-
hensive technical understanding and are only able to teach programming and doing this as writing
simple algorithms in a simple, fixed language. Beyond having a good technical knowledge, Com-
puter Science educators should have a broad overview of the discipline. They should be exposed
to a so-called bird’s-eye view of the field to address, for instance, questions of the nature of the
field and its relationships with other disciplines. Of course these skills need to be accompanied by
didactic knowledge.

Nievergelt defines the task of a Computer Science teacher as follows: “A computer science
teacher has to be capable to convey the fundamental ideas of Computer Science intelligent and
understandable also for non-professionals.”[30] But what are the fundamental ideas of Computer
Science?

3.1.2 Fundamental Ideas of Computer Science

As a relatively young academic discipline Computer Science is still developing dynamically. Paradigm
changes are constantly announced and each time much of the respective knowledge becomes ob-
solete. An educational principle to cope with these frequent changes is to base the education on
so-called fundamental ideas (some authors also use the term central concepts[46]). Using this ap-
proach students are expected to be able to transfer earlier acquired knowledge to new situations.
That means these ideas must be robust enough to meet the challenges of the latest developments
in Computer Science.

A fundamental idea of Computer Science can be defined as a schema for thinking, acting,
describing or explaining which satisfies the following four criteria: It has diverse applications and
can be observed in different areas of Computer Science (horizontal criterion), it can be taught
at any intellectual level (vertical criterion), it can be observed in the historical development of
Computer Science and it will be relevant in the long term (criterion of time) and it also has a
meaning in everyday life (criterion of sense).

In 1997, Schwill proposed three fundamental ideas that “dominate all stages of software devel-
opment as well as all activities in computer science”: algorithmization, structured dissection and
language.[40] These ideas are explained in more detail in the following.

• Algorithmization covers the entire process of designing, implementing and running an al-
gorithm. Further analysis of these activities reveals a number of other fundamental ideas
that can be divided into four subdomains: design, programming, execution and evaluation
(Figure 3.1).

• Structured dissection comprehends the process of subdividing an object into several parts in
a structured way. It can be distinguished between a vertical aspect called hierarchization,
where different levels of abstraction are created, and a horizontal aspect called modularization
where an object is subdivided into parts of the same level of abstraction. By merging these
aspects we obtain a hierarchical modularization.

• Language plays an important role in many areas of Computer Science, e.g. for programming,
specification or verification, but also in data bases (query languages) and in operating systems
(command languages). It is further associated with the two fundamental ideas syntax and
semantics.

3.2 Topics of Software Engineering 27

Figure 3.1: Algorithmization : a fundamental idea of Computer Science

3.2 Topics of Software Engineering

After having seen an overview of educational paradigms in general and specifically related to
Computer Science, we also have to study the discipline of Software Engineering in regard to
our goal of creating related modules. Software Engineering is widely considered as a subfield of
Computer Science and can be defined as “application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software”.[19]

In 2004 the IEEE Computer Society (IEEE-CS) published a guide to the body of knowledge
in the field of software engineering[1] in order to promote a consistent view of this field and to
establish a foundation for curriculum development. In this guide, the subject areas of the Software
Engineering discipline are organized into ten Knowledge Areas (KAs) as listed in Table 3.1.

Table 3.1: The SWEBOK Knowledge Areas (KAs)

Software requirements
Software design
Software construction
Software testing
Software maintenance
Software configuration management
Software engineering management
Software engineering process
Software engineering tools and methods
Software quality

Some of these KAs can in part also be assigned to related disciplines such as Project Man-
agement. For the development of our didactic modules we didn’t focus on the process-oriented
activities such as requirements, quality assurance and management activities. More suitable topics
are Software construction and Software testing.

28 3 Teaching Software Engineering

3.3 Modules for Talent Scout

Based on the fundamental ideas of Computer Science and the topics of Software Engineering
elaborated in the preceding sections, we developed a concept for the modules that we wrote for
the CS Talent Scout. We mainly wanted to teach Software Engineering as a problem-solving
discipline where also algorithmic thinking is needed. A problem is characterized by having a more
or less well-defined goal, but no immediately apparent possibility to attain this goal.[18]

For the first module we chose the topic White-box Testing, where the students learn the concept
of code coverage and apply several testing techniques. As we have seen in our survey, testing is a
field which is not covered in this age group.

The second module is about the concept of Tree Recursion. Recursion is considered to be one
of the universally most difficult concepts to teach.[13] As one of the fundamental programming
paradigms, many applets exist that visualize the concept of recursion with concrete examples such
as the Tower of Hanoi. While these give students a good idea of what it is, it doesn’t involve much
student interaction. Therefore, we intended not only to create a visualization of recursion but also
providing the students with tasks, where they need to apply algorithmic thinking in the context
of a recursive data structure.

The two modules will be elaborated in more detail in the following two chapters.

Chapter 4

Module White-box Testing

In June of 2002 the National Institute of Standards and Technology (NIST) released a study[29]
stating that software bugs are costing the U.S. economy an estimated $59.5 billion per year. It
further reported that software developers spend nearly 80% of development costs on identifying
and fixing bugs. This shows the importance and cost factor of testing in the software engineering
process and the improvements that still have to be achieved in this area. However, despite its
significance, testing is often not sufficiently reflected in Computer Science curricula. This is also
a reason why we chose the concept of testing as a topic for one of the modules.

In the module White-box Testing the students can familiarize themselves with some basic
concepts of testing and debugging. They also learn about different metrics of code coverage (i.e.
branch and path coverage) and the notion of an equivalence class and how to define one. These
terms are introduced in the context of flow charts that represent simple functions with one or
two input parameters. The functions consist of assignments and conditional statements that can
either be in the form of an if-then-else branching or of a loop. They have either one or two input
arguments (x and y) that the user needs to specify in order to test a specific path of the function.
Furthermore, the local variables a and b are used sometimes in assignments. The module uses
flow charts as a graphical representation of the functions in order to facilitate the understanding
of the control structures and to visualize the process of testing and debugging.

4.1 Definition

Software testing is one activity of software engineering and can be defined as “the process of
analyzing a software item to detect the differences between existing and required conditions (that
is, bugs) and to evaluate the features of the software items”.[19] One can distinguish between two
kinds of Software testing techniques: Black-box testing (also known as specification-based testing
or functional testing) that mainly validates the input-output behavior without any knowledge of
internal implementation and white-box testing which makes use of the internal structure of the
program to develop test cases.

White-box testing is synonymous with program-based testing or structural testing and aims
to find bugs that can be discovered by source-code analysis. It can be further subdivided into
the testing strategies control-flow testing and data-flow testing. The latter tries to detect data
anomalies and studies the status of data objects, e.g. to assert that every variable has been
initialized prior to its use. It is not included as a topic in this module. Control-flow testing on the
other hand is a popular type of white-box testing whose goal it is to create test cases that satisfy
a specific criterion of code coverage. Common test coverage criteria include statement coverage,
branch coverage and path coverage. Coverage is reached when all statements, all decisions of
control structures (such as an if statement) and accordingly every possible path in the function
has been executed at least once. A path is defined as a unique sequence of branches from the
function entry to the exit.

29

30 4 Module White-box Testing

For this module we used branch and path coverage. Since loops introduce an unbounded
number of paths, we need to restrict the analysis to a limited number of possibilities. We have
chosen the simple definition of no or at least one iteration. Other sources distinguish three cases,
i.e. zero, one or at least two iterations.

4.2 Tasks

The module White-box Testing is subdivided into four tabs and each of them contains a different
task of testing. We present them in the following.

Test Coverage

In the first tab called Test coverage, the user’s task is to specify different input arguments (x
and/or y) to reach 100% code coverage. He can hereby select either branch coverage or path
coverage. For any number of specified input arguments, the user is able to check the coverage
that he has reached. Obviously, the needed number of input arguments depends on the selected
coverage metric and the number of conditional statements that define the number of branches and
paths. This task is very straightforward and allows students to familiarize themselves with the
concept of the two coverage metrics and the user interface.

Bug Hunting

In the second tab called Bug hunting, the user has to find specific input arguments that reveal
an arithmetic bug, such as a division-by-zero or a negative value under the square-root, in the
function. Those simple illegal mathematical expressions have been chosen to keep things simple,
as they are basic knowledge of every student in secondary school. The students basically need to
consider two things. On the one hand, they need to select input arguments that will reach the
branch with the critical statement. On the other hand, they need to make sure that the variables
have the exact values that lead to an error.

While simple examples just involve ordinary conditional statements (i.e. if statements), more
advanced ones also include loop statements where a certain number of iterations is necessary to
exploit the bug. Figure 4.1 shows an example where we forced a division by zero.

Figure 4.1: White-box Testing : Bug Hunting

4.3 Animation 31

Minimize test cases

In the third tab called Minimize test cases, the user is given a number of input arguments that
cover all possible paths and therefore reach 100% code coverage for both branch and path coverage.
The goal here is to minimize the number of test cases needed to reach 100% coverage. To do so
the user has to identify and remove redundant test cases that do not increase coverage. They
typically fall into the same equivalence class.

For the example shown in Figure 4.2 we selected two input arguments that reach a branch
coverage of 75%. As there are four branches in the function, a careful selection would make it
possible to get 100% branch coverage with just two test cases.

Figure 4.2: White-box Testing : Minimize test cases

Equivalence classes

The fourth tab further deals with the concept of equivalence classes. Randomly, one path of the
function gets selected and highlighted. The task of the user is to define the equivalence class of
this path, i.e. to define the range of values for the input parameters x and y that will all execute
this path. The user can define any interval of integer values or positive and negative infinity.

In the example shown in Figure 4.3 the user has to ensure that the condition a ≥ −2 is
evaluated to false and the condition b < 4 is evaluated to true. With the given assignments that
leads to the equivalence class:

5 ≤ x ≤ ∞
−2 ≤ y ≤ 2

4.3 Animation

Figure 4.4 shows the module White-box testing during the visualization of the function’s step-by-
step evaluation. Initially, every statement is colored in gray (with the exception of the start and
end node that have the initial colors green and purple). During the evaluation, the background
color of the currently executed statement changes to green. Statements that already have been
executed are colored in yellow. The executed path of highlighted by red lines.

The control area on the left also contains a table listing an entry for each evaluation step.
The table consists of five columns that show the assignments that have been executed in this step

32 4 Module White-box Testing

Figure 4.3: White-box Testing : Equivalence classes

together with the current values of the input parameters x and y and the local variables a and
b. When the evaluation is paused or after it has been finished, the user can scroll through the
list in order to reconstruct the evaluation and to see why a certain path has been chosen, how
many iterations of a loop have been executed or why we did or did not get a bug in the execution.
The selected step is also highlighted in the draw panel. The corresponding statement box has an
additional transparent red coloring on top of the yellow or green background color.

Figure 4.4: White-box Testing : Step-by-step evaluation

4.4 Flow Chart Editor 33

4.4 Flow Chart Editor

As an extension to this module we wrote an editor to facilitate the creation of new flow charts.
The editor offers a fully graphical user interface where new flow charts can either be created from
scratch or existing flow charts can be opened and modified. New flow charts initially only have
the start and end node and one can add statement blocks (represented by rectangle shapes) and
conditional statements (represented by diamond shapes) as needed. Using the right-click context
menu of the different shapes, the user can specify the successor of an element and therewith define
the program sequence. Once the successor of an element has been specified, the connection lines
between the shapes are placed automatically. For conditional statements, the user can select either
an if-then-else, an if-then or a loop type with according placement of the connection lines to the
loop body or the then branch (Figure 4.5). This type is also of importance when the flow chart is
saved and the XML representation is being generated.

Figure 4.5: Flow Chart Editor : Context menu for conditions

Statement blocks contain an arbitrary number of assignments that the user can specify in
a popup window (Figure 4.6). For editing these assignments as well as the boolean condition
of conditional statements, we adapted and reused the statement editor of the second module
(Section 5.4). While the height of a statement block is set according to the number of assignments
contained, the width can be resized by the user by dragging the red colored handle on the right
edge of the shape. The editor supports multiple shape selection which allows the simultaneous
movement of several elements that keep the relative placement as long as no element touches the
top or left border of the editor window.

When the user wants to save a flow chart, the flow chart model is checked for completeness
(i.e. conditions and assignments) and strict sequential structure of the statements. Multiple entry
points of a loop or conditional branches for instance are not supported. Before using the generated
XML document, minor additions are still necessary. For the task Equivalence classes for example
the user needs to add the definition of the equivalence class for some selected test paths. The
structure of the XML documents is further elaborated in section 6.3.1 and an example XML file

34 4 Module White-box Testing

Figure 4.6: Flow Chart Editor : Edit assignments of statement block

is shown in Appendix A. The technical aspects of the editor are discussed in some more depth in
section 6.3.2.

Chapter 5

Module Tree Recursion

Recursion is a very important concept used in many applications of Computer Science and Mathe-
matics, in fact it is one of the fundamental ideas of Computer Science (Section 3.1.2). It is therefore
not a new approach to facilitate the understanding of this concept by using interactive tools. But
in contrast to many existing educational applications that cover the topic of recursion solely by
visualization of the process, we would also like the students to create a recursive algorithm on
their own in order to solve a given task.

With the module Tree Recursion we would like to teach the basic concepts of recursion in the
context of the binary tree data structure. The underlying idea we would like to give the students is
that we are able to solve the problem locally, independent of the overall structure. In the context
of binary trees, such an algorithm needs to handle four different cases: a node with two children,
a node with only one child on the left, a node with only one child on the right and a leaf node
without any children. When we define a procedure for these four cases that solves the problem
locally, we can apply this algorithm to the whole tree and get a solution independent of the tree
structure.

Using a graphical editor (Section 5.4), students can create algorithms using three types of
statements: assignments, conditional statements and recursive calls (Section 5.3). After executing
a recursive call, the result of the corresponding child node can be used for further calculations.

5.1 Definition

Recursion is an important programming concept that is used in many problem-solving strategies
to divide a problem into smaller sub-problems of the same type. A recursive function invokes
itself several times with each recursive call reducing the problem until it is small enough to be
solved directly. The smallest problem instance is called the base case and is needed as a stopping
criterion to avoid infinite recursion.

Not any problem can solved using recursion. Instead, recursive functions require a specific
type of problem. Niklaus Wirth described this as follows: “Recursive algorithms are particu-
larly appropriate when the underlying problem or the data to be treated are defined in recursive
terms.”[45]

The most simple type of recursion is linear recursion where each function invokes itself exactly
once. A typical example of a function that can be expressed using linear recursion is the factorial
function:

fac(n) =
{

n ∗ fac(n− 1) ∀n > 0
1 if n = 0

Linear recursion can be extended to arbitrary dimensions, these patterns are known as tree
recursion where each function invokes itself twice or even more times. A simple example for this

35

36 5 Module Tree Recursion

recursive structure is the calculation of the Fibonacci numbers:

fib(n) =

 fib(n− 1) + fib(n− 2) ∀n > 1
1 if n = 1
0 if n = 0

However, some recursive algorithms are very inefficient. The Fibonacci example using the
scheme above leads to many redundant computations and has exponential time complexity. Some
problems can be solved more efficiently using an iterative approach. These alternative solutions
as well as computational inefficiency have to be discussed, when specific recursive solutions are
introduced.[41]

In real-world programming however, recursive algorithms are mostly used when working with
recursive data structures. The most popular applications are the list data structure for linear
recursion and binary trees for tree recursion. Recursive algorithms on binary trees require two
recursive calls for the left and the right subtree. The base case that stops the recursion is the leaf
node that has no further children.

5.2 Tasks

The module Tree Recursion is subdivided into two tabs where the user’s task is either to apply or
to develop a recursive algorithm. We present them in the following.

Find solution

In the first tab called Find solution, the goal is to understand and to apply a recursive algorithm.
The user can select one of various example algorithms that are given with the textual description
using assignments, recursive calls and conditional statements. When the task of the algorithm is
understood correctly, the user can apply the algorithm on his own and derive the end result for the
given binary tree. He is then able to check his result and to run the algorithm which is animated
(Section 5.5). Figure 5.1 shows an algorithm that is looking for the smallest number greater than
30, and returns 34 for the given binary tree.

Figure 5.1: Tree Recursion : Find solution (The local case with two child nodes is selected.)

Find algorithm

In the second tab, the user is given a task and has to develop a recursive algorithm accordingly.
It is essentially the inverse task of the first tab. In order to specify the algorithm, the user doesn’t

5.3 Language 37

need to write code but rather has a convenient graphical editor that allows specifying the algorithm
using only the mouse. A detailed description of the editor’s functionality is given in section 5.4.
Figure 5.2 shows a sample task where the user needs to calculate the depth of the binary tree.

Figure 5.2: Tree Recursion : Find algorithm

5.3 Language

The recursive algorithms used in this module use a simple language that contains three types
of statements (i.e. assignments, conditional statements and recursive calls) and four different
variables (i.e. current, left, right and result). At the core of each algorithm are the recursive calls
that allow each node to use the results of the evaluated subtree on the left or right.

The variables have a local scope corresponding to the current node in the binary tree. The
variables current, left and right are read-only and hold the values of the current node or the result
that comes from a recursive call to the subtree of either side respectively. The variable result on
the other side is only used as target of assignments and after all statements for the current node
have been executed, its value is returned to the parent node.

Figure 5.3 shows the correlation of the variables and nodes. The variable current holds the
value 53 and the variable left holds the value 2. The value right however has not been initialized
and cannot be used yet as the right subtree has not been evaluated by a recursive call yet. When
a value is assigned to the variable result, it will become available to the root node as its local
variable right.

Figure 5.3: Tree Recursion : The local variables for the node with value 53

38 5 Module Tree Recursion

An assignment contains an arithmetic expression that uses variables, constant values, arith-
metic operators and the binary functions min and max in any sequence (Listing 5.1). The con-
ditional statement is made up of a simple condition that uses a boolean expression together with
variables and constant values. The body of the conditional statement can contain again all el-
ements of the language; therefore the algorithm can have an arbitrary nested structure. The
complete language used in this module is described in EBNF in Appendix B.

AssignmentStmt = "result := " Expression ;

Expression = Operation | Function | Variable | Constant ;

Operation = Expression ArithmeticOperator Expression ;

Function = ("min" | "max") " (" Expression ", " Expression ")" ;

Variable = "current" | "left" | "right" ;

Constant = ["-"] Digit { Digit } ;

Listing 5.1: Structure of an assignment statement in EBNF

5.4 Graphical programming editor

As we don’t want to depend on previous programming knowledge of the students, we followed the
approach of visual programming (Section 2.2) and created a graphical programming editor. To
develop the recursive algorithms the students don’t need to type code and follow a specific syntax
which itself can be an error-prone activity and source of confusion. Instead, this module provides
a graphical editor that simplifies creating an algorithm and avoids syntax errors. Subdivided into
the four cases the algorithm needs to handle, students can specify a sequence of statements using
buttons, drop down lists and spinners. We used the concept of edit-in-place which makes editing
very quick and simple.[35]

Statements can be added and removed arbitrarily using buttons with either a plus or minus
icon. A new statement starts with a first drop down list that asks the user to select the type of
statement and offers assignments, recursive calls and conditional statements.

When selecting Assignment, a new drop down list appears to specify the expression. The user
has the choice between arithmetic binary operations, simple functions (i.e. the functions min and
max), the variables current, left or right, and a constant. The first two expressions (operations and
functions) recursively ask for two subexpressions that can be specified analogical. The users can
build arbitrarily nested expressions. While the variable current returns the value that the current
node in the binary tree contains, the variables left and right contain the result of the according
recursive call which therefore needs to be executed first, before using these variables. When the
user decides to assign a constant, an integer value can be set using a spinner.

A Recursive Call allows in a second step to specify the direction, i.e. the left or the right
subtree. However, this choice is only given in the first case, where the node has two children. In
case we have only either a left or a right child the choice is limited accordingly, and of course for
leaf nodes the recursive call is missing in the list of statement types. The result of the recursive call
is stored in the according variable left or right that can be further used in arithmetic or boolean
expressions.

When selecting Condition the user can specify a boolean expression using boolean operators
and the variables current, left and right as well as constant values. For the body of the conditional
statement, a new button appears on the next line with a certain indentation that allows to add
new statements on this level.

5.5 Animation 39

Figure 5.4: Tree Recursion : Graphical programming editor

5.5 Animation

The visualization of the algorithm execution uses a very similar concept like the first module and
is shown in figure 5.5. Each node can be in one of four states that are shown by the use of different
colors. Initially all nodes are unvisited which is represented by the gray color. Visited nodes
where the algorithm hasn’t been completed are colored purple and the current node is green.
After the algorithm has been completely evaluated for a node, the background color changes to
yellow. Additionally, the returned value is written in red digits on top of the node. A red rectangle
around the current node and its child nodes highlights the case of the local structure (e.g. only
left child).

In the control area on the left the editor always shows the current case of the algorithm and
highlights the current and executed statements also with green and yellow background colors.
Below we have again a table listing an entry for each execution step. This table consists of four
columns that show the values of the variables current, left, right, and result for the associated tree
node at the time. Again, after the execution or when it is paused, the user can scroll through the
list and the corresponding nodes get highlighted in the draw panel accordingly.

Figure 5.5: Tree Recursion : Animated algorithm execution

40 5 Module Tree Recursion

5.6 Random tree generation

In order to test the algorithms on binary trees with various shapes, the module Tree Recursion
contains a tree generator that is able to generate random binary trees. The chosen algorithm
hereby specified whether the tree needs to have an ordered structure or not which is also visible
in the draw panel. For some algorithms where we’re looking for a specific value, the tree needs to
be ordered. The generator uses a simple random insertion algorithm with certain constraints that
ensure variable depths and numbers of nodes.

When testing an algorithm that we manually created in the editor, the algorithm is tested on
the given tree and additionally on five randomly generated trees in the background. Doing this,
we heuristically check that the algorithm does not only return the correct result for the given tree
but rather works for any random tree.

Chapter 6

Design and Architecture

The Computer Science Talent Scout library consists of a set of modules in the form of Java
applets. Although each module was developed and can be run independently of the others, they
are expected to follow certain guidelines to provide a consistent user interface across all modules.

In this chapter we first introduce the basic system architecture of both modules that we devel-
oped and subsequently describe the visual framework. Finally, we discuss several implementation
issues.

6.1 System Architecture

Both modules have the same basic system architecture. They consist of five packages: the base
package ch.ethz.inf.csts.<moduleName> (where <moduleName> is either testing or treeRecur-
sion) and the four sub packages .gui, .manual, .examples and .images. Additionally, there is a
main class in the package ch.ethz.inf.csts.modules with the name of the module (i.e. Testing and
TreeRecursion).

• ch.ethz.inf.csts.<moduleName> contains the main logic of the modules. Common parts of
both modules are a parser class for handling the XML files (example file in Appendix A), a
sequencer class that controls the animated step-by-step evaluation, an evaluator class that
evaluates a given flow chart or binary tree, and the class Main that is described below. Fur-
thermore, the package includes some special data structures (e.g. Function/Algorithm and
related classes) and some helper classes (e.g. TreeGenerator).

• ch.ethz.inf.csts.<moduleName>.gui contains as the name suggests the classes that define the
graphical user interface. The class with the main JPanel is called GUI and gets extended
by a class Main in the base package of the module, which combines all the components and
adds the functionality to the GUI elements.

• ch.ethz.inf.csts.<moduleName>.manual contains classes and HTML files that are needed for
the integrated manual of the modules. The manual is integrated to the module user interface
with a JSplitPane in the main class of the module.

• ch.ethz.inf.csts.<moduleName>.examples contains the XML files that define the used func-
tions or algorithms together with an XML schema (function.xsd and algorithm.xsd).

• ch.ethz.inf.csts.<moduleName>.images contains some icons and other images that are used
in the graphical user interface.

41

42 6 Design and Architecture

The modules were designed according to the Model-View-Controller (MVC) design pattern in
order to separate the user interface from the underlying data model.

Figure 6.1: An overview of the module Tree Recursion implementing the Model-View-Controller
design pattern. Rectangles represent classes and arrows stand for a direct access relationship. The
underlying gray shaded areas show the division by the MVC pattern.

6.2 Visual Framework

A main design goal of our work was to create a user interface that is easy to use. Therefore we
used a Visual Framework [42] to specify a common basic design for the user interface which also
follows the overall guidelines for the CS Talent Scout. The two modules have been deliberately
designed to use a consistent layout, colors, and positioning of important elements to provide an
overall look-and-feel. For this reason, users don’t need much time to get familiar with the user
interface when switching from one exercise to another or when using a different module.

Figure 6.2 shows the visual framework used by the modules that we developed for the CS
Talent Scout library. We describe the individual parts in the following.

1. The instructions area on top provides on the full window width a manual that contains a
short introduction to the problem and instructions for its use. This manual is divided by
a split pane from the actual interface of the module. Even though the manual introduces
the relevant concepts and the functionality, it is still expected that a short instruction by a
teacher is given in advance. The modules are not supposed to be used as an auto didactic
learning tool.

2. The control area on the left is the location where most of the user interaction takes place.
It uses a tabbed interface to divide between the different tasks of the module. The panel for
each tab is again structured in a similar way: On top the user can typically select or generate
the environment for the current task (i.e. the flow chart or an algorithm and a binary tree)
and directly underneath we have a panel to specify the input arguments or to construct the
algorithm. Next element is the navigation control for the animation that also includes a
tempo slider to adjust the animation speed. The undermost elements are the variable status

6.3 Implementation issues 43

Figure 6.2: The Visual Framework

table showing the current values for each animation step and, at last, a text area to provide
feedback and notifications.

3. The largest part of the visual framework is dedicated to the draw area. This area displays
the visual representation of the function as a flow chart or the binary tree that is used for
the recursive algorithms. It is animated during the execution (Section 4.3 and 5.5).

6.3 Implementation issues

In this section we discuss some selected implementation issues.

6.3.1 Flow chart representation

Initially, we were considering specifying a simple, pseudo-code like language to specify the functions
that we used for the module White-box testing. This would have implied that we need to write
our own text file parser together with a lexer and semantic analyzer and finally create an internal
data structure for the function. Furthermore, this would also require a smart drawing algorithm
that translates the function into a flow chart that we can draw in the module. This however
seemed like too much effort simply to end up with a graphical representation of a function. For
this reason we decided to include the drawing information into the file that describes a flow chart.
Essentially, we just need to know the position and size of the elements.

Due to the wide availability of XML parsers and the ease of use we shortly chose to represent the
flow charts by XML files. Java offers two popular interfaces to process XML files: The Document
Object Model (DOM) interface and the Simple API for XML (SAX) interface. However the latter
does not create an in-memory representation of the XML file. Therefore, we used the DOM parser
called DocumentBuilder to create a DOM Document that we used as an internal structure to draw
and evaluate the flow charts (Figure 6.3). To check the correct structure of an XML we created
an XML schema file (functions.xsd).

The XML files are structured as follows: The root element is named function and has an
attribute that references to the schema file. The first child elements specify the number and
names of the input parameters. We consistently named them x and y. After the parameters an
element named dataflow follows which contains the main information of the file. The first child
element of dataflow is always the start node which is followed by a sequence of assignment blocks,

44 6 Design and Architecture

Figure 6.3: The flow chart representation

if and while statements and finally the end node. All statements (including start and end node)
have the three attributes id, position and size. The identifiers are later used as a reference for the
connection lines.

An assignment block can contain an arbitrary number of assignment elements as children.
The assignment element also has a position attribute and an attribute denominating the target
variable. It has one child element which can be a nested arithmetic expression consisting of
variables, constants and arithmetic operators.

<block id="102" position="5,225" size="100,50">

<assign name="b" position="20,256">

<expr type="times">

<const value ="2" />

<variable name="x" />

</expr>

</assign>

</block>

Listing 6.1: XML representation of an assignment block

The if statement has the three child elements condition, then and else, where the last one is
optional. The condition element again has a position attribute and an attribute specifying the
boolean operator. It has two arithmetic expressions as child elements. The then and else elements
can recursively contain a sequence of statements. Very similarly structured is the while statement.
It has two child elements: condition and do that also contains a sequence of statements.

After the dataflow element, which is typically the largest part of the XML file, we have the
element graphsize which is used to center the flow chart in the draw panel. At the end of the
XML file we have the element lines which contains all connection lines of the flow chart. Both the
element line and arrow have the attributes from and to with the position information as well as
refFrom and ref with the reference to a statement node of the flow chart. The references are used
for highlighting the executed path of the flow chart.

<lines>

<arrow from="155,60" to="155,80" ref="101" refFrom="100" />

<arrow from="155,130" to="155,150" ref="1" refFrom="101" />

<line from="95,185" to="55,185" ref="102" refFrom="1" />

...

</lines>

Listing 6.2: XML representation of lines

Depending on the usage of the function, the XML file further contains an element testpaths
which specifies the equivalence classes of all paths that can be defined linearly. Other XML files
contain an element testcases which lists some sample input arguments where the user needs to
minimize the number of arguments needed for full testing coverage.

The detailed XML structure is shown in Appendix A which contains the sample XML file
EQ Example1.xml. We also used XML files to specify the recursive algorithms for the module
Tree Recursion. They have a similar, yet simpler structure.

6.3 Implementation issues 45

6.3.2 Flow Chart Editor

The XML structure of the flow charts is very convenient for file I/O and to use it as an internal data
structure to operate on. However, the creation of new examples is not. Writing the XML file by
hand is a tedious and repetitive activity. Therefore, we decided to write a tool to generate these files
for us. The two options we considered were a graphical editor and as an alternative an automated
formatter that takes as an input the textual representation of a function. The automated formatter
however would have to consider many special cases and seemed too unflexible. We rejected this
idea basically for the same reasons we preferred the XML files over pseudo-code text files in the
first place.

In the following we describe the architecture of the Flow Chart Editor by package and hereby
mention the most important classes.

• ch.ethz.inf.csts.flowchartEditor contains the main class FlowchartEditor that sets up a JFrame
and coordinates actions across the editor. The package furthermore includes the class
FlowchartModel that keeps track of all flow chart elements and distributes the unique iden-
tifiers to them. It has two constructors that either create an empty model or create a model
based on a DOM document. It also offers the method generateModelDocument() to create a
DOM document from the model.

• ch.ethz.inf.csts.flowchartEditor.images contains some icons that are used in the toolbar and
the assignment editor.

• ch.ethz.inf.csts.flowchartEditor.ui contains the classes DrawPanel and Toolbar that are part
of the editors user interface. It also includes various shape classes that represent elements
of the flow chart model, i.e. ShapeRectangle for assignment blocks, ShapeDiamond for if
and while statements and ShapeStart and ShapeEnd with common super class ShapeEllipse
for the end and start node of the flow chart. The abstract super class Shape provides a
number of methods related to the position and size of the element and also keeps track of
its selection state and the successor shape. Each extension of Shape overrides the methods
paint(Graphics2D g2) to draw itself and contains(int x, int y) that checks if a given point is
inside the specific shape (Listing 6.3). Some shapes implement the PopupGenerator interface
that provides a context menu on a mouse right click.

@Override

public boolean contains(int x, int y) {

if (!super.contains(x, y)) {

return false;

}

// move point of origin to center of ellipse

double e1 = (double) w / 2;

double e2 = (double) h / 2;

double dx = x - (this.x + e1);

double dy = y - (this.y + e2);

double distSquared = dx * dx / (e1 * e1) + dy * dy / (e2 * e2);

return distSquared <= 1.01;

}

Listing 6.3: Method contains in class ShapeEllipse

Depending on the shape properties two different selections are used: the SelectionMove which
can only be moved and the SelectionResize which additionally provides a handle to resize the
selected shape. Most of the UI functionality is implemented in the class SelectionManager
which implements the interfaces MouseListener, MouseMotionListener and KeyListener. It

46 6 Design and Architecture

handles all selections and generally most user interactions. It distinguishes three special
modes: dragMode for dragging all selected shapes, resizeMode when a shape is being resized
and createLineMode when we are selecting a successor shape to add a new connection line.
When the mouse button is pressed on an empty spot and then dragged, a selection rectangle is
drawn to select shapes. The implementation of method mouseDragged is shown in listing 6.4.

@Override

public void mouseDragged(MouseEvent e) {

if (resizeMode) {

// we resize the corresponding shape

resizeSelection.resize(e);

} else if (dragMode) {

// we move all selected shapes

for (Shape s : selectedShapes) {

s.getSelection().mouseDragged(e);

}

} else {

// we draw the selection rectangle

int x = e.getX();

int y = e.getY();

showSelectRect = true;

int boundX = Math.min(selectAnchor.x, x);

int boundY = Math.min(selectAnchor.y, y);

int boundW = Math.max(selectAnchor.x, x) - boundX;

int boundH = Math.max(selectAnchor.y, y) - boundY;

selectRect.setBounds(boundX, boundY, boundW, boundH);

}

editor.repaint();

}

Listing 6.4: Method mouseDragged in class SelectionManager

• ch.ethz.inf.csts.flowchartEditor.ui.actions contains various extensions of AbstractAction that
are mainly used in the editor menu and toolbar but also in the context menu of graphical
elements. Sample actions include OpenAction that opens a JFileChooser dialog to create a
flow chart from an XML file, EditAssignmentsAction that opens an window to edit the list
of assignments of a statement block or DeleteSelectionAction that deletes all selected shapes
in the editor.

• ch.ethz.inf.csts.flowchartEditor.ui.editor contains the editor panels for conditions which are
used for conditional statements as well as for a list of assignments to specify the content of
statement blocks. For these editor panels we adapted and reused the editor from module
Tree Recursion (Section 5.4).

• ch.ethz.inf.csts.flowchartEditor.xml contains the utility classes Parser and XMLGenerator
to create a DOM document from an XML file and vice versa.

Because we only need one instance of the the class FlowchartEditor and we use it to coordinate
actions across the editor (e.g. in most AbstractActions that we defined), we used the Singleton
pattern[14] to remove the necessity to provide it as an argument to many objects. Listing 6.5
shows the implementation of the Singleton pattern. We didn’t use lazy creation as we always need
an instance of the FlowchartEditor class.

6.3 Implementation issues 47

public final class FlowchartEditor extends JFrame {

/** A handle to the unique Singleton instance */

private static final FlowchartEditor instance =

new FlowchartEditor("Flow Chart Editor");

/**

* Private constructor prevents external instantiation.

*/

private FlowchartEditor() {}

private FlowchartEditor(String title) {

[..]

}

/**

* @return The unique instance of this class.

*/

public static FlowchartEditor getInstance() {

return instance;

}

}

Listing 6.5: Class FlowchartEditor implementing the Singleton pattern

6.3.3 Graphical programming editor

Programming is a difficult skill to acquire. It requires strong analytical and abstract thinking
and is best learned by practice. When students first encounter programming, their motivation is
very diverse.[20] But if students are to learn effectively, they must to be motivated so that they
will engage appropriately. The approach of visual programming is very appealing especially to
programming novices. Furthermore, we wanted to keep the complexity of the programming task
low, as the concept of recursion was the main focus of our module Tree Recursion.

The visual programming editor we wrote has a tabbed interface with a TaskEditorPanel for
each of the four cases the recursive algorithm needs to handle. The constructor of this class takes
the type as an input parameter in order to restrict the available statements (e.g. TYPE LEAF
removes the recursive calls from the list of statements). The class contains a list of StatementPanels
that are vertically aligned. A StatementPanel consists of a JButton (to add another statement
and on the second click to remove itself) and a selectionPanel that contains a combo box to select
a statement type. When a type is selected the selectionPanel is replaced by the panel of the
specified statement, i.e. RecursiveCallPanel, ConditionPanel or an ExpressionPanel to specify
the arithmetic expression of an assignment (Listing 6.6).

public StatementPanel(int type, TaskEditorPanel taskEditorPanel) {

[..]

if (type == TaskEditorPanel.TYPE_LEAF) {

statementList = new String[] { SELECT_STMT, ASSIGNMENT, CONDITION };

} else {

statementList = new String[] { SELECT_STMT, ASSIGNMENT, RECURSIVE_CALL, CONDITION };

}

statementComboBox = new javax.swing.JComboBox();

statementComboBox.setModel(new javax.swing.DefaultComboBoxModel(statementList));

statementComboBox.setMaximumSize(new java.awt.Dimension(125, 25));

statementComboBox.addItemListener(new ItemListener() {

@Override

public void itemStateChanged(ItemEvent e) {

statement = (String) e.getItem();

48 6 Design and Architecture

if (ASSIGNMENT.equals(statement)) {

addAssignment();

} else if (RECURSIVE_CALL.equals(statement)) {

addRecursiveCall();

} else if (CONDITION.equals(statement)) {

addCondition();

}

}

});

}

/**

* Adds a recursive call statement.

*/

private void addRecursiveCall() {

statementComboBox.setVisible(false);

recursiveCallPanel = new RecursiveCallPanel(type);

selectionPanel.add(recursiveCallPanel);

}

Listing 6.6: Constructor and method addRecursiveCall in class StatementPanel

The class StatementPanel as well as each panel of a specific statement has a method get-
Statement() that returns the specified statement. While the RecursiveCallPanel only contains one
combo box to specify the direction of the recursive call, the ExpressionPanel can recursively add
other ExpressionPanels to create nested expressions. Similarly, the ConditionPanel contains three
combo boxes to specify the boolean expression and additionally a ThenPanel that can create an
arbitrary number of statements like the TaskEditorPanel. These statements are also added to the
TaskEditorPanel that provides each statement with a unique ID and keeps track of them in a hash
table. This is needed to highlight the executed and current statements for the current tree node
during the algorithm execution, which is done by the method setStep(TreeNode node). Figure 6.4
shows how the various panels are created.

Figure 6.4: The structure of the visual editor. A solid line means that an arbitrary number of
elements can be created, a dashed line means exactly one element can be created and a dotted
line means one element of a selection can be created.

Chapter 7

Conclusion

We have implemented two Software Engineering modules for the Computer Science Talent Scout
together with a suite of interesting problems. The module White-box testing visualizes the func-
tions to be tested as flow charts and lets students become familiar with the process of testing
and debugging by revealing arithmetic exceptions in the given functions. It further introduces the
concept of code coverage and equivalence classes. The module provides a step-by-step animation
of the flow chart evaluation that enables students to fully comprehend the work flow.

We also developed a flow chart editor to quickly and easily create new flow charts using a
graphical interface. Assignment blocks and conditional statements can be added, positioned and
connected by mouse actions in order to define the program sequence. The user can specify the
arithmetic and boolean expressions in popup windows by selecting entries from combo boxes.
When a flow chart is completed, the editor is able to generate the XML file that can be used in
the module as a new problem instance.

The module Tree Recursion is concerned with recursive algorithms in the context of the binary
tree data structure. It breaks down the algorithms into four local cases and allows students to solve
the problem locally and independent of the overall tree structure. These local procedures are then
recursively applied to the randomly generated tree in order to get a global solution. The module
comes with a graphical programming editor that allows creating algorithms without typing code
in order to simplify the task and to avoid syntax errors. The step-by-step algorithm evaluation
on the binary tree is animated likewise to the other module. We have used a consistent visual
framework across both modules that is easy to use and provides appealing visual representations
of the tasks.

As a future work it would be useful to do an evaluation of the developed modules with some
high school classes. Besides evaluating the understanding of the involved concepts, the evaluation
also has to record the motivation of the participants, e.g. if they find the interface easy to use
and visually appealing and the tasks interesting and challenging. It would also be interesting to
include an assessment of the students’ knowledge of a Computer Science course of study and to
find out whether they consider pursuing it and for what reasons.

We now extended the collection of modules for the Computer Science Talent Scout by Software
Engineering topics. However, there are still several fields of Computer Science uncovered and one
can think of various applications, e.g. in the area of Visual Computing or Distributed Systems,
that remain as possible future extensions.

49

50 7 Conclusion

Appendix A

Sample XML file

<?xml version="1.0" encoding="UTF-8"?>

<function

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’function.xsd’ >

<parameter name="x" />

<dataflow>

<start id="100" position="105,10" size="100,50" />

<block id="101" position="95,80" size="120,50">

<assign name="a" position="110,111">

<expr type="minus">

<const value ="4" />

<expr type="times">

<const value ="2" />

<variable name="x" />

</expr>

</expr>

</assign>

</block>

<if id="1" position="155,150" size="120,70">

<condition type="less" position="130,191">

<variable name="a" />

<const value ="0" />

</condition>

<then>

<block id="102" position="5,225" size="100,50">

<assign name="b" position="20,256">

<const value ="10" />

</assign>

</block>

</then>

<else>

<block id="103" position="205,225" size="100,50">

<assign name="b" position="220,256">

<expr type="times">

<const value ="2" />

<variable name="a" />

</expr>

</assign>

</block>

</else>

</if>

<end id="104" position="105,335" size="100,50" />

</dataflow>

<testpaths>

<path x="inf,2" />

<path x="3,inf" />

</testpaths>

<graphsize size="320,390" />

51

52 A Sample XML file

<lines>

<arrow from="155,60" to="155,80" ref="101" refFrom="100" />

<arrow from="155,130" to="155,150" ref="1" refFrom="101" />

<line from="95,185" to="55,185" ref="102" refFrom="1" />

<arrow to="55,225" ref="102" refFrom="1" />

<line from="55,275" to="55,305" ref="104" refFrom="102" />

<line to="155,305" ref="104" refFrom="102" />

<line from="215,185" to="255,185" ref="103" refFrom="1" />

<arrow to="255,225" ref="103" refFrom="1" />

<line from="255,275" to="255,305" ref="104" refFrom="103" />

<line to="155,305" ref="104" refFrom="103" />

<arrow from="155,305" to="155,335" ref="104" />

</lines>

</function>

Listing A.1: EQ Example1.xml

Appendix B

EBNF of recursive algorithm
language

Algorithm = Case Case Case Case ;

Case = Statement { Statement } ;

Statement = AssignmentStmt | RecursiveCallStmt | CondStmt ;

AssignmentStmt = "result := " Expression ;

RecursiveCallStmt = "call " Side ;

CondStmt = "if " Condition " then " { Statement } ;

Expression = Operation | Function | Variable | Constant ;

Side = "left" | "right" ;

Condition = Variable BoolOperator (Variable | Constant) ;

Operation = Expression ArithmeticOperator Expression ;

Function = ("min" | "max") " (" Expression ", " Expression ")" ;

Variable = "current" | "left" | "right" ;

Constant = ["-"] Digit { Digit } ;

BoolOperator = "<" | "≤" | "=" | "6=" | "≥" | ">" ;

ArithmeticOperator = "+" | "-" | "*" | "/" ;

Digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

Listing B.1: Extended Backus Naur Form of recursive algorithm language

53

54 B EBNF of recursive algorithm language

Bibliography

[1] Alain Abran, Pierre Bourque, Robert Dupuis, and James W. Moore, editors. Guide to the Software Engineering
Body of Knowledge - SWEBOK. IEEE Computer Society, Los Alamitos, CA, USA, 2004.

[2] Asli Yagmur Akbulut and Clayton Arlen Looney. Inspiring students to pursue computing degrees. Commun. ACM,
50(10):67–71, 2007.

[3] Jonathan Anderson and Tom van Weert. Information and Communication Technology in Education: A Curriculum
for Schools and Programme of Teacher Development, 2002. UNESCO.

[4] Doug Baldwin. Discovery learning in computer science. In SIGCSE ’96: Proceedings of the twenty-seventh SIGCSE
technical symposium on Computer science education, pages 222–226, New York, NY, USA, 1996. ACM.

[5] Mordechai Ben-Ari. Constructivism in computer science education. In SIGCSE ’98: Proceedings of the twenty-ninth
SIGCSE technical symposium on Computer science education, pages 257–261, New York, NY, USA, 1998. ACM.

[6] Malte Blumberg et al. j-Algo, The Algorithm Visualisation Tool. http://j-algo.binaervarianz.de.

[7] Markus Brändle. GraphBench: Exploring the Limits of Complexity with Educational Software. PhD thesis, Swiss
Federal Institute of Technology Zurich, 2006.

[8] Peter Brusilovsky, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouchnirenko, and Philip Miller. Mini-languages: a
way to learn programming principles. Education and Information Technologies, 2(1):65–83, 1998.

[9] Lori Carter. Why students with an apparent aptitute for Computer Science don’t choose to major in Computer
Science. In SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium on Computer Science Education,
pages 27–31, New York, NY, USA, 2006. ACM.

[10] Computer Science Teachers Association. A Model Curriculum for K-12 Computer Science: Final Report of the ACM
K-12 Task Force, October 2002.

[11] Matthew J. Conway. Alice: Easy-to-Learn 3D Scripting for Novices. PhD thesis, University of Virginia, 1997.

[12] John Dewey. How We Think. D.C. Heath & Co., Boston, MA, USA, 1910.

[13] Judith Gal-Ezer and David Harel. What (else) should CS educators know? Commun. ACM, 41(9):77–84, 1998.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional, January 1994.

[15] Idit Harel and Seymour Papert. Constructionism. Ablex Publishing, Norwood, NJ, USA, 1991.

[16] W. Hartmann, J. Nievergelt, and R. Reichert. Kara, finite state machines, and the case for programming as part of
general education. In HCC ’01: Proceedings of the IEEE 2001 Symposia on Human Centric Computing Languages
and Environments (HCC’01), page 135, Washington, DC, USA, 2001. IEEE Computer Society.

[17] Christian Holmboe, Linda McIver, and Carlisle George. Research Agenda for Computer Science Education. In Proceed-
ing of the 13th Annual Workshop of the Psychology of Programming Interest Group, pages 207–223, Bournemouth,
UK, 2001.

[18] Ludger Humbert. Didaktik der Informatik. Teubner Verlag, Wiesbaden, 2005.

[19] IEEE. IEEE Standard Glossary of Software Engineering Terminology - IEEE Std.610.12-1990. IEEE Computer
Society, 1990.

[20] Tony Jenkins. The motivation of students of programming. In ITiCSE ’01: Proceedings of the 6th annual conference
on Innovation and technology in computer science education, pages 53–56, New York, NY, USA, 2001. ACM.

[21] Caitlin Kelleher, Randy Pausch, and Sara Kiesler. Storytelling Alice motivates middle school girls to learn Computer
Programming. In CHI ’07: Proceedings of the SIGCHI conference on Human factors in computing systems, pages
1455–1464, New York, NY, USA, 2007. ACM.

[22] Kristian Kiili. Digital game-based learning: Towards an experiential gaming model. The Internet and Higher
Education, 8(1):13–24, 2005.

55

56 BIBLIOGRAPHY

[23] Paul A. Kirschner, John Sweller, and Richard E. Clark. Why Minimal Guidance During Instruction Does Not Work:
An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching.
Educational Psychologist, 41(2):75–86, 2006.

[24] Lifelong Kindergarten, MIT Media Lab. http://llk.media.mit.edu/.

[25] Logo Foundation. Logo. http://el.media.mit.edu/logo-foundation/.

[26] David J. Malan and Henry H. Leitner. Scratch for budding computer scientists. In SIGCSE ’07: Proceedings of
the 38th SIGCSE technical symposium on Computer science education, pages 223–227, New York, NY, USA, 2007.
ACM.

[27] Richard E. Mayer. Should there be a three-strikes rule against pure discovery learning? the case for guided methods
of instruction. American Psychologist, 59(1):14–19, 2004.

[28] Emily Oh Navarro and André van der Hoek. SimSE: An interactive simulation game for software engineering education.
In Proceedings of the 7th IASTED International Conference on Computers and Advanced Technology in Education,
pages 12–17, Kauai, HI, USA, 2004. ACTA Press.

[29] Michael Newman. Software Errors Cost U.S. Economy $59.5 Billion Annually. NIST Assesses Technical Needs of
Industry to Improve Software-Testing. http://www.nist.gov/public affairs/releases/n02-10.htm, June 28, 2002.

[30] Jürg Nievergelt. Was ist Informatik-Didaktik? Gedanken über die Fachkenntnisse des Informatiklehrers. Informatik
Spektrum, 16(1):3–10, 1993.

[31] Jürg Nievergelt and Aurea Perez. CS Talent Scout – a self-assessment aptitude test for Computer Science. In
Proceedings of the IADIS International Conference e-Learning 2007, 2007.

[32] Seymour Papert. Mindstorms: children, computers, and powerful ideas. Basic Books, Inc., New York, NY, USA,
1980.

[33] Richard E. Pattis. Karel the Robot: A Gentle Introduction to the Art of Programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 1981.

[34] Marc Prensky. Digital game-based learning. Comput. Entertain., 1(1):21–21, 2003.

[35] James Rice, Adam Farquhar, Philippe Piernot, and Thomas Gruber. Using the Web instead of a window system.
In CHI ’96: Proceedings of the SIGCHI conference on Human factors in computing systems, pages 103–110, New
York, NY, USA, 1996. ACM.

[36] Susan H. Rodger. Introducing computer science through animation and virtual worlds. In SIGCSE ’02: Proceedings
of the 33rd SIGCSE technical symposium on Computer science education, pages 186–190, New York, NY, USA,
2002. ACM.

[37] Guido Rössling, Markus Schüer, and Bernd Freisleben. The ANIMAL algorithm animation tool. In ITiCSE ’00:
Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSEconference on Innovation and technology in computer
science education, pages 37–40, New York, NY, USA, 2000. ACM.

[38] Madeleine Schep and Nieves McNulty. Use of lego mindstorm kits in introductory programming classes: a tutorial.
J. Comput. Small Coll., 18(2):323–327, 2002.

[39] Schweizerische Konferenz der kantonalen Erziehungsdirektoren. Strategie der EDK im Bereich Informations- und
Kommunikationstechnologien (ICT) und Medien, March 2007.

[40] Andreas Schwill. Computer science education based on fundamental ideas. In Proceedings of the IFIP TC3
WG3.1/3.5 joint working conference on Information technology : supporting change through teacher education,
pages 285–291, London, UK, UK, 1997. Chapman & Hall, Ltd.

[41] Ivan Stojmenovic. Recursive Algorithms in Computer Science Courses: Fibonacci Numbers and Binomial Coefficients.
IEEE Transactions on Education, 43(3):273–276, August 2000.

[42] Jenifer Tidwell. Designing Interfaces. O’Reilly Media, Inc., 2005.

[43] Vincent Tscherter. Exorciser: Automatic generation and interactive grading of exercises in the theory of compu-
tation. PhD thesis, Swiss Federal Institute of Technology Zurich, 2004.

[44] Anja Umbach-Daniel and Armida Wegmann. Das Image der Informatik in der Schweiz, April 2008. Study by order
of the advancement program FIT in IT of the Hasler foundation.

[45] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1978.

[46] Andreas Zendler and Christian Spannagel. Empirical foundation of central concepts for computer science education.
J. Educ. Resour. Comput., 8(2):1–15, 2008.

	1 Introduction
	1.1 Motivation
	1.2 Talent Scout
	1.3 Contributions
	1.4 Overview

	2 Learning environments in Computer Science Education
	2.1 Visualization of algorithms
	2.2 Playful programming
	2.3 Theory of Computation
	2.4 Software Engineering

	3 Teaching Software Engineering
	3.1 Computer Science Education
	3.1.1 Computer Science Model Curricula
	3.1.2 Fundamental Ideas of Computer Science

	3.2 Topics of Software Engineering
	3.3 Modules for Talent Scout

	4 Module White-box Testing
	4.1 Definition
	4.2 Tasks
	4.3 Animation
	4.4 Flow Chart Editor

	5 Module Tree Recursion
	5.1 Definition
	5.2 Tasks
	5.3 Language
	5.4 Graphical programming editor
	5.5 Animation
	5.6 Random tree generation

	6 Design and Architecture
	6.1 System Architecture
	6.2 Visual Framework
	6.3 Implementation issues
	6.3.1 Flow chart representation
	6.3.2 Flow Chart Editor
	6.3.3 Graphical programming editor

	7 Conclusion
	A Sample XML file
	B EBNF of recursive algorithm language

