
Translating Java bytecode to Simple

Semester Thesis Report

Scheidegger Roman

June 2010

Chair of Programming Methodology

http://www.pm.inf.ethz.ch/

Department of Computer Science ETH Zurich



Contents

1 Introduction 2
1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Simple 3
2.1 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 ProgramPoint . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Control Flow Graph . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 ClassDefinition . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 JavaToSimple 7
3.1 ClassFileParser . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Generation of MethodDeclarations . . . . . . . . . . . 8
3.2 LocalVariableType . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 JavaProgramPoint . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Translation Details . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Conclusions 32

1



1. Introduction

The Java bytecode language is composed by more than 200 statements. In-
tuitively, it is an intermediate language between source and machine code.
Thus the most part of statements is specific for a given type(e.g. sum oper-
ators of integers, floats, etc.) as they are intended to optimize the execution
(e.g. loading from and storing to the first local variable, the second one,
etc.). In addition, Java bytecode is not structured, i.e. it contains goto’s and
conditional jumps. Finally, values are passed through an operand stack. E.g.
in order to add two integer numbers, they are pushed on the operand stack,
and a sum operator adds them pushing on the top of the stack the resulting
value.

1.1 Goal

The goal of this semester project was to develop and implement a translation
from Java bytecode programs to a particular language called Simple, com-
posed by a small set of statements (i.e. assignments, variable declarations,
throws of exceptions, method calls, and field accesses), and to represent pro-
grams through control flow graphs. This language is used by Sample (Static
Analyzer for Multiple Programming LanguagEs), a new generic static ana-
lyzer developed by Pietro Ferrara at ETH, and had already been developed
and implemented together with the control flow graph structure. A transla-
tion from Scala code to Simple was developed as well. My assignment was
to translate Java bytecode programs into Simple using the control flow graph
structure. The main issues were to

• abstract away the operand stack

• build up the control flow graph starting from unstructured code

• inject the information contained in the bytecode (e.g. type information)
into its simplified representation

2



2. Simple

In this chapter a short overview of Simple is given. To have a more compre-
hensive insight about it have a look at [1].

2.1 Statements

We’d like to translate Java bytecode to Simple, a very compact language
consisting of essentially 8 main statements:

• Variable(ID) abbreviated with V(..)
Example: x represented by Variable(’x’)

• NumericalConstant(Value, Type) abbreviated with NC(..)
Example: 1 represented by NumericalConstant(1,I)

• VariableDeclaration(Variable, Type, Right) abbreviated with VD(..)
Example: int x = 1 represented by
VariableDeclaration(Variable(’x’), I, NumericalConstant(1,I))

• FieldAccess(Object/s, Field, Type) abbreviated with FA(..)
Example: x.y represented by FieldAccess(Variable(’x’), y, I)

• MethodCall(Method, Parameters, Returntype) abbreviated with MC(..)
Example: x.+(z) represented by
MethodCall(FieldAccess(Variable(’x’), ’+’, I), < Variable(’z’) > , I)

• Assignment(Left, Right) abbreviated with A(..)
Example: x = y represented by Assignment(Variable(’x’), Variable(’y’))

3



• New(Type) abbreviated with N(..)
Example: new IOException() represented by New(’IOException’)

• Throw(Expression) abbreviated with T(..)
Example: throw new IOException represented by Throw(New(’IOException’))

Note that the Java bytecode descriptor notation was used here, so I stands
for an integer type. More information about this notation can be found in the
VM Spec[2] chapter 4.3. Also a simplified notation was used here do describe
the statements, not taking into account parameters which are irrelevant for
the Java bytecode translation. < ... > was used to denote lists.

For some languages it’s common to distinguish between expressions and
statements in a way that expressions return values (e.g. 3 + variable)
while statements do not (e.g. x = y + x). In some cases a statement is even
also considered as an expression(e.g. a method call that returns a value).
To preserve simplicity and expresiveness of Simple an approach was chosen
where basically everything is an expression and a statement is just a special
case of an expression, returning an empty value(Unit).

Another thing that could lead to a more complex language are arith-
metic expressions or things like type castings, that are natively defined by
some programming languages. Again a generalized approach was chosen for
Simple where everything is an object. With this assumption also numeri-
cal constants are objects and for example arithmetic operations like 3 + 2

can be represented in a much simpler and generalized way like 3.+(2) to
overcome the need of natively defined concepts.

2.1.1 ProgramPoint

To retain a certain correspondence between Simple and the language trans-
lated to it, in our case Java bytecode, each statement carries a ProgramPoint
object giving us a location in the original program source. This can be of
great use because it enables the analyzer to go back from a problem recog-
nized in Simple to the location in the original program code.

2.1.2 Type

In a lot of the statements we do specify types (e.g. the return type of a
method call). We do this by using a class Type to represent the type hier-
archy. It provides some methods (i.e isObject(), isNumericalType(), isStatic(),

4



getName() etc.) to extract some information about the given type or type
hierarchy.

2.2 Control Flow Graph

A CFG is basically a weighted graph built up for each method to capture
the structure of possible execution paths in the code, where nodes are list of
statements. Each node can then either have one outgoing edge with no weight
attached to it to represent an unconditional jump, or have two outgoing edges
with boolean weights true and false to represent a conditional jump. For the
latter case we need to put a condition like x.>=(0) as the last statement
to the node which can be evaluated to a boolean value. So the edges are
pointing to the nodes that are executed if the condition is evaluated to the
corresponding value.

2.3 ClassDefinition

In order to represent the structure of a class there are three major compo-
nents:

• FieldDeclaration(Modifiers, Name, Type, Right) abbreviated with FD(..)
Example: private int x represented by
FieldDeclaration(<private>, ’x’, I, null)

• MethodDeclaration(Modifiers, Name, Parameterictypes,
Arguments, Returntype, Body, Precondition, Postcondition, Invariant) ab-
breviated with MD(..)
Example: public static int evaluate(int z) represented by
MethodDeclaration(<public,static>, ’evaluate’, null, <VD(’z’,I,null)>, I,
cfg, null, null, null)

• ClassDefinition(Modifiers, Name, Parametrictypes, Extends, Fields, Meth-
ods, Package) abbreviated with CD(..)
Example: public class A extends B {} represented by
ClassDefinition(<public>, ’A’, null, ’B’, null, null, null)

For each method of a class the CFG of the code is built up and used to gen-
erate a MethodDeclaration with additional information like the access mod-
ifiers of the method(e.g public), the argument count and argument types,

5



the return type and of course also the name of the method. Analagously
FieldDeclarations are built for each field of the class and then all Field- and
MethodDeclarations are added to a ClassDefinition which contains general
information of the class like package name, super class, access modifiers and
the class name itself. This ClassDefinition wraps all the needed information
together and is all we need to pass to the analyzer for the analysis of the
class. So our end goal will be to translate a given Java bytecode class file to
a coresponding ClassDefinition.

6



3. JavaToSimple

The main goal of this project was to transform Java bytecode to Simple as
described in section 2. Therefore a library called JavaToSimple was built to
achieve this transformation. Here is an overview of the classes provided:

ClassFileParser Main parser
LocalVariableType Helper class to keep track on actual

variable declaration status
TypedStatement Combination of a statement with it’s

type information
TypeExtractor Provides some helpful functions to

extract type and access modifier in-
formation from Java bytecode type
descriptors and access flags

SimpleClasses.JavaClassIdentifier Identifier for a Java class
SimpleClasses.JavaMethodIdentifier Identifier for a Java method
SimpleClasses.JavaPackageIdentifier Identifier for a Java package
SimpleClasses.JavaProgramPoint Unique program point in the Java

bytecode
SimpleClasses.JavaType Stores type information

With this library you can obtain the ClassDefinition of a Java classfile
needed for Sample in a very simple way:

ClassDefinition cd = new ClassFileParser(name).getClassDefinition();

3.1 ClassFileParser

The ClassFileParser’s constructor just takes the path of a Java classfile as an
argument to load and parse it and in the end generate the complete ClassDef-
inition, which then later can be retrieved via the function getClassDefinition().
This ClassDefinition can be analyzed by Sample.

7



When parsing the classfile first general properties of the class like access
modifiers, superclass and the package name are extracted. Afterwards all
the FieldDeclarations with their access modifiers are read out and then the
MethodDeclarations are generated. In the end all this information is put
together to a ClassDefinition.

3.1.1 Generation of MethodDeclarations

When generating the MethodDeclarations we do also read out the access mod-
ifiers first. For non-abstract and non-native methods then the given bytecode
is translated to a CFG composed by Simple statements and that’s actually
the core contribution of this project.

Translating the opcodes

Because of the unstructured nature of the bytecode the code is parsed se-
quentally, each bytecode instruction one after the other and translated by
mimicing the behavior of the JVM [2]. To load and read the Java classfiles
the Javassist [3] library was used. This enabled the easy retrieval of bytecode
instructions and also certain other useful information like types, exception
handler positions etc.

It is obvious that there isn’t a one to one mapping between Java bytecode
and Simple so generally a sequence of bytecode instructions is mapped to a
Simple statement, possibly taking as arguments other Simple statements. To
actually build this complex nested structure out of the sequential structure
of bytecode, a virtual operand stack was used to mimic the behaviour of the
JVM. If we are translating an opcode that would put an intermediate result
on the operand stack in the JVM we build an intermediate Simple statement
and push this to the virtual operand stack. Opcodes that retrieve arguments
from the operand stack in the JVM are then translated by retrieving their
operands from the virtual operand stack. Opposite to this kind of instruc-
tions that builds statements and pushes the result to the virtual operand
stack we have instructions that build a statement which is final and needs
no more processing. Those opcodes are called flush-causing and in their case
we call the flushids() function whichs adds the given statement to the list
of parsed statements. Each parsed statement obtains a unique id and we
have two maps called instostaid and staidtoins to remember which bytecode
address was mapped to which statement id and vice-versa. All this informa-
tion is stored when calling flushids(). Last there are some special bytecode
instructions like goto or ifeq which cause jumps in the bytecode. We need
to remember this jump information, because we need it later to build the

8



CFG. So in the case of unconditional jumps like for goto we have a map
called unconditionaljumps where we put a jump in the sense of a <source,
target>-tuple. For conditional jumps there’s always a condition evaluating
to a boolean value and we always need to add two jumps, one for the true
case and one for the false case. Thus we have two additional maps called
truejumps and falsejumps where we put the corresponding jumps in the case
of a conditional jump. Note that the source and target addresses stored for
each jump are still bytecode addresses.

This is best illustrated with an example. The simple Java program:

int b = 3;

int a = 5 + b;

is first translated to Java bytecode like this

1: iconst_3

2: istore_2

3: iconst_5

4: iload_2

5: iadd

6: istore_3

and this is then represented in Simple - actually a simplified version with-
out types is used here to make it more readable - in the following form:

1: A(V(’v2’), NC(3));
2: A(V(’v3’), MC(FA(V(’v2’), ’+’), NC(5)));

So lets have a closer look at how we get from Java bytecode to Simple state-
ments.

First iconst_3 is parsed so we create a NumericalConstant with value
three and push it onto the virtual operand stack. Next instruction is istore_2,
which in the JVM would pop the value at the operand stack and store it in the
local variable number 2. So when translating this instruction we pop the top
statement from our virtual operand stack and create an Assignment statement
with a newly created Variable statement referencing the second local variable
as the left hand side and the popped statement as the right hand side. So
we see that one bytecode instruction can generate more than one statement
in one step. The istore_2 instruction is actually a flush-causing one and
therefore we call flushids() with the newly built Assignment statement as a
parameter.

9



It is important to note that either the built statements are put to the list
of parsed statements or to the virtual operand stack depending on wheather
we have a flush-causing instruction or not. So generally a indicator to tell
if a bytecode instruction is flush-causing or not is the behaviour of it in the
JVM. If the instruction would not put something to the operand stack it is a
flush-causing instruction in most cases and vice-versa.

So to continue with the above example. We then have again an iconst

instruction so a NumericalConstant is pushed on the virtual operand stacked,
followed by an iload_2 instruction which actually generates a Variable state-
ment referencing again the second local variable and puts this on to the
virtual operand stack. The iadd operation then pops the two top state-
ments and generates a MethodCall to the ’+’-method of the first object and
then pushes this MethodCall again to the virtual operand stack, like the JVM
would push the result to the operand stack. Actually in this step we put
a MethodCall on a FieldAccess to the operand stack. So note that actually
also a single bytecode instruction can cause creation of more than one Sim-
ple statement. Then we have again an istore, so again an Assignment is
generated and flushed.

So this is the general translation process of bytecode instructions giv-
ing us in the end a list of parsed Simple statements in the order they were
created, two maps storing the correspondence between bytecode addresses
and statement ids and three maps holding the information about the jumps
present in the code. You can have a look at section 3.4 to have a detailed
overview of how which Java bytecode instruction is mapped to what Simple
statements.

Building Nodes

As soon as we have parsed all the bytecode instructions to Simple statements
we need to build the CFG out of them. We do this by first building multiple
code blocks out of the parsed statements and then adding edges inbetween
them. These code blocks should be as large as possible and created in such a
way that the source of a jump is always at the end of a block and the target
of a jump is always at the beginning of a block, because it is not possible
later for an edge to point to somewhere in the middle of a block. An edge
is always outgoing from the end of a block to the begin of a block. Given
a list of Simple statements in the order they were parsed and some maps
giving us the jumps in the bytecode we want to build the CFG so that the
different code blocks of it are as large as possible. We achieve this by simply
going through the list of parsed statements and adding the statements to the
current block until we reach a reason to begin a new block. Reasons to begin

10



a new block are:

• current statement is the source of an outgoing jump

• current statement is the target of a jump

So for the first case we add the current statement to the current block and
then begin a new block. In the second case we immediately begin a new block
and add the current statement already to the new block. A statement may
possibly be both the source and the target of a jump. In this case a block with
just this statement should be created. It’s also important to note that for
the second split reason in some cases we also need to add an additional edge
between the last and the newly generated block. This is because in ’normal’
program flow the first statement of the new block would be following the
last statement of the old block. So we need to check wheather this jump is
already existing and if not we need to add it manualy to retain the original
structure.

Also for this process it is important to remember which statement was
added to which block and so we store those mappings again in two maps.

Adding Edges

After building the blocks we want to add the edges to the CFG, but they
are actually given in bytecode indexes. So with all our maps we can deter-
mine which bytecode address, was mapped to which statement and for the
statement we know to which block it was added. Because of they way we
splitted our codeblocks we know that if a bytecode address is the source of a
jump, the corresponding statement is always at the end of a code block and
if a bytecode address is the target of a jump the corresponding statement
is always at the beginning of a code block. Thus we need just to retrieve
the code blocks of the two bytecode addresses making up the jump and then
add a corresponding edge inbetween the blocks. The weight of the edge is
basically given by the map we found the jump in(e.g. true for a jump in
truemaps).

Parsing jsr calls

Java bytecode subroutines is a language feature not available in Simple. To
handle this, all the subroutine calls were treated with code inlining. As soon
as the parsing process arrives at a jsr call, the return address as also the
destination address is pushed to a jsr-stack. Then the sequential parsing
proceeds at the destination given by the jsr call. As soon as we arrive at

11



a ret instruction we pop the return address from the jsr-stack and parsing
continues at the next instruction after the return address. We are using a
stack here to make it possible to parse nested jsr calls.

Because we have inserted instructions by inlining we need to give them
unique adresses, so that also jumps in a subroutine are recognized as beeing
in a subroutine and resolved in the right way. This is resolved by using a
helper function called getactualindex which takes an integer index as an
argument and returns a string address. This function basically returns the
index as a string if we are in ordinary parsing mode, but as soon as the
jsr-stack is non-empty, indicating that we are currently parsing a jsr-call, a
string like JSRfrom:to is appended to the index giving those instructions a
unique id, depending which subroutine was called from which location.

By consequently using the getactualindex function everywhere where we
need to reference some bytecode indexes, we achieve a consistent addressing
schema.

3.2 LocalVariableType

It is possible for Java bytecode to use a local variable multiple times with
different types and because Simple doesn’t support this we need to keep
track of such redeclarations. We treat such redeclarations in Simple like new
variables with new type and name. The LocalVariableType class is used to
remember the current type and revision of a local variable. So we can always
use this information to check wheather we have the same variable as before,
or a new one.

We know in advance how many local variables are used so we have a list
of LocalVariableType’s. As local variables are also used to pass arguments,
first the local variable type of such local variables are set to the argument
types. Then each time we have an assignment to a local variable there is a
check to ensure that the types are the same. If not, we set the new type and
internally the variable revision is increased. VariableIdentifiers for Simple are
then always composed out of the number and the revision to ensure that we
have a ’new’ variable if the revision increased.

3.3 JavaProgramPoint

This class represents a point in Java bytecode to use as described in sec-
tion 2.1.1. It basically takes three parameters, namely two strings called
classname and block and an integer called row. The classname parameter is

12



trivial and always corresponds to the name of the class in which we want to
describe a program point. The block parameter by default is a method name
of the given class and in such a case the row parameter corresponds to the
byte offset in the code attribute of the given method. The other cases of the
block parameter are as follows:

• ::classfile This is used for the program points of the ClassDefinition
and in this case the row parameter is set to zero.

• ::field_info This is used for porgram points of FieldDeclaration’s and
in that case the row parameter gives us the number of the declared field.

• ::method_info This is used for program points of MethodDeclaration’s
and in that case the row parameter gives the number of the declared
method.

3.4 Translation Details

In this chapter we give a detailed overview of how each Java bytecode in-
struction is translated. Again the Java bytecode descriptor notation is used
here to indicate types. If nothing is indicated the given Simple statements
are put to the virtual operand stack. If the statement is added to the list of
parsed statements instead we indicated this with the term flush-causing.
Abbreviations used:

• OCV Opcode Value: The value is determined by the instruction itself.

• BAV Byte Argument Value: The value is given as a sequence of bytes
after the opcode.

• CPV Constant Pool Value: The value is given by a reference to an item
in the constant pool.

• VI Variable Identifier

• VT Variable Type

• tempN Name of temporary Variable

• OSAx Operand Stack Argument x: The value ist taken from the posi-
tion x starting from the top of the virtual operand stack.

• <..>| Indicates a list.

13



nop(0) No Statement built
aconst_null(1) NC(’null’,’Ljava/lang/Object;’)
iconst_m1(2),
iconst_0(3),
iconst_1(4),
iconst_2(5),
iconst_3(6),
iconst_4(7),
iconst_5(8)

NC(OCV, I)

Helper function: __pushconstant

lconst_0(9),
lconst_1(10)

NC(OCV, J)

Helper function: __pushconstant
fconst_0(11),
fconst_1(12),
fconst_2(13)

NC(OCV, F)

Helper function: __pushconstant
dconst_0(14),
dconst_1(15)

NC(OCV, D)

Helper function: __pushconstant
bipush(16),
sipush(17)

NC(BAV, I)

Helper function: __pushconstant
ldc(18),
ldc_w(19),
ldc2_w(20)

NC(CPV, CPV)

Helper function: __pushconstant
iload(21),
lload(22),
fload(23),
dload(24),
aload(25)

Variable(VI)

Helper function: __pushvariable

Note: The VariableIdentifier is built with the variable
number given as a bytecode argument and the current
revision of the variable, tracked with localtypes.

14



iload_0(26),
iload_1(27),
iload_2(28),
iload_3(29),
lload_0(30),
lload_1(31),
lload_2(32),
lload_3(33),
fload_0(34),
fload_1(35),
fload_2(36),
fload_3(37)

dload_0(38),
dload_1(39),
dload_2(40),
dload_3(41),
aload_0(42),
aload_1(43),
aload_2(44),
aload_3(45)

Variable(VI)

Helper function: __pushvariable

Note: The VariableIdentifier is built with the variable
number given as an instruction suffix and the current
revision of the variable, tracked with localtypes.

iaload(46) MC(FA(OSA2, ’apply’, (I)I), <OSA1>, I)

Helper function: __pusharrayaccessread
laload(47) MC(FA(OSA2, ’apply’, (I)J), <OSA1>, J)

Helper function: __pusharrayaccessread
faload(48) MC(FA(OSA2, ’apply’, (I)F), <OSA1>, F)

Helper function: __pusharrayaccessread
daload(49) MC(FA(OSA2, ’apply’, (I)D), <OSA1>, D)

Helper function: __pusharrayaccessread
aaload(50) MC(FA(OSA2, ’apply’, (I)Ljava/lang/Object;), <OSA1>,

Ljava/lang/Object;)

Helper function: __pusharrayaccessread
baload(51) MC(FA(OSA2, ’apply’, (I)I), <OSA1>, I)

Helper function: __pusharrayaccessread

15



caload(52) MC(FA(OSA2, ’apply’, (I)I), <OSA1>, I)

Helper function: __pusharrayaccessread
saload(53) MC(FA(OSA2, ’apply’, (I)I), <OSA1>, I)

Helper function: __pusharrayaccessread
istore(54),
lstore(55),
fstore(56),
dstore(57),
astore(58)

A(V(VI),OSA1)
or
VD(V(VI), VT, OSA1)

Helper function: __variableassignment

flush-causing

Note: The VariableIdentifier is built with the vari-
able number given as a bytecode argument and
the current revision of the Variable, tracked with
localtypes. localtypes is also used to determine
wheather we have a re-declaration or an assignment.
The VariableType is determined from the operand
stack argument OSA1.

16



istore_0(59),
istore_1(60),
istore_2(61),
istore_3(62),
lstore_0(63),
lstore_1(64),
lstore_2(65),
lstore_3(66),
fstore_0(67),
fstore_1(68),
fstore_2(69),
fstore_3(70),
dstore_0(71),
dstore_1(72),
dstore_2(73),
dstore_3(74),
astore_0(75),
astore_1(76),
astore_2(77),
astore_3(78)

A(V(VI),OSA1)
or
VD(V(VI), VT, OSA1)

Helper function: __variableassignment

flush-causing

Note: The VariableIdentifier is built with the variable
number given as an instruction suffix and the current
revision of the Variable, tracked with localtypes.
localtypes is also used to determine wheather we have
a re-declaration or an assignment. The VariableType is
determined from the operand stack argument OSA1.

iastore(79) MC(FA(OSA3, ’update’, (II)V), <OSA2, OSA1>, V)

Helper function: __pusharrayaccesswrite

flush-causing
lastore(80) MC(FA(OSA3, ’update’, (IJ)V), <OSA2, OSA1>, V)

Helper function: __pusharrayaccesswrite

flush-causing
fastore(81) MC(FA(OSA3, ’update’, (IF)V), <OSA2, OSA1>, V)

Helper function: __pusharrayaccesswrite

flush-causing

17



dastore(82) MC(FA(OSA3, ’update’, (ID)V), <OSA2, OSA1>, V)

Helper function: __pusharrayaccesswrite

flush-causing
aastore(83) MC(FA(OSA3, ’update’, (ILjava/lang/Object;)V),

<OSA2, OSA1>, V)

Helper function: __pusharrayaccesswrite

flush-causing
bastore(84) MC(FA(OSA3, ’update’, (IZ)V), <OSA2, OSA1>, V)

or
MC(FA(OSA3, ’update’, (IB)V), <OSA2, OSA1>, V)

Helper function: __pusharrayaccesswrite

flush-causing

Note: The used type is determined with the pa-
rameter OSA1 on the operand stack.

castore(85) MC(FA(OSA3, ’update’, (IC)V), <OSA2, OSA1>, V)

Helper function: __pusharrayaccesswrite

flush-causing
sastore(86) MC(FA(OSA3, ’update’, (IS)V), <OSA2, OSA1>, V)

Helper function: __pusharrayaccesswrite

flush-causing
pop(87) No statement is created. The statement on top of the

virtual operand stack is popped and flushed.

flush-causing

18



pop2(88) No statement is created. The statement on top of
the virtual operand stack is popped and flushed. If
this statement is not of type double or long a second
statement is popped and flushed.

flush-causing
dup(89) No statement is created. The statement on top of the

virtual operand stack is popped and then put on the
operand stack twice.

dup_x1(90) No statement is created. The two top statements(OSA1,
OSA2) of the virtual operand stack are popped and then
put again to the virtual operand stack in the following
order: OSA1, OSA2, OSA1.

dup_x2(91) No statement is created. The two top statements(OSA1,
OSA2) of the virtual operand stack are popped. If OSA2
is either of type double or long the statements are put
back on the operand stack in the following order: OSA1,
OSA2, OSA1. Otherwise a third statement(OSA3) is
popped and then these statements are put back to the
virtual operand stack in the following order: OSA1,
OSA3, OSA2, OSA1

dup2(92) No statement is created. The top statement(OSA1) of
the virtual operand stack is popped. If OSA1 is ei-
ther of type double or long the statements is put back
on the operand stack twice. Otherwise a second state-
ment(OSA2) is popped and then these statements are
put back to the virtual operand stack in the following
order: OSA2, OSA1, OSA2, OSA1

dup2_x1(93) No statement is created. The two top statements(OSA1,
OSA2) of the virtual operand stack are popped. If OS1
is either of type double or long then the statements are
put back again to the virtual operand stack in the fol-
lowing order: OSA1, OSA2, OSA1. Otherwise a third
statement(OS3) is popped first and then all three state-
ments are pushed back in the following order: OSA2,
OSA1, OSA3, OSA2, OSA1

19



dup2_x2(94) No statement is created. The two top statements(OSA1,
OSA2) of the virtual operand stack are popped. If OSA1
and OSA2 are both either of type double or long then
the statements are put back again to the virtual operand
stack in the following order: OSA1, OSA2, OSA1. If
only OSA1 is either of type double or long, a third state-
ment (OSA3) is popped and then all three statements
are pushed back in the following order OSA1, OSA3,
OSA2, OSA1. If neither OSA1 nor OSA2 is type long
or double a third statement OSA3 is popped of the vir-
tual operand stack. If OS3 is of type double or long,
the three statements are pushed back in the following
order: OSA2, OSA1, OSA3, OSA2, OSA1. Otherwise
a fourth statement OSA4 is popped and the four state-
ments are pushed back like this: OSA2, OSA1, OSA4,
OSA3, OSA2, OAS1

swap(95) No statement is created. The two statements(OSA1,
OSA2) on top of the virtual operand stack are popped
and then pushed on the operand stack in swapped order:
OSA1, OSA2.

iadd(96) MC(FA(OSA2, ’+’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
ladd(97) MC(FA(OSA2, ’+’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
fadd(98) MC(FA(OSA2, ’+”, (F)F), <OSA1 >, F)

Helper function: __pushbioperator
dadd(99) MC(FA(OSA2, ’+’, (D)D), <OSA1 >, D)

Helper function: __pushbioperator
isub(100) MC(FA(OSA2, ’-’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
lsub(101) MC(FA(OSA2, ’-’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator

20



fsub(102) MC(FA(OSA2, ’-’, (F)F), <OSA1 >, F)

Helper function: __pushbioperator
dsub(103) MC(FA(OSA2, ’-’, (D)D), <OSA1 >, D)

Helper function: __pushbioperator
imul(104) MC(FA(OSA2, ’*’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
lmul(105) MC(FA(OSA2, ’*’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
fmul(106) MC(FA(OSA2, ’*’, (F)F), <OSA1 >, F)

Helper function: __pushbioperator
dmul(107) MC(FA(OSA2, ’*’, (D)D), <OSA1 >, D)

Helper function: __pushbioperator
idiv(108) MC(FA(OSA2, ’/’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
ldiv(109) MC(FA(OSA2, ’/’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
fdiv(110) MC(FA(OSA2, ’/’, (F)F), <OSA1 >, F)

Helper function: __pushbioperator
ddiv(111) MC(FA(OSA2, ’/’, (D)D), <OSA1 >, D)

Helper function: __pushbioperator
irem(112) MC(FA(OSA2, ’%’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
lrem(113) MC(FA(OSA2, ’%’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
frem(114) MC(FA(OSA2, ’%’, (F)F), <OSA1 >, F)

Helper function: __pushbioperator

21



drem(115) MC(FA(OSA2, ’%’, (D)D), <OSA1 >, D)

Helper function: __pushbioperator
ineg(116) MC(FA(OSA1, ’negate’, ()I), null, I)

Helper function: __pushoperator
lneg(117) MC(FA(OSA1, ’negate’, ()J), null, J)

Helper function: __pushoperator
fneg(118) MC(FA(OSA1, ’negate’, ()F), null, F)

Helper function: __pushoperator
dneg(119) MC(FA(OSA1, ’negate’, ()D), null, D)

Helper function: __pushoperator
ishl(120) MC(FA(OSA2, ’<<’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
lshl(121) MC(FA(OSA2, ’<<’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
ishr(122) MC(FA(OSA2, ’>>’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
lshl(123) MC(FA(OSA2, ’>>’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
iushr(124) MC(FA(OSA2, ’>>>’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
lushr(125) MC(FA(OSA2, ’>>>’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
iand(126) MC(FA(OSA2, ’&’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
land(127) MC(FA(OSA2, ’&’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator

22



ior(128) MC(FA(OSA2, ’|’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
lor(129) MC(FA(OSA2, ’|’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
ixor(130) MC(FA(OSA2, ’ˆ ’, (I)I), <OSA1 >, I)

Helper function: __pushbioperator
lxor(131) MC(FA(OSA2, ’ˆ ’, (J)J), <OSA1 >, J)

Helper function: __pushbioperator
iinc(132) MC(FA(V(VI), ’+’, (I)V), <NC(BAV, I) >, V)

flush-causing
i2l(133) MC(FA(OSA1, ’i2l’, ()J), null, J)

Helper function: __pushoperator
i2f(134) MC(FA(OSA1, ’i2f’, ()F), null, F)

Helper function: __pushoperator
i2l(135) MC(FA(OSA1, ’i2d’, ()D), null, D)

Helper function: __pushoperator
l2i(136) MC(FA(OSA1, ’l2i’, ()I), null, I)

Helper function: __pushoperator
l2f(137) MC(FA(OSA1, ’l2f’, ()F), null, F)

Helper function: __pushoperator
l2d(138) MC(FA(OSA1, ’l2d’, ()D), null, J)

Helper function: __pushoperator
f2i(139) MC(FA(OSA1, ’f2i’, ()I), null, I)

Helper function: __pushoperator
f2l(140) MC(FA(OSA1, ’f2l’, ()J), null, J)

Helper function: __pushoperator

23



f2d(141) MC(FA(OSA1, ’f2d’, ()D), null, D)

Helper function: __pushoperator
d2i(142) MC(FA(OSA1, ’d2i’, ()I), null, I)

Helper function: __pushoperator
d2l(143) MC(FA(OSA1, ’d2l’, ()J), null, J)

Helper function: __pushoperator
d2f(144) MC(FA(OSA1, ’d2f’, ()F), null, F)

Helper function: __pushoperator
i2b(145) MC(FA(OSA1, ’i2b’, ()I), null, I)

Helper function: __pushoperator
i2c(146) MC(FA(OSA1, ’i2c’, ()I), null, I)

Helper function: __pushoperator
i2s(147) MC(FA(OSA1, ’i2s’, ()I), null, I)

Helper function: __pushoperator
lcmp(148) MC(FA(OSA2, ’compare’, (J)I), <OSA1 >, I)

Helper function: __pushbioperator
fcmpl(149) MC(FA(OSA2, ’comparel’, (F)I), <OSA1 >, I)

Helper function: __pushbioperator
fcmpg(150) MC(FA(OSA2, ’compareg’, (F)I), <OSA1 >, I)

Helper function: __pushbioperator
dcmpl(151) MC(FA(OSA2, ’comparel’, (D)I), <OSA1 >, I)

Helper function: __pushbioperator
dcmpg(152) MC(FA(OSA2, ’compareg’, (D)I), <OSA1 >, I)

Helper function: __pushbioperator
ifeq(153) MC(FA(OSA1, ’==’, (I)Z), <NC(0, I) >, Z)

Helper function: __comparisonzero

24



ifne(154) MC(FA(OSA1, ’ !=’, (I)Z), <NC(0, I) >, Z)

Helper function: __comparisonzero
iflt(155) MC(FA(OSA1, ’<’, (I)Z), <NC(0, I) >, Z)

Helper function: __comparisonzero
ifge(156) MC(FA(OSA1, ’>=’, (I)Z), <NC(0, I) >, Z)

Helper function: __comparisonzero
ifgt(157) MC(FA(OSA1, ’>’, (I)Z), <NC(0, I) >, Z)

Helper function: __comparisonzero
ifle(158) MC(FA(OSA1, ’<=’, (I)Z), <NC(0, I) >, Z)

Helper function: __comparisonzero
.
if_icmpeq(159)

MC(FA(OSA2, ’==’, (I)Z), <OSA1 >, Z)

Helper function: __comparison
if_icmpne(160) MC(FA(OSA2, ’ !=’, (I)Z), <OSA1 >, Z)

Helper function: __comparison
if_icmplt(161) MC(FA(OSA2, ’<’, (I)Z), <OSA1 >, Z)

Helper function: __comparison
if_icmpge(162) MC(FA(OSA2, ’>=’, (I)Z), <OSA1 >, Z)

Helper function: __comparison
if_icmpgt(163) MC(FA(OSA2, ’>’, (I)Z), <OSA1 >, Z)

Helper function: __comparison
if_icmple(164) MC(FA(OSA2, ’<=’, (I)Z), <OSA1 >, Z)

Helper function: __comparison
if_acmpeq(165) MC(FA(OSA2, ’==’, (Ljava/lang/Object;)Z), <OSA1 >,

Z)

Helper function: __comparison

25



if_acmpne(166) MC(FA(OSA2, ’ !=’, (Ljava/lang/Object;)Z), <OSA1 >,
Z)

Helper function: __comparison
goto(167) No statement is created. A jump from the current po-

sition to the given destination is added to the uncondi-
tionaljumps map.

jsr(168) No statement is created. By putting a token of the form
JSRsource:target on the jsrcalls stack the JSR parsing
mode is enabled. Parsing continues at the target byte-
code address.

ret(169) No statement is created. The return address is fetched
from the jsrcalls stack to determine the return address of
the current JSR call and parsing continues at the given
return address.

tableswitch

(170)

Translates the tableswitch opcode to a series of
if(index == exp1) goto dest1 expressions. Each of
the comparisons is added to the list of parsed state-
ments so its actually flush-causing and corresponding
jumps are added.

Helper function: __tableswitch

flush-causing
lookupswitch

(171)

Translates the lookupswitch opcode to a series of
if(key == exp1) goto dest1 expressions. Each of
the comparisons is added to the list of parsed state-
ments so its actually flush-causing and corresponding
jumps are added.
Helper function: __lookupswitch

flush-causing
ireturn(172),
lreturn(173),
freturn(174),
dreturn(175),
areturn(176)

The statement on the virtual operand stack is popped
and added to the list of parsed statements.

flush-causing

26



return(177) An empty statement is created and added to the list of
parsed statements.

flush-causing
getstatic(178) FA(V(CPV), CPV, CPV)

Accesses a field of a static class. Both the class-
name and the fieldname as also the field type are
retrieved from the constant pool.
Helper function: __readfield

putstatic(179) A(FA(V(CPV), CPV, CPV), OSA1)

Accesses a field of a static class. Both the class-
name and the fieldname as also the field type are
retrieved from the constant pool.
Helper function: __writefield

getfield(180) FA(OSA1, CPV, CPV)

The fieldname as also the field type are retrieved
from the constant pool.
Helper function: __readfield

putfield(181) A(FA(OSA2, CPV, CPV), OSA1)

The fieldname as also the field type are retrieved
from the constant pool.
Helper function: __writefield

invokevirtual

(182),
invokespecial

(183)

A(V(tempN), MC(FA(OSAN, CPV, CPV), <OSA1,
OSA2, ..., OSAN-1>, CPV))

Adds an Assignment of the result of MethodCall to
a newly created Variable to the list of parsed state-
ments. The temporarily created variable holding the
result of the MethodCall is then pushed to the operand
stack. The introduction of a variable is used to cope
with possible side effects of methods.
Helper function: __invokemethod

27



invokestatic

(184)

A(V(tempN), MC(FA(V(CPV), CPV, CPV), <OSA1,
OSA2, ..., OSAN-1>, CPV))

Adds an Assignment of the result of MethodCall to
a newly created Variable to the list of parsed state-
ments. The temporarily created variable holding the
result of the MethodCall is then pushed to the operand
stack. The introduction of a variable is used to cope
with possible side effects of methods.
Helper function: __invokemethod

invokeinterface

(185)

A(V(tempN), MC(FA(OSAN, CPV, CPV), <OSA1,
OSA2, ..., OSAN-1>, CPV))

Adds an Assignment of the result of MethodCall to
a newly created Variable to the list of parsed state-
ments. The temporarily created variable holding the
result of the MethodCall is then pushed to the operand
stack. The introduction of a variable is used to cope
with possible side effects of methods.
Helper function: __invokemethod

new(187) N(CPV)

newarray(188) MC(FA(N(BAV), ’initialize’, BAV), <OSA1>, BAV)

anewarray(189) MC(FA(N(CPT), ’initialize’, CPV), <OSA1>, CPV)

arraylength

(190)

MC(FA(OSA1, ’length’, ()I), null, I)

athrow(191) T(OSA1)

flush-causing

28



checkcast(192) MC(FA(OSA2, ’isInstanceOf’, (Ljava/lang/String;)Z),
<NC(CPV, Ljava/lang/String;)>, Z)

instanceof(193) MC(FA(OSA2, ’isInstanceOf’, (Ljava/lang/String;)Z),
<NC(CPV, Ljava/lang/String;)>, Z)

monitorenter

(194)

MC(FA(OSA1, ’monitorenter’, ()V), null, V)

flush-causing

monitorexit

(195)

MC(FA(OSA1, ’monitorexit’, ()V), null, V)

flush-causing

wide(196) No statement is created. The wide flag is set to true.

multianewarray

(197)

MC(FA(N(CPT), ’initialize’, CPV), <OSA1, OSA2, ..,
OSAN>, CPV)

ifnull(198) MC(FA(OSA1, ’==’, (Ljava/lang/Object;)Z), <NC(’null’,
Ljava/lang/Object;)>, Z)

flush-causing

ifnonnull(199) MC(FA(OSA1, ’ !=’, ’(Ljava/lang/Object;)Z), <NC(’null’,
Ljava/lang/Object;)>, Z)

flush-causing

goto_w(200) Same as goto just more bytes used to determine address.

jsr_w(201) Same as jsr just more bytes used to determine address.

In the following table an overview of the used and introduced method
calls and their semantics is given.

29



MethodCall Semantics
x.+(y) x + y

x.-(y) x - y

x.*(y) x * y

x./(y) x / y

x.%(y) x % y

Remainder of division
x./(y) x / y

x.negate() 0 - x

x.<<(y) x << y

Arithmetic shift
x.>>(y) x >> y

Arithmetic shift
x.>>>(y) x >>> y

Logical shift
x.&(y) x & y

Bitwise and
x.|(y) x | y

Bitwise or
x.^(y) x ^ y

Xor
x.apply(y) x[y]

x.update(y,z) x[y] = z

i.i2l() (long)i

Type conversion from int to long
i.i2f() (float)i

Type conversion from int to float
i.i2d() (double)i

Type conversion from int to double
l.l2i() (int)l

Type conversion from long to int
l.l2f() (float)l

Type conversion from long to float
l.l2d() (double)l

Type conversion from long to double
f.f2i() (int)f

Type conversion from float to int
f.f2l() (long)f

Type conversion from float to long

30



f.f2d() (double)f

Type conversion from float to double
d.d2i() (int)d

Type conversion from double to int
d.d2l() (long)d

Type conversion from double to long
d.d2f() (float)d

Type conversion from double to float
i.i2b() (byte)i

Type conversion from int to byte
i.i2c() (char)i

Type conversion from int to char
i.i2s() (short)i

Type conversion from int to short
x.compareg(y) If x greater than y the result is 1. If both values

are equal the result is 0. If x is less than y the
result is -1. If one of the values is NaN the result
is 1.

x.comparel(y) If x greater than y the result is 1. If both values
are equal the result is 0. If x is less than y the
result is -1. If one of the values is NaN the result
is -1.

x.compare(y) If x greater than y the result is 1. If both values
are equal the result is 0. If x is less than y the
result is -1.

x.==(y) x == y

x.!=(y) x != y

x.<(y) x < y

x.>=(y) x >= y

x.>(y) x > y

x.<=(y) x <= y

x.initialize(q,k,...x) x = new int[q][k]..[x]

Array initialization. Note that the type is not
fixed to int.

x.length() The length of the array is determined.
x.isIstanceOf(y) x instanceof y

x.monitorenter() Enter monitor for object.
x.monitorexit() Exit monitor for object.

31



4. Conclusions

JavaToSimple was completely written in Java whereas Sample and also Simple
were written in Scala. Nevertheless the interoperation of the two languages
didn’t cause too much trouble, as we expected it because Scala is built on top
of Java. There are still some open issues. First of all the implementation of
the JavaType class is very incomplete. One needs to implement the method
it derives from the parent Type class. Secondly, until now no effort has been
done trying to optimize for speed of the parsing proccess. That would be a
possible point for improvements in the future, although the parsing process
is not really slow. It is actually comparable in time with compilation. In
the end all the Java opcodes described in the Java Virtual Machine Speci-
fication [2] were successfully implemented. To test the implementation we
let JavaToSimple parse the whole Java Class Library containing over 16’000
classes which were all parsed without generating any errors. JavaToSimple
is therefore able to parse most if not all correct Java classfiles and generate
ClassDefinition’s for them.

32



Bibliography

[1] Pietro Ferrara,
How to extend Sample to analyze a new language.
ETH Zurich 2010

[2] Tim Lindholm, Frank Yellin,
The Java Virtual Machine Specification, Second Edition
http://java.sun.com/docs/books/jvms/second edition/html/VMSpecTOC.doc.html

[3] Shigeru Chiba,
Javassist
http://www.csg.is.titech.ac.jp/ chiba/javassist/

33


