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Abstract

The current version of Jive uses a Hoare style logic based on a non-
modular proof technique. Besides the limitation that the whole program
must be known to the veri�er, layered object structures are di�cult to
verify with a non-modular technique. The goal of my master thesis is
to make a step towards modularity by changing the logic of Jive to be
based on ownership proof technique, which is a modular proof technique
supporting layered object structures. Ownership proof technique's mod-
ularity is achieved by the use of universe type system annotations and by
several restrictions imposed on the program. Since this proof technique
relies on universe type system annotations the modi�ed Jive logic should
be aware of universe type system speci�c properties. Full modularity re-
quires further considerations, which are not addressed in this thesis.
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1 INTRODUCTION 5

1 Introduction

Surprisingly veri�cation of software, although a research area for already 35
years, is still one of the big hot spots of research in computer science. Hoare
in his famous paper [8] presented a logic for reasoning about programs using
a weakest precondition calculus based on rules and axioms. As observed by
Bornat in [14] (and Hoare himself hints at it in his paper), the Hoare axiom of
assignment is only sound when distinct variable names refer to distinct storage
locations. References introduce the problem of pointer aliasing, since pointers
decouple variable names from storage locations and hence two distinct variable
names could both refer to a single storage location. Many proposals have been
made to solve the pointer aliasing problem, one of the �rst was made by Morris
in [15]. In this thesis the store model of Poetzsch-He�ter and Müller's program
logic [12, 13] is used.

Another reason for software veri�cation still being a hot research topic is the
evolution of speci�cation. Hoare's target programming language was functional
without the concept of stateful objects. He even assumed function calls to be
side-e�ect free with respect to the caller function in order to receive sound rea-
soning. Thus it was su�cient to use only function pre- and postconditions as
program speci�cation. Object-oriented programming languages introducing the
concept of stateful objects demanded new speci�cation elements, the most im-
portant of which are object invariants specifying consistency constraints on the
object state. Additionally the assumption of Hoare that meaningful programs
can be written without having function calls to be side-e�ect full respective to
caller methods is no more true in object-oriented languages, where side-e�ect
full method calls changing the state of their receiver object are normally the
main part of the program logic. This yielded in the additional need to specify
what locations a certain method is allowed to alter.

The use of object invariants brought a new problem, since without invariants
when proving a function to be correct, it was su�cient to consider only one
proof obligation, namely that the precondition of the function in question is
su�cient to derive the postcondition. As object invariants according to their
semantics must hold in all visible states (a de�nition of visible state will be
given in section 2.1.3), many more proof obligations arise, namely that the
invariants of all objects being in a visible state must always hold. The problem
with these new proof obligations is that the veri�er can not determine the set
of all objects being in a visible state as it would force the veri�er to consider
all possible program states that could occur at an invocation of the method in
question, which is normally impossible. This problem could be circumvented if
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a di�erential approach is taken using the fact that at the beginning of a method
the invariants of all objects in a visible state hold. The veri�er could check that
every assignment and invocation occuring in the method in question does not
break the invariants of the objects in a visible state by examining all changed
locations. Again pointer aliasing renders these checks very di�cult, since a
modi�cation in an object can be visible at several (even unexpected) points.

Besides the problem, that it is normally very di�cult to reason about the set
of objects being in a visible state, it is even theoretically impossible to reason
about this set for a library method, since when veri�ng that library code the
client of this library and its objects are not known to the veri�er.

The approaches to overcome these di�culties in verifying programs with invari-
ants can be divided into two groups, namely the non-modular and the modular
solutions. While the non-modular solutions target to verify whole programs,
meaning that all parts of the code are known to the veri�er, modular solutions
aim at verifying well-de�ned program parts without the need to know the whole
program. All solutions try to make a reasonable trade-o� between introducing
additional rules restricting the expressiveness of invariants and limiting the us-
age of certain language constructs on the one hand and the di�culty of proving
the resulting proof obligations on the other hand.

The current version of the program veri�er Jive [1, 2] uses a non-modular
logic. Since this non-modular logic is severely limited in its ability of proving
the correctness of programs having layered structures, it is the target of this
thesis to describe a way how to make a big step toward Jive's logic being
modular. This new logic is based on the ownership proof technique [3]. It
uses the ownership model of the universe type system [6, 12, 19] which allows a
modular logic to support layered structures.

In Section 2 the current version of Jive is presented by describing its archi-
tecture and its non-modular logic. Section 3 shows a major limitation of the
current non-modular Jive logic and tries to get out the exact reason why this
limitation emerges. Section 4 presents the concepts of the universe type system
and its ownership model needed for introducing a new proof technique explained
in Section 5 that should overcome the limitation shown in Section 3 by being
a big step towards full modularity. Section 6 and section 7 deal with the inte-
gration of the concepts and techniques described in previous sections into Jive.
While section 6 describes the formalization and axiomatization of the universe
type system's ownership model in Jive and Isabelle, Section 7 is about how
to integrate the new proof technique smoothly into Jive's existing framework.
Section 8 tries to demonstrate the advantages of this thesis with examples. In
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section 9 some interesting details about the implementation of the previous sec-
tions is given and in section 10 future tasks still required for full modularity are
listed.

2 Current Jive

2.1 Jive's Architecture

Jive stands for Java Interactive Veri�cation Environment. It is, as its name
says, an interactive program veri�er based on a partial correctness Hoare-logic.
Jive is being developed by the Software Component Technology Group at ETH
Zürich together with the Softwaretechnik Group at TU Kaiserslautern and is
implemented in Java.

While this thesis was in progress a concept called light ownership using the
universe type system was independently of this thesis introduced into Jive's
logic. Therefore when referring to current Jive's logic in this thesis the Jive
logic without any universe type system support is meant.

2.1.1 Target Language of Jive

Jive's target language is Diet Java Card [17], which is a subset of Java Card
[7]. Java Card itself supports most Java language constructs, but is sequential,
i.e. there is only one execution thread. Although Diet Java Card supports
less language constructs than Java Card, specially nesting of expressions is very
restricted, it still supports all important object-oriented features like inheritance
and dynamic binding of methods. It was introduced by the Jive developers in
order to keep veri�cation simple without lessening the power of Jive since Java
Card programs can be transformed into Diet Java Card programs. As a side-
mark it should be mentioned that the current logic of Jive does not support
all of Diet Java Card language constructs but only a even smaller Java subset
called Java-KEx [16]. Since most considerations performed in this thesis hold
for both, Diet Java Card and Java-KEx input programs, the target language in
this thesis will be assumed to be Diet Java Card. It will be explicitely mentioned
if Java-KEx is assumed as target language for some considerations.
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2.1.2 Java Modeling Language

Diet Java Card programs used as input for Jive are to be speci�ed with JML
annotations. JML stands for Java Modeling Language [4, 5] and is used to spec-
ify programs. Its syntax is a subset of Java enriched with speci�cation-speci�c
expressions and statements. JML speci�cation annotations can be written in
the program code �le itself or in a separate speci�cation �le. Figure 1 shows an
example of a JML annotated Java program. There are many tools developed for
JML of which some are included in the JML release. Among those included in
the release is the JML checker, which performs the usual compiler checks on a
JML annotated Java program in order to guarantee syntactical correctness and
well-typed expressions. Additionally some more sophisticated semantic checks
are done as for instance method purity checks1 and side-e�ect freeness of spec-
i�cation expressions checks are performed. An other tool included in the JML
release and building on the JML checker is the JML runtime assertion checker,
which compiles the input JML annotated Java program to Java bytecode adding
runtime checks for the executable parts of the speci�cation.

The next section describes some basic JML elements used in this thesis. More
information about JML can be found in [4, 5].

2.1.3 Some Basic JML Elements

In Figure 1 some basic JML elements can be seen.

Invariants specify the consistent states of objects. The term invariant se-
mantics means the speci�cation when invariants have to hold for what objects.
The invariant semantics of JML requires the invariants of all objects to hold in
all visible states. A precise de�nition of visible state can be found in [5, Section
8.2]. Simpli�ed it can be said that a state is visible for object o if it occurs (a)
at the end of a constructor of o, (b) at the beginning or at the end of a method
invocation with o as receiver object or (c) when no constructor or method of
o is in progress. Note that this de�nition of a visible state does not allow any
method others that of o to break the invariant of o even temporarily. Since Jive
provides no mechanism to enforce conditions to hold after every statement, Jive
does not use the visible state de�nition of JML but a modi�ed version:

1which are currently still unsound
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Figure 1: Exampe of a JML annotated Java program

1 class JML_Example {
2 /*@ public model String mydoublestring;
3 @ public represents mydoublestring <- mystring + mystring;
4 @*/
5
6 private /*@ spec_public @*/ String mystring;
7 //@ in mydoublestring;
8
9 /*@ public invariant mystring != null;

10 @ public invariant mystring.startsWith("something");
11 @ public invariant mydoublestring != null; @*/
12
13 /*@ public requires in != null;
14 @ public ensures (\result.equals(\old(mystring) + in))
15 @ && (mystring.equals(\old(mystring) + in));
16 @ public assignable mydoublestring;
17 @*/
18 public String addToMyString(String in) {
19 mystring = mystring + in;
20 return mystring;
21 }
22
23 /*@ public requires true;
24 @ public ensures \result == mystring;
25 @ public assignable \nothing;
26 @*/
27 public /*@ pure @*/ String getMyString() {
28 return mystring;
29 }
30
31 /*@ requires true;
32 @ ensures \result.equals(in + in);
33 @ signals (NullPointerException) in == null;
34 @*/
35 public /*@ pure @*/ String doubleString(String in) {
36 return in + in;
37 }
38
39 public /*@ pure @*/ JML_Example() {
40 mystring = new String();
41 }
42 }
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De�nition 1 (Visible States) A program execution state is called
visible if it is a pre- or poststate of a method call. These states are
also called points of execution control transfer.

As this de�nition of a visible state does not take in account constructors, the
invariant semantics in Jive is changed to

De�nition 2 (Invariant Semantics in current Jive) The invari-
ants of all objects have to hold in all visible states, besides for the
invariant of a newly created object at the beginning of its constructor.

Note that every execution control transfer has two di�erent points of consider-
ation, namely in the caller and in the callee. While the de�nition of a visible
state will remain unchanged, the invariant semantics will be further elaborated
during this thesis.

The Invariant on line 9 in Figure 1 means that mystring is not allowed to be
null in any visible state except for the prestate of its constructor.

Requires clauses, which are often called method precondition, specify the
condition that must hold prior to an invocation of the speci�ed method in order
to receive a speci�ed result2. The result of an invocation of the speci�ed method
if the precondition does not hold is unspeci�ed and can be arbitrary. Note that
even if the precondition is met exceptions can still be thrown.

The requires clause on line 31 in �gure 1 states that method doubleString does
not have any preconditions in order to execute in a speci�ed way. Nevertheless,
if in equals null, an exception is thrown.

Ensures clauses, often called method postcondition, specify what holds when
the speci�ed method terminated normally, i.e. not due to the throwing of an
uncaught exception. The return value is expressed by the keyword \result.
An expression enclosed by the keyword \old refers to the value of the enclosed
expression when evaluating the expression in the prestate of the method.

In �gure 1 there are three ensures clauses, for every declared method one. The
ensures clause on line 24 of method getMyString specify its return value to
equal mystring.

2for a partial correctness logic only in the case the method terminates.
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Signals clauses, also called exceptional postcondition, specify the condition
when an uncaught exception of a speci�c type will be thrown. Additionally
they specify the poststate of the method after its abrupt termination. Method
doubleString in Figure 1 throws an exception of type NullPointerException

if parameter in equals null. This behaviour is speci�ed in the signals clause on
line 33.

A method behavior speci�cation is a set of requires, ensures and signals clauses.
Several non-contradicting method behavior speci�cations can be given for a
speci�c method. Those method behavior speci�cations are concatenated using
the also keyword.

Assignable clauses, often referred to as modi�es clauses, specify what lo-
cations the speci�ed method may alter. All other locations must remain un-
changed. A method mentioning the keyword \nothing in its assignable clause is
called a pure method and must not modify any location, i.e. the method is side-
e�ect free. Alternatively a method can be speci�ed directly to be pure by the
keyword pure. Pure methods can create new objects and modify those objects
freely. This purity semantics is often called weak purity, whereas strong purity
does not permit any modi�cations on the heap. Note that although assignable
clauses are also referred to as modi�es clauses (and JML treats them equally),
there is actually a minor semantic di�erence between them. While a location
not mentioned in a modi�es clause may be modi�ed temporarily during method
execution, a location not mentioned in an assignable clause must not be assigned
during method execution even if the original value is restored. The condition
what location may be assigned to is also called frame condition.

Model �elds are �elds only used for speci�cation purposes and are declared
with the modi�er model. Represents clauses specify how values of model �elds
are evaluated using a mapping from concrete �elds and other model �elds to
the speci�ed model �eld. In Figure 1 such a represents clause can be found on
line 3, where the model �eld mydoublestring is evaluated by concatenating the
concrete �eld mystring with itself, mystring.

Every model �eld also declares a data group [9]. Data groups are sets of loca-
tions, to which �elds, both concrete and model, can be added to using an in
clause. A data group mentioned in an assignable clause means that the speci�ed
method can assign to every location which is a member of the mentioned data
group.
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In Figure 1 mydoublestring declares such a data group as it is a model �eld. The
in clause on line 7 declares mystring to be a member of mydoublestring's data
group. In the assignable clause of method addToMyString only mydoublestring

needs to be mentioned, although mystring is actually modi�ed.

All speci�cations of a superclass are inherited by its subclasses. This is often
called behavioral subtyping. Subclasses can add invariants and method behav-
ior speci�cations to overridden methods, although these behavior speci�cations
must not contradict those of the supertype's method speci�cation (which are
inherited). As assignable clauses guarantee that not mentioned locations are
not modi�ed, assignable clauses are not permitted in a speci�cation of an over-
riding method. To allow locations introduced in a subclass to be modi�ed in
the overriding method, these subclass locations must be added to data groups
of the supertype mentioned in the assignable clause of the supertype's method.

For further description of JML see [4, 5]. Data groups are explained in [9].

2.1.4 Jive Front-End

Figure 2 illustrates the architecture of Jive. Jive is split into a front-end and a
back-end. The front-end is the �rst part of Jive and the back-end the second.
The names are somewhat missleading as the back-end is the interactive part
whereas the frond-end runs without any user interaction. Currently the front-
end and the back-end are separate programs due to incompatibilities between
di�erent versions of Java.

Jive takes a Diet Java Card program as input annotated with JML speci�ca-
tions. In the front-end the JML compiler is called for parsing and typechecking
the program. The front-end takes the generated syntax tree and produces the
following output:

• Proof obligations for each method occuring in the program. Those proof
obligations are in the form of Hoare triples, i.e. {Prestate condition}
method() {Poststate condition}.

• Program information for the back-end, including code structure and type
information.

• Program-dependent theories containing program information as for in-
stance the occuring types, their subtype relationship and declared �elds.
These theories are later used by the theorem prover.



2 CURRENT JIVE 13

Figure 2: Jive's Architecture

2.1.5 Jive Back-End

The Jive back-end is the place where actual veri�cation happens. In the back-
end, which is interactive, Jive's rules and axioms transform the Hoare triples
received from the front-end into �rst-order logic implications, which can be
exported to a theorem prover. The back-end is interactive since the user can
specify which rules or axioms should be applied and help Jive to prove the
program, although there are prede�ned automatic proof tactics implemented in
Jive, as for example a practical weakest precondition tactic.

2.1.6 Isabelle

Those former mentioned �rst-order logic implications are exported to the the-
orem prover Isabelle[10]. Additionally to those implications Isabelle takes as
input the program-independent theories which contain the Isabelle formaliza-
tion of the used store model and the program-dependent theories generated by
the Jive front-end containing program speci�c information. Now either those
implications exported to Isabelle are successfully proven or they could not be
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proven and the user must provide additional information in the back-end as
for example stronger loop invariants or apply di�erent rules and axioms in the
veri�cation calculus in order to do a retry of the Isabelle proof.

It is planned for the near future to use the non-interactive theorem prover
Simplify[11] as an additional theorem prover. First the implications are given
to Simplify and only those implications Simplify does not succeed to prove are
forwarded to Isabelle.

2.2 Current Jive logic

In order to verify Diet Java Card programs with the help of a theorem prover
several things are needed:

• A formalization of several aspects of the target language including its
object store model and its arithmetics.

• A mapping from JML speci�cation into �rst-order logic formulas using
the chosen object store model formalization.

• A set of Hoare rules and axioms allowing a transformation from Hoare
triples into �rst-order logic implications using the chosen object store
model formalization described in the �rst point.

Every point will be described in the following sections omitting those parts not
relevant to this thesis.

2.3 Jive's Object Store Model

To formalize properties of the object store the store model of Poetzsch-He�ter
and Müller's program logic is used. It is formalized in multi-sorted �rst order
logic with recursive datatypes. Here only those parts relevant to this thesis are
presented. For a further description of the object store model of Poetzsch-He�ter
and Müller's program logic and its axiomatization see [12, 13].

A store model comprises sort Value, Type, Location and Store.

Sort Value represents (a) values of a primitive type as integer or boolean, (b)
references to objects, either 'regular' objects or array objects or (c) the null
reference denoted by nullV . Diet Java Card values map directly to sort Value.
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Sort Type contains (a) primitive types as integers or boolean, (b) class types,
either regular types or array types and (c) the type of the null reference. Diet
Java Card types map directly to sort Type. The re�exive, transitive subtype
relation is denoted by ¹. The function typeof : V alue → Type returns the
type of a Value. Note that as typeof is re�exive, when the term �S is a subtype
of T � is used in this thesis, it means that S is either equal T or T is a supertype
of S.

Object states are modeled with Locations representing instance variables. An
object has a Location for each �eld of its class. There is a sort FieldId for
unique �eld identi�ers of a program. Two functions are needed: (a) a function
loc yielding the corresponding Location of a given Value and a given FieldId
(or undefined if this Location does not exist) and (b) a function obj returning
the corresponding Value of a given Location. These functions are declared as
follows:

loc : V alue× FieldId → Location ∪ {undefined}
obj : Location → V alue

loc(X, f) is abbreviated X.f .

Sort Store models object stores supporting operations to read and to update
locations, to create new objects and to test whether an object is allocated.

_〈_ := _〉 : Store× Location× V alue → Store

_(_) : Store× Location → V alue

new : Store× ClassId → V alue

_〈_〉 : Store× ClassId → Store

alive : V alue× Store → bool

OS〈X := Y 〉 returns the Store resulting from storing Value Y at Location X in
Store OS. The read operation is expressed by OS(X) reading Location X in
Store OS and returning the read Value. For new object allocations there are two
functions. While new(OS, certainId) yields the reference to the newly created
object of the type determined by certainId, OS〈certainId〉 yields the new Store
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after an object creation of type certainId. Finally function alive(Y, OS) returns
true if and only if Y is allocated in OS.

The constant symbol $ of sort Store is used in formulas to refer to the current
object store. The prestore of a method execution is the object store immediately
after the arguments of the method are evaluated, but before the computation of
the precondition. The poststore of a method execution is de�ned in an analogous
way namely it is the object store after the execution of the return statement,
but before the evaluation of the postcondition.

These sorts and their axiomatization are de�ned in the program-independent
Isabelle theories.

2.4 JML Transformation

As explained in Section 2.2 a mapping from JML speci�cation into �rst-order
logic formulas using the previously explained object store model is needed in
order to receive the prestate and the poststate condition of the veri�cation
calculus. Note that prestate and poststate condition do not mean the speci�ed
pre- and postcondition (requires and ensures clauses) of the method in question,
but a much more general thing. Most JML annotation elements contribute
either to the prestate condition, to the poststate condition or even to both.
This section describes how Jive maps JML annotation elements into conjuncts
of the prestate or the poststate condition.

2.4.1 Notation

Some notation �rst. The γ function denotes the function transforming a JML
expression into object store model logic formulas of Jive. The method itself is
not described here since it is not relevant for this thesis. For a comprehensive
description see [21, 2]. formula[X/Y ] means formula with every free occurence
of Y substituted by X, e.g. (f(Y ) ∧ Y ∨ ∀ Y . g(Y ))[X/Y ] means f(X) ∧
X ∨ ∀ Y . g(Y ) . Y in ∀ Y . g(Y ) is not substituted since Y is not free. $ is a
constant of sort store and means the current store, as already de�ned earlier.

A special program variable χ is used in the poststate to indicate whether the
method in question terminated normally (χ = normal) or abruptly by throwing
an uncaught exception (χ = exc). In the �rst case, the prede�ned program
variable resV holds the resulting value of the (non-void) method. In the case
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of an abrupt method termination the prede�ned program variable excV holds
a reference to the exception.

While requires clauses contribute to the prestate condition, the transformed
ensures and signal clauses are conjoined to the poststate condition. The trans-
formation of requires, ensures and signals clauses are not needed for this thesis
and hence are not described here. For a description of their transformation see
[2].

2.4.2 Invariants

As pointed out in the introduction, the invariants of all object must not be
broken in a visible state and hence must be considered while veri�ying a speci�c
method. For naming reasons every class is assigned a unique number from 1 to
n and Ti stands for the name of the i-th class. The translation of the invariants
is done as follows for every class. The invariants of class say C are transformed
using the γ function. These transformed invariants are then conjoined to one
formula called IC for class C. A function InvC of type V alue → Store → bool

is de�ned as follows:

InvC(X,OS) ≡ typeof(X) ¹ C =⇒ IC [X/this,OS/$]

InvC(X, OS) means that if X's type is a subtype of C then the invariants of
class C must hold for Value X. Note the substitutions in IC , where this is
substituted by X since the invariants are formulized for this but used here for
X. Additionally $ is substituted by OS as the invariants are formulized for
the current store $ but used here for the speci�ed store parameter OS. This
transformation is done for every class Ti occuring in the input program resulting
in n InvT i functions.

What is left is quantifying over all objects the invariants of which have to hold
according to the invariant semantics. Since the invariant semantics of current
Jive mentiones constructors, an introduction into Diet Java Card object ini-
tialization is needed here. The only constructor allowed in Diet Java Card is
the default constructor. Non-default constructors are simulated by the default
constructor and a special constructor-like init() method to be invoked just after
the default constructor call. The fact that at the beginning of the constructor-
like init() method call the newly created object's invariant does not hold3 is

3unless the default values of its state satisfy its invariant.



2 CURRENT JIVE 18

re�ected in current Jive's invariant semantics. For notational reason a normal
method is called a method not being a constructor-like init() method.

From the invariant semantics it can be followed that

1. At an execution control transfer not being the beginning of a constructor-
like init() method call the invariants of all objects have to hold.

2. At an execution control transfer being the beginning of a constructor-like
init() method call the invariants of all objects besides the newly created
object have to hold.

Hence two di�erent quanti�cations must be used, one that quanti�es over all
objects and one that quanti�es over all objects but one speci�c.

The function handling most cases by quantifying over all objects is INV (OS)
of type Store → bool which is de�ned as follows

INV (OS) ≡ ∀ X :: V alue . (alive(X, OS) ∧ X 6= nullV =⇒
InvT i(X,OS) ∧ ... ∧ InvTn(X, OS))

INV means that for a certain Store all Values which are alive and not null
must satisfy all guarded invariants. Note that this way invariant inheritance is
guaranteed.

This approach is not modular since a quanti�cation over all objects requires the
knowledge of the whole program while verifying.

At the pre- and poststate of a normal method no constructor-like init() method
is involved. Hence INV is conjoined to both, the prestate and the poststate
condition of a normal method as the invariants of all objects must hold at both
places.

Let's look at an example on how invariants are transformed. In �gure 3 the two
invariants on line 3 & 4 are �rst transformed with the γ function to

γ(this.a < this.b) and γ(this.a + this.b > 10)
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Figure 3: Translation example

1 class Translation_example {
2 public int a, b;
3 /*@ invariant a < b;
4 @ invariant a + b > 10;
5 @*/
6 }

Then they are conjoined and this conjuntion is called ITransEx.

ITransEx ≡ γ(this.a < this.b) ∧ γ(this.a + this.b > 10)

InvTransEx(X,OS) is then de�ned as

InvTransEx(X,OS) ≡ typeof(X) ¹ Translation_example =⇒
ITransEx[X/this,OS/$]

InvTransEx(X,OS) ≡ typeof(X) ¹ Translation_example =⇒
γ(X.a < X.b) ∧ γ(X.a + X.b > 10)[OS/$]

The function quantifying over all but one objects is called INV C(OS, X) (C
for constructor), is of type Store → V alue → bool and is de�ned as

INV C(OS, X) ≡ ∀ Y . (X 6= Y ∧ alive(Y, OS) ∧ Y 6= nullV

=⇒ InvT i(Y,OS) ∧ ... ∧ InvTn(Y, OS))

In the prestate of constructor-like init() methods the invariants of all objects
but the new created hold. Hence INV C is conjoined to the prestate condition of
a constructor-like init() method with this as value parameter. In the poststate
of a constructor-like init() method the invariants of all objects have to hold.
Hence INV is conjoined to its poststate condition.

Figure 4 shows the invariant semantics in Jive that before and after an invoca-
tion statement (o.p()) INV ($) must hold, besides at the prestate and poststate
of the method in question itself (c.m()). The example of �gure 4 will be used
through this thesis having a method m() of type C being the method to be
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Figure 4: Invariant semantics in current Jive, shown for classes O and C

class O {
{assume INVC($,this)}
void init() { }
{assert INV($)}

{assume INV($)}
void p() { }
{assert INV($)}

}

class C {
O o;

{assume INV($)}
void m() {

...
o = new O();
{assert INVC($,o)}
o.init();
{assume INV($)}
...
{assert INV($)}
o.p();
{assume INV($)}
...

}
{assert INV($)}

}

class Main {
void main() {

C c = new C();
c.m();

}
}
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veri�ed. This method is called as c.m(), where c is sometimes referred to as
this since it is the receiver object of the method to be veri�ed. Additionally a
method invocation p() on receiver object o of type O occures in c.m().

The functions de�ned in this section as InvT i, INV and INV C are part of the
program-dependent theories.

2.4.3 Assignable clauses

First the concept of a downward closure is explained in short. The downward
closure of a �eld is the set of all locations this �eld depends on. In the case
of a concrete �eld this is trivially one location, but a model �eld can depend
on several locations. The downward closure of a set of �eld is the union of the
downward closures of the elements of this set. For more details see [2].

Since Jive provides no way of stating conditions to hold after every statement,
assignable clauses are handled the modi�es way.

Assignable clauses contribute to both, the prestate and the poststate condition.
While in the prestate condition the current store $ is saved into a logical variable
S and the downward clausure of the set of all locations mentioned in assignable
clauses is stored into a logical variable M , a check is added to the poststate
condition that a location was either not alive in S, mentioned in M or not
modi�ed. For details see [2].

Note that this transformation is not modular, since the computation of the
downward closure requires that all subclasses of the class to be veri�ed are
already known while verifying.

2.4.4 Hoare Triples

Since in this thesis normally all clauses but invariants do not have to be con-
sidered separately, it is su�cient to consider their conjunction. So the prestate
condition will be

{INV ($) ∧ P}

for a normal method and

{INV C($, this) ∧ P}
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for a constructor-like init() method, where P is the conjunction of all contri-
butions to the prestate condition but invariants. Analogously the poststate
condition is

{INV ($) ∧ Q}

for all methods, where Q is the conjunction of everything but the invariants. So
a Hoare-triple of a method looks like

{INV ($) ∧ P} T : m(par) {INV ($) ∧ Q}

for a normal method and

{INV C($, this) ∧ P} T : init(par) {INV ($) ∧ Q}

for a constructor-like init() method.

2.5 Selected Rules and Axioms

Section 2.2 explained that a set of Hoare rules and axioms allowing a transfor-
mation from Hoare triples into �rst-order logic implications using the chosen
object store model formalization is needed. Here only selected rules and axioms
are described, since only those are relevant to this thesis. [16, section 4 and
especially section 4.3] is a comprehensive source of Jive's Hoare-logic in general
and the rules and axioms particularly.

2.5.1 Axiom of Cast

The axiom of cast is de�ned as

{
(typeof(e) ¹ T ∧ P[e/x]) ∨
(typeof(e) 6¹ T ∧ P[$〈CastExc〉/$, new($,CastExc)/excV ])

}
x = (T )e; {P}
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A cast either passes or fails. In the case the cast passes it is known that in the
prestate of the cast e's type should be a subtype of T and that all properties
of x that should hold in the poststate of the cast should hold in the prestate
for e. In the case the cast fails e's type is not a subtype of T in the prestate of
the cast and a new instance of CastExc is assigned to excV , the logical variable
containing the thrown exception.

This axiom will later on be referred to as cast-axiom.

2.5.2 Rule of (non-void) Invocation

The rule of non-void invocation on a non-null target is

{Pre} C : m(par) {Post}
{c 6= nullV ∧ Pre[c/this, e/par]} x = c.m(e) {Post[x/resV ]} (1)

meaning that if a method m(param) exists for type C of which c's type is
a subtype with speci�ed prestate and poststate conditions {Pre} and {Post}
respectively, then it is known that if in the prestate of the method invocation c

does not equal null and the speci�ed prestate condition for the invoked method
C : m(param), with this substituted by the target c and with the speci�ed
parameters par substituted by the actual parameters e, holds in the prestate of
the method invocation, then the speci�ed poststate condition of the invocated
method C :: m(param), with resV substituted by x, holds in the poststate of
the method invocation.

Note that in case C : m(param) is a normal method INV ($) is part of both
the speci�ed prestate and poststate condition meaning that the invariants of
all objects (including the this object) must hold before and after the method
invocation! In case m is a constructor-like init() method, INV C($, this) is part
of the prestate condition. As this is substituted by the target c in the prestate
condition, which in case of a init() method is the newly created object, INV C's
meaning is that the invariants of all objects but the newly created have to hold.
The invariant part of the poststate condition for a init() method is INV ($).

This rule will later on be referred to as invoc-rule.
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2.5.3 Rule of Void Invocation

The rule of void invocation on a non-null target is very similar to the rule of
non-void invocation except that there is no return value and hence no return
value substitution.

{Pre} C : m(par) {Post}
{c 6= nullV ∧ Pre[c/this, e/par]} c.m(e) {Post} (2)

This rule will later on be referred to as invoc-void-rule.

2.5.4 Axiom of New Object Creation

The axiom of new object creation is

{P[new($, T )/x, $〈T 〉/$]} x = new T(); {P}

since the assignment of a newly created object requires the prestate of the
assignment to contain the poststate condition of the assignment with two sub-
stitutions. In the �rst one the assigned variable x is substituted by the newly
created object denoted by new($, T ) and in the second one the current store
$ is substituted by $〈T 〉, which is the store resulting from the addition of the
newly created object to the current store.

This rule will later on be referred to as new-axiom.

3 Limitation of Jive's Non-Modular Logic

3.1 The Problem

As sketched in the introduction, the non-modular logic of Jive is not able to
handle layered object structures. The invariant semantics requires the invariants
of all objects to hold at all points of execution control transfer if no constructor-
like init() method is involved.

Let's consider the case illustrated in �gure 5 , where a class CounterWithCache
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Figure 5: Limitation of Jive's non-modular logic

class Counter {
private /*@ spec_public @*/ int c;

//@ ensures this.c == \old(this.c) + 1;
//@ assignable c;
{assume INV($)}
void inc() {

c = c + 1;
}
{assert INV($)} // INV must hold but violated !!

}

class CounterWithCache {
private /*@ rep @*/ Counter counter;
int cache;

//@ invariant counter != null;
//@ invariant cache == counter.c;

{assume INV($)}
void addOne() {

{assert INV($)}
counter.inc();
{assume INV($)} // INV is assumed but violated !!
cache = cache + 1;

}
{assert INV($)}

}
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has got a �eld counter of type Counter. The invariant of CounterWithCache

depends on the state of the Counter instance captured in its counter �eld.
Additionally it is assumed that CounterWithCache is not leaking, i.e no ref-
erence to counter is given to the outside of CounterWithCache. Furthermore
Counter does not have any direct or indirect reference to CounterWithCache.
Note that this example is not in Diet Java Card but in Java for brevity reasons.
All considerations are also valid for the equivalent Diet Java Card example.

When considering CounterWithCache's method addOne with receiver object
say counterWithCache it will be noticed that the counter.inc() call temporar-
ily violates counterWithCache's invariant which is re-established in the next
line. The code is nevertheless sensible as counter's inc will execute safely al-
though it violates counterWithCache's invariant since counter can not notice
counterWithCache's invariant violation as it has no (transitive) reference to
counterWithCache. But Jive's logic fails in proving this example, since af-
ter the call of counter.inc() on line 14 the invariants of all objects, including
counterWithCache, are assumed to hold, but counterWithCache's invariant is
violated. To solve that problem without changing the invariant semantics there
are two possibilities, which are both not feasible.

1. counter should have a reference to counterWithCache and increment
counterWithCache's cache. But Counter instances could be used in dif-
ferent contexts with di�erent invariant constellations. It is completely un-
feasible that Counter should take in account all peculiarities of its clients,
even those already existing4.

2. counterWithCache should not use inc() to increment counter but assign
directly to counter's c �eld. This solution violates information hiding
since c is private and should be private as it is internal representation and
hence counterWithCache may not assign to it.

The core of the problem is that it is a layered object structure. When Counter

is written, it is not aware of its clients. On the other hand clients of Counter use
Counter instances as part of their state and therefore their invariants should
mention Counter's instances' state as well. These clients modify instances of
Counter using method calls rather than direct �eld updates for reason of in-
formation hiding. The modi�cations in the state of Counter's instance due to
those method calls may violate (temporarily) the state of Counter's clients.
Hence methods of Counter must be allowed to violate its clients invariants as
Counter does even not know its clients.

4If considering clients not yet existing a non-modular approach can not work since the
whole program must be known in advance.
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3.2 A First Approach

Before trying to solve that problem, a de�nition is introduced.

De�nition 3 The method a statement of which is currently in progress is called
the currently executing method. Its receiver object is called the currently ex-
ecuting object. A method being a transitive caller of the currently executing
method is called an executing method, whereas its receiver object is called an
executing object5. Analogously a method being neither the currently execut-
ing method nor a transitive caller of the currently executing method is called a
non-executing method. An object is called a non-executing object if non of its
methods are executing.

A possible approach allowing Counter's methods to violate the invariants of
its clients is to change the invariant semantics in the following manner. The
new proof obligation would be that the invariants of all non-executing objects
must hold upon a execution control transfer (besides some init() method ex-
ceptions). This solution solves the problem of �gure 5 since counterWithCache

is executing when counter.inc() is in progress. The problem with this solution
are re-entrant method calls reaching an object in an inconsistent state. This
happens in the case when a transitive callee of an executing method o.m() calls
a method of o, say o.foo(). o's invariants might be broken upon the o.foo() call
as o is already an executing object.

There are two solutions: either re-entrant method calls are forbidden or upon
a re-entrant method call the invariant of this method's receiver object must
be re-established although it is an executing object. Both solutions require
an exact knowledge of all executing methods forcing the veri�er to consider all
invocation sites of the method in question, i.e. this solution is, besides being very
complicated, not modular. Using a conservative assumption that every object
might be executing when considering the need to re-establish the invariant of
the receiver object at a method call site leads back to Jive's logic.

The approach used in this thesis is to separate the object structure of the heap
into di�erent layers unaware of their layers above. That is exactly what the
universe type system does. The universe type system will be used to layer the
object structure enabling a modi�cation of the invariant semantics in order to
get much weaker but yet sound proof obligations.

5With an intuitive understanding of a stack the currently executing method is the method
on top of the stack and an executing method is a method executing somewhere on the stack.
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4 Universe Type System

This section is a short summary of [6, Section 3] and [3, Section 5] omitting
parts not relevant to this thesis. For a full description of the universe type
system including a formalization and a type safety proof see [12, 19].

4.1 Ownership Model

Each object is directly owned by at most one other object called its owner. A
context is the set of all object directly owned by the same object. The set of
objects having no owner is called the root context. The owner-relationship is
acyclic and since every object has got at most one owner the contexts form
a tree with the root context as root. The owner object is speci�ed at object
creation and can not be changed during the lifetime of that object. Context Ω
is a child of context Ψ if the owner of the objects in Ω is a member of context
Ψ.

Object A is the owner of context Ω if A is the owner of all objects in Ω. An
object X is inside context Φ if X is an element of Φ or of one of Φ's descendant
contexts. Otherwise X is outside context Φ. If B is the owner of D then B

owns object D. An object E is inside the context of F if E is inside the context
F is an element of. An object F is in the same context as C if both have the
same owner. E is inside the context owned by A if A is its transitive owner. See
�gure 6 for an illustration. In Appendix A many more ownership relationship
notations are listed.

Contexts are used to restrict references between objects, namely objects are only
allowed to have write references to objects in the same context or to directly
owned objects.

4.2 Ownership Types and Subtyping

There are three di�erent reference types in the universe type system:

• peer references are references between objects in the same context. This
reference is the default if no universe type is speci�ed.

• rep references are references from an object to a directly owned object.
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Figure 6: Ownership contexts

• readonly references are references between arbitrary objects.

While peer and rep references are write references, readonly references may only
be used for reading. See �gure 7 for illustated examples.

Universe types are part of the type system. Hence the type of every reference,
i.e. �elds, locals, parameters and return types consists of a universe type and a
Diet Java Card type, e.g. rep Object, readonly List or peer String. This
way every expression (if not of a primitive type) has got a static type consisting
of the universe type and the Diet Java Card type. Primitive types do not have
an ownership modi�er since they are not references. Arrays have two ownership
modi�ers, one for the array object and one for its elements. All arrays of a multi-
dimensional array belong to the same context. Further array considerations are
not needed for this thesis. The reader is referred to the former mentioned
references.

The subtype relationship of the universe types is as follows. rep and peer
are subtypes of readonly. rep and peer are not in any subtype relationship
between themselves.

A type T is a subtype of type S if the universe type of T is a subtype of S's
universe type and T 's Diet Java Card type is a subtype of the Diet Java Card
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Figure 7: Universe references

type of S.

Examples:

• rep Object is a subtype of rep Object

• peer String is a subtype of peer Object

• rep List is a subtype of readonly List

• peer Collection is a subtype of readonly Object

• readonly String is not a subtype of peer Object

• rep Object is not a subtype of readonly Socket

Figure 8 illustrates by an example of a double-liked list the usage of the universe
type system. Class Node has got peer references to next and prev since all nodes
are in the same context. This context is owned by an instance of Class List,
thus first and last are of universe type rep. The objects to store in the list
can be in arbitrary contexts and thus the data �eld of Node has universe type
readonly.
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Figure 8: Universe type example

class Node {
/*@ peer @*/ Node next, prev;
/*@ readonly @*/ Object data;

}

class List {
/*@ rep @*/ Node first, last;

void add(/*@ readonly @*/ Object o) {
/*@ rep @*/ Node toAdd = new /*@ rep @*/ Node();
last.next = toAdd;
last = toAdd;

}
}

4.3 Type Rules and Dynamic Information

Assignments are handled the standard way, meaning that the type of the
right-hand side must be a subtype of the type of the left-hand side. Example:
a peer String reference can be assigned to a readonly String left-hand side.

Object creation requires to specify the type of the object to create, i.e. both
the Diet Java Card type and the universe type. Example: x = new rep T(..).
Readonly objects can not be created since every object must be assigned to a
context.

Down-casts as x = (rep String) roString with roString of type readonly
String require a check whether the object to cast is of the appropriate universe
type. This is done by storing the owner of an object upon creation in a special
�eld called owner. This so-called owner-�eld is declared in the supertype of all
objects, namely in java.lang.Object. A rep cast means that the object to cast
is either null or the this object is the owner of the object to cast: roString ==
null || roString.owner == this. Analogously, a peer cast means that the
object to cast is either null or the owner of the this object is the owner of the
object to cast: roString == null || roString.owner == this.owner.
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Field accesses. The universe type of a �eld access (as y = x.f) is determined
considering both, x and f .

1. If only peer references are involved, everything happens in the same con-
texts and thus x.f is of type peer.

2. If the universe type of f is rep and x equals this, then the owner of this.f

is this and hence the type of x.f ≡ this.f is rep.

3. If x is of type rep and f is of type peer, then the type of x.f is rep since
the owner of x is this and the owner of f is the same as the owner of x.

4. All other cases can not be evaluated at compile type and hence x.f is of
universe type readonly.

The universe type of �eld updates are computed analogously. Field updates on
readonly objects are not allowed.

It follows from these four points that an �eld access chain with one �eld access of
type readonly renders the universe type of the whole expression to readonly.

Method call's return type has got a universe type part and therefore uni-
verse type consideration of method calls is analogous to �eld accesses with x

the receiver object and f the speci�ed return type. Method calls on readonly
references must be pure methods and taking only readonly parameters. For fur-
ther considerations of method calls, specially on universe types of parameters
see the references mentioned above.

4.4 Universe Invariant

The universe type system guarantees the universe invariant.

De�nition 4 (Universe Invariant) For every execution state if object X holds
a direct reference to object Y then at least one of the following cases applies:

1. X and Y are in the same context.
2. X is the owner of Y .
3. The reference is readonly.
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With respect to this universe invariant, local variables and formal parameters
behave like instance variables of the this object.

Note that the universe invariant ensures the following properties (universe in-
variant corollaries):

Corollary 1 (Universe Invariant Corollaries) 1. Every write reference
chain6 from an object outside Ω to an object inside Ω passes through Ω's
owner.

2. There is no write reference chain from inside a context Ω to an object
outside Ω.

3. A method of an object member of context Ω can only be directly invoked
by another member of Ω or by Ω's owner.

4. A method executing in context Ω, i.e. the this object is a member of
context Ω, can only modify locations of objects inside Ω, either directly by
�eld update or indirectly by method invocations.

Hence an object c owning the context Ψ has got full control over its owned
objects, as no object outside Ψ can modify an object inside Ψ without calling
(directly or indirectly) a method of c.

5 Ownership Proof Technique

5.1 Review of Example

Let's take again a look at �gure 5. As explained in section 3, Counter cannot
know anything about its clients. As these clients use Counter instances as
internal representation and hence mention �elds of these Counter instances in
their invariants, modi�cations of the state of those instances of Counter break
the invariants of these clients. The invariant semantics must allow methods of
Counter to break the invariants of its clients.

In section 3.2 an approach to weaken the invariant semantics was presented,
which allows a method to break the invariant of an executing object. It was

6A reference chain is a concatenation of several references. For example x.f.g.h is a reference
chain, from object x through reference to object x.f, then through reference g to object x.f.g
and �nally through reference h to object x.f.g.h.
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also pointed out that the big problem with this approach are re-entrant method
calls. As the receiver of a re-entrant method call can have a broken invariant,
the veri�er is required to know what objects are executing in order to know
whether the receiver's invariant must be re-established prior to the re-entrant
method call. This requirement, besides being very di�cult, renders this method
non-modular.

The desired solution should not consider at veri�cation time what objects have
currently got broken invariants in order to guarantee that the receiver object of
a method call does not have a broken invariant7. Its because such solutions are
neither easy nor modular. Furthermore clients should be allowed to integrate
the state of their representation objects into their invariants8 and hence repre-
sentation object's methods should be allowed to break the invariants of their
clients.

The universe type system opens up a perspective to solve this problem in a
modular way. The universe invariant guarantees that no write reference chain
exists from inside a context Ω to an object outside Ω. In order to guarantee that
no method outside a context Ω is called by a method inside Ω, a �rst restriction
is introduced.

De�nition 5 (Relevance) An object y inside the context of an object x is also
called an object relevant to x.

Restriction 1 (Relevance Restriction) Readonly method calls occuring in
a method of object c element of context Ω must be on a receiver object inside Ω,
i.e. the receiver object must be relevant to c.

The universe invariant together with this restriction guarantee that to method
of an object outside Ω is called from a method inside Ω. Hence the owner of Ω
(which is outside Ω) can assume that a method invocation with receiver object
o of universe type rep (meaning that o is owned by the owner of Ω and hence
an element of Ω) cannot result in a re-entrant method invocation to an object
outside Ω and hence not to Ω's owner.

7Surely this consideration must be done when developing the solution. But the resulting
proof technique should be free of considerations about what objects have currently got broken
invariants.

8For an easy solution not allowing objects to integrate the state of their representation
objects into their invariants see [3, Section 3].
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Since the universe invariant guarantees as well that every non-readonly method
invocation chain9 from an object outside Ω to an object inside Ω passes through
Ω's owner, a method of Ω's owner knows that no object inside Ω is an executing
object since otherwise the method would be a re-entrant method call from an
object inside Ω to an object outside Ω.

Summarized the following properties follow from the universe invariant, together
with restricted readonly calls:

Corollary 2 (Restricted Readonly Calls Corollaries) 1. There are no
method calls from inside a context Ω to an object outside Ω, hence no re-
entrant calls upon a rep call or a readonly call with a receiver not element
of Ω can occur.

2. All transitive owners of an object X are executing objects when a method
of X is called as non-readonly call10.

3. A rep object is not an executing object. That is actually a special case of
the more general statement, that no object inside Ω but not element of Ω
is an executing object.

The two �rst points allows a method to break the invariants of its transitive
owners without any danger. The third point states that only method calls to
an object in the same context can be itself a re-entrant call or can result in an
re-entrant call to the caller. Modular veri�cation gets closer...

5.2 New Invariant Semantics

Some expressions often mentioned in this sections should be named.

De�nition 6 (Constructing object) The receiver object of a constructor-
like init() method is called the constructing object.

9Amethod invocation chain here does not mean a.foo().bar().add(), but rather that method
foo() calls method bar() and method bar() calls method add().

10The case were a non-readonly method was called from a readonly method can actually
occur when new object were created in this readonly method. Although then their might be
non-executing transitive owners, these transitive owners can not depend on these new objects
as the heap modi�cations of the readonly method are not visible outside the readonly method.
Hence for the further consideration one can assume that point 2 holds.
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De�nition 7 (Begin of Init) The execution state at the beginning of a call to
a constructor-like init() method is called the begin of init.

The invariant semantics of the solution of section 3.2 was that the invariants of
all non-executing objects must hold upon a execution control transfer, besides
the invariant of the constructing object at its begin of init. With help of the
universe type system this proof obligation can get weaker, since the universe
invariant can give guarantees on certain objects whether they are executing or
whether re-entrant calls can occur.

The universe invariant guarantees that for a method of object x with x element
of context Ω all methods of objects outside Ω cannot be called. Objects inside
Ω but not element of Ω are non-executing and hence their methods can be
called freely since their invariants are ensured by the invariant semantics. Only
method calls on receiver objects being an element of Ω are a potential danger
for re-entrant method calls.

A solution to prevent re-entrant method calls on receiver objects with broken
invariants is to require all objects in the same context as the this object to have
an intact invariant even if they are executing. With this new requirement no
re-entrant method calls can occur on a receiver object with a broken invariant.
Additionally this solution requires a method m() to re-establish at most those
invariants that were intact at the beginning of m() (besides its own invariant in
case m() equals init()). Hence a new invariant semantics must be formulated.

De�nition 8 (New Invariant Semantics) 1. The invariants of all non-
executing objects hold upon an execution control transfer.

2. Additionally to 1 the invariants of all objects which are element of the cur-
rent execution context must hold upon an execution control transfer unless
this invariant belongs to the caller of a non-peer11 method invocation.

3. The only exception to rule 1 and 2 is that the invariant of the constructing
object at its begin of init can have broken invariants, although it is not
executing and additionally it might be an element of the current execution
context.

Point 2 is explained by the fact that the caller will be executing during the
called method. Additionally point 1 of the restricted readonly calls corollaries

11A non-peer method invocation means that the receiver of the method call is not an element
of the caller's context. Rep call are surely non-peer calls. Readonly call are non-peer calls if
the receiver is actually not an element of the caller's context.
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guarantee that the caller will not be an element of any execution context while
the called method or one of its (transitive) callees are in progress.

This new invariant semantics will from now on be referred to as the invariant
semantics.

Note that if the invariant semantics is taken directly as proof obligation it is
not modular since the quanti�cation is done over all non-executing objects.

5.3 Restrictions and Admissibility

The next step is to see what parts of the proof obligation can be automatically
ensured by the universe invariant or additional restrictions. Specially the non-
modular parts of the proof obligation must be already ensured in order to get
modular proof obligations.

Some notation. The method in question is called m() while its this object is
called c and is an element of Ω. Its owned context is called Ψ.

Since an arbitrary non-executing object and not known while verifying m() can
include the state of c in its invariant, any changes to the state of c can break
the invariant of this arbitrary object. Since this arbitrary object is not known
while verifying m(), this arbitrary object's invariant will be broken although its
is non-executing. Hence invariants must be restricted in such a way that all
objects not known to a modular veri�er are either executing or their invariants
hold.

Let's consider what objects may mention c in their invariants.

1. The universe invariant guarantees that all transitive owners of c are exe-
cuting and therefore their invariants are allowed depend on c.

2. All other objects outside Ω are either surely12 or possibly13 non-executing,
hence it must be ensured that their invariants do not depend on c.

3. Furthermore invariants specify the consistent state of an object and there-
fore invariants should not depend on objects outside their context. Hence
no object inside Ψ is allowed to depend on c.

12Objects which are not in the same context as a transitive owner of c.
13Objects which are in the same context as a transitive owner of c.
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Figure 9: Di�erent contexts to consider for admissibility

If the consideration is done the other way round, i.e. on what objects may
the invariant of c depend, it can be said that the invariant of c should depend
neither on objects outside Ω (point 3) nor on objects inside but not element of
Ω (point 2) except for objects in Ψ (point 1). Or de�ned in a positive way:

The invariant of object c element of context Ω may depend only on
members of Ω or on objects inside the context owned by c.

Consider �gure 9 for an illustration. This condition, on what objects an invari-
ant may depend, is called admissibility condition. An invariant is admissible if
it sati�es the admissibility condition. Since invariants are formed out of expres-
sions, the term admissible is used, with the same meaning as for invariants, for
expressions as well.

The above mentioned admissibility condition is actually used in [3, Section 9]
for the visibility technique (with additional subclass separation and visibility
restrictions for soundness and modularity). In this thesis the used admissibility
condition is even more restrictive, namely

Restriction 2 (Invariant Peer Restriction) The invariant of object c ele-
ment of Ω is not permitted to depend on members of Ω except for c itself.
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This further restriction is sensible as invariants specifying the consistent state of
an object should only depend on locations controlled by the invariant's object.
Now a �rst version of the ownership admissibility condition can be formulated:

De�nition 9 (Ownership Admissibility Semantics) The invariant of ob-
ject c element of context Ω may depend only on �elds of c or on �elds of objects
inside the context owned by c.

As the �nal version of the ownership admissibility condition will be de�ned more
technically, this �rst version is called the ownership admissibility semantics as
it illustrates what locations invariants may depend on.

5.4 Subclass Separation

Since invariants may depend on the state of objects inside their owned context,
subclassing could lead to a potential unsoundness with rep objects accessible
from both, the superclass and the subclass. Consider �gure 10 . Again this
example is in Java for brevity reasons.

Class Super and specially method bad() are veri�ed easily since Super has got
no invariant14. But if bad() is called on a Sub object sub and sub.subT equals
sub.superT , sub's invariants is broken. Figure 11 illustrates the situation when
sub.subT equals sub.superT .

To avoid this unsoundness, there are two possibilities. Either all methods of all
superclasses have to be veri�ed again when verifying the subclass, which violates
modularity, or the set of objects reachable from rep �elds of the superclass must
be disjoint from the set of objects reachable from rep �elds of the subclass. This
is achieved by taking the following measures.

• All rep �elds must be declared private. (Renders line 28 in �gure 10 illegal
since superT must be declared private)

• Every method taking a rep parameter or returning a rep value must be
declared private. This makes it impossible for Super to call Sub's setSubT

with superT as parameter.
14See the next section for the proof technique.
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Figure 10: Subclass separation example

1 class T {
2 private /*@ spec_public peer @*/ Object out;
3 //@ modifies out;
4 public void setOut(/*@ peer @*/ Object o) {
5 out = o;
6 }
7 }
8
9 class Super {

10 protected /*@ rep @*/ T superT;
11
12 public /*@ readonly @*/ T leak() {
13 return superT;
14 }
15
16 public void bad() {
17 superT.setOut(null);
18 }
19 }
20
21 class Sub extends Super {
22 private /*@ spec_public rep @*/ T subT;
23
24 /*@ public invariant subT != null
25 @ && subT.out != null @*/
26
27 public void separate() {
28 subT = superT;
29 subT = (rep T) leak();
30 }
31
32 public void setSubT(/*@ rep @*/ T t) {
33 subT = t;
34 }
35 }
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Figure 11: Subclassing problem

Figure 12: Subclass separation
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• The cast on line 29 should fail although leak() returns an object having
this as owner. Therefore additional information is needed, namely the
declared class must be stored at object creation in a special �eld declClass

of the created object. The �eld declClass is declared in the supertype of
all types, java.lang.Object. Since for every object creation statement it
is statically known in which class it occurs, it is no problem to store this
type object in the newly created object. The condition for the cast to pass
is roRef == null || (roRef.owner == this && roRef.declClass ==
actClass), where roRef denotes a readonly reference and actClass the
class the cast appears in.

• In case of a peer cast it must be assured that the object to cast is declared
in the same class as the this object. Hence the cast condition is roRef ==
null || (roRef.owner == this.owner && roRef.declClass == this.declClass).

Taking these measures Super cannot modify any objects reachable from rep
�elds of Sub and vice versa. See �gure 12.

Since Sub does not have control over the �elds of Super, these �elds should not
be used in Sub's invariants. Hence all invariant expressions of Sub having more
that one �eld access must start with a �eld declared in Sub.

5.5 Ownership Admissibility

On page 39 a �rst version of the ownership admissibility condition was formu-
lated. In order to receive the �nal version, the following remarks should be
considered.

• Constant �elds cannot change. Hence if constant �eld accesses are added
to an admissible expression of c's invariant, the resulting expression is still
under full control of c and thus admissible.

• Static �elds and static invariants are currently not covered by the universe
type system and hence invariants are not allowed to be static or to depend
on static �elds unless this static �eld is a constant.

• Since it is out of scope of this thesis to reason about locations a method
invocation depends on, method calls are not permitted in invariants.

• Currently all �elds are only concrete �elds. Model �elds are considered
later.
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The �nal version of the ownership admissibility condition can now be formulated
[3].

De�nition 10 (Ownership Admissibility Condition) An invariant of class
C is ownership admissible if all of its non-constant expressions are of one of
the following forms:

1. A non-static �eld access go with �eld g0 declared in class C.
2. A non-static �eld access chain go. ... .gN with N > 0, where g0 is

a rep �eld declared in class C and g1, ... , gN−1 are �elds declared
as rep or peer.

3. A �eld access chain go. ... .gN with N > 0, where an i exists so
that 0 ≤ i < N , go. ... .gi is of form 1 or 2 and gi+1, ... , gN are
constant �elds.

Array accesses are treated as �eld accesses.

5.6 Ownership Proof Technique

5.6.1 Guaranteed Proof Obligations

This section tries to elaborate what parts of the proof obligations emerging
from the invariant semantics are already guaranteed by the universe invariant
together with admissible object invariants.

Again an object c element of context Ω executing a method m() is considered.
Additionally a method invocation p() on receiver object o occurs in method m()
(see �gure 9). The context owned by c is again called Ψ.

All objects are grouped into �ve distinct sets of objects (consider �gure 6):

1. Objects outside Ω being a transitive owner of c.

2. Objects outside Ω and not a transitive owner of c.

3. Objects element of Ω. Note that c belongs to this group.

4. Objects inside Ψ.
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5. Objects inside Ω, but neither element of Ω nor inside Ψ.

To show that the invariants of a certain group are not broken by m(), it must
be shown that the invariants of this group

• hold at the beginning of m() (denoted by Begin).

• are not broken by a �eld update in m() (denoted by Field update).

• still hold after a method invocation o.p() in m() (denoted by Invoc).

Note that Init and Invoc are points of execution control transfer.

Newly created objects do not have to be considered until they are created. After
their initialization their invariants hold and therefore the considerations for Field
update and Invoc performed for objects already existing from the beginning of
m() are also valid for newly created objects after their initializations. Diet Java
Card requires that the constructor-like init() method is called immediately after
its receiver's creation. But at that point the invariant of the receiver is allowed
to be broken according to point 3 of the invariant semantics. Hence newly
created object need not be handled separately in the following considerations.

Recall the universe invariant guaratees that a �eld update can only occur on
objects in the same context as this or on objects directly owned by this. Let's
consider which invariant can be broken by m() but should hold at an execution
control transfer in m().

Group 1 According to point 1 of the restricted readonly calls corollaries all
transitive owners of c are executing (and they are not element of Ω). Hence
their invariants can be freely broken by m() and need not be further considered.

Group 2 An object out in group 2 is either executing or non-executing. out is
not an element of Ω, therefore in case its is executing its invariant can be freely
broken by m() and need not be further considered. For the further consideration
it is assumed that out is non-executing.

• Begin: As out is non-executing, its invariant hold at the beginning of m()
because of point 1 of the invariant semantics.
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• Field update: As out is not a transitive owner of c, admissibility of invari-
ants guarantees that out's invariant does not depend on locations inside
Ω. Since a �eld of an object outside Ω can not be modi�ed by an execution
inside Ω (point 4 of universe invariant corollaries), out's invariants are not
broken by a �eld update in m().

• Invoc: As out is still non-executing after o.p(), its invariant hold after
o.p().

Group 3 Because of point 2 of the invariant semantics the invariant of an
object peer in group 3 must hold at a point of execution control transfer although
peer might be executing. Only if peer equals c and the point of execution control
transfer is a rep call, peer's invariant need not hold.

• Begin: As peer is element of Ω, its invariant hold at the beginning of m()
due to point 2 of the invariant semantics, unless m() is init() and peer

equals c.

• Field update: A �eld update in m() can break the invariant of peer.

• Invoc: As peer is element of Ω, its invariant hold after o.p(), unless peer

equals c and o is of universe type rep.

Group 4 According to point 3 of the restricted readonly calls corollaries an
object rep in group 4 is non-executing and therefore its invariant must hold at
a point of execution control transfer in m().

• Begin: As rep is non-executing, its invariant hold at the beginning of m().

• Field update: A �eld update in m() can break the invariant of rep if rep

is directly owned by c.

• Invoc: As rep is still non-executing after o.p(), its invariant hold after
o.p().

Group 5 According to point 3 of the restricted readonly calls corollaries an
object peerrep in group 5 is non-executing.

• Begin: As peerrep is non-executing, its invariant hold at the beginning of
m().
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• Field update: Admissibility of invariants guarantees that the invariant of
peerrep depends neither on locations element of Ω nor on locations inside
Ψ. Hence a �eld update in c can not break the invariant of peerrep.

• Invoc: As peerrep is still non-executing after o.p(), its invariant hold after
o.p().

The remaining proof obligations are that at a point of execution control transfer
it must be assured that

the invariant of all objects element of Ω hold. Only if this point of
execution control transfer is a non-rep call, the invariant of c need
not hold.
the invariant of all objects element of Ψ hold.

If �eld updates are restricted to target objects element of Ω, the second proof
obligation can be omitted. This restriction is actually imposed on m() in the
visibility technique in [3, Section 9], where the �rst of these remaining proof
obligations is actually the proof obligation (including some visibility consider-
ations to make the proof obligations modular). For this thesis a even stronger
restriction is imposed on m():

Restriction 3 (Field Updates Target) All �eld updates occuring in method
m() must be on target this.

Let's consider again �eld updates for group 3 & 4.

• Group 3: As a �eld update can only occur on c, the invariants of all other
elements of Ω can not be broken by a �eld update in m() as their invariants
may not depend on c.

• Group 4: Field updates on receiver object from group 4 are not allowed.

Hence the only invariant that can be broken by a �eld update or a method call
in m() is the invariant of c itself. Hence the proof obligations are modular !

The following very important observation follows from this fact that m() can
only break c's invariant.
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Observation 1 (INVC always holds) At any execution point of c.m() ex-
ecuting in context Ω no invariants of any object inside Ω can have a broken
invariant except for c itself or a newly created object the init() method of which
was not yet called. In other words: Besides a newly created object the invariants
of all objects relevant to c hold at any point of execution during c.m(), besides
the invariant of c itself.

Corollary 3 If at an execution point in c.m() there is no newly created object
the init() method of which was not yet called, then if the invariant of c holds,
the invariants of all objects relevant to c hold.

5.6.2 Elaboration of The Ownership Proof Technique

So the ownership proof technique can be elaborated by looking at c's invariant
at di�erent points of execution control transfer in c.m():

1. At the beginning of c.m() 6= c.init() c's invariant is guaranteed by point
2 of the invariant semantics.

2. At the beginning of c.m() = c.init() point 3 of the invariant semantics
allows c's invariant to be broken

3. At the beginning of a method invocation o.p() inside c.m() point 2 of the
invariant semantics states that the invariant of c only has hold if o is an
element of Ω. Otherwise the invariant of c is allowed to be broken.
Additionally it must be guaranteed that o is not outside Ω, i.e. o is relevant
to c (restriction 1 in section 5.1).

4. After a method invocation o.p() inside c.m(), point 2 of the invariant
semantics states that the invariant of c holds if o is an element of Ω.
Otherwise c's invariant could be broken.

5. At the end of c.m() point 2 of the invariant semantics requires c's invariant
to hold. But since c's invariant could be broken, it must be re-established.

Note that a peer and a rep reference are always relevant.

A notation: INVRel(x) denotes that the invariants of all objects relevant to
x hold. INV CRel(x) denotes that the invariants of all objects relevant to x

hold except for the invariants of x. Note that INV CRel(c) always holds during
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execution of c.m() and that therefore if the invariant of c hold then INVRel(c)
holds.

Now all information is gathered to formulate the ownership proof technique [3]:

1. At the beginning of c.m() it can be assumed that INVRel(c)
holds.
2. At the beginning of c.init() it can be assumed that INV CRel(c)
holds.
3. At the beginning of a method invocation o.p() with o of universe
type peer the invariant of c must be re-established.
4. At the beginning of a method invocation o.p() with o of universe
type rep nothing must be assured.
5. At the beginning of a method invocation o.p() with o of universe
type readonly the invariant of c must be re-established if o is in the
same context as c. Additionally it must be checked that o is relevant
to c.
6. After a method invocation o.p() it can be assumed that INVRel(o)
holds, meaning that if o is peer c's invariants hold.
7. At the end of c.m() the invariant of c must be re-established.

Figure 13 shows an example of the proof obligations emerging of the ownership
proof technique.

5.7 Model Fields

Model �elds depend on other �elds. So if model �elds are metioned in invari-
ants, all �elds the model �elds depends on must be considered while checking
that invariant's admissibility. This approach is not modular as model �elds are
normally declared in (abstract) superclasses and their mapping is only de�ned
by a represents clause in subclasses not known to the veri�er. Therefore a dif-
ferent solution is needed, namely that model �eld must be restricted to depend
only on locations the access expressions of which are surely admissible in all
invariants that may mention the model �eld.

Let's consider again the ownership admissibility semantics: Invariants of object
c element of context Ω may depend only on �elds of c or on �elds of objects
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Figure 13: Ownership Proof Technique Example

class C {
rep O repO;
peer O peerO;
readonly O readonlyO;
{assume INV_Rel this} // Prestate (1)
void m() {

...
{assure INV of this} // Peer call (3)
peerO.p();
{assume INV_Rel peerO} // Call Return (6)
...
{assure true} // Rep call (4)
repO.p();
{assume INV_Rel repO} // Call Return (6)
...
{assure readonlyO is relevant to this && // Readonly call (5)
if readonlyO is actually peer then INV of this}

readonlyO.p();
{assume INV_Rel readonlyO} // Call Return (6)
...

}
{INV of this} // Poststate (7)

}
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inside the context owned by c. So the model �eld could either be a model �eld
of c or a model �eld an object inside the context owned by c. In the �rst case
the model �eld is allowed to depend on the same locations as the invariant is
allowed to. In the later case the model �eld could actually depend as well on
these locations. But since the model �eld can be used in an invariant of the
class O declaring the model �eld or in one of its subclasses, it may only depend
on locations the invariant of O may depend. Hence represents clauses should
be checked with the same admissibility checks as invariants are.

As a side-mark it should be mentioned that it is possible to determine while
checking a represents clause in class C of a rep model �eld f whether the class
M f is declared in mentions f in its invariants. M is known to the veri�er
because C must be a subtype of M . If f is not mentioned in M 's invariants it is
known that f could only be mentioned in an invariant of a transitive owner of C's
instances, since subclasses of M are not allowed to mention f in their invariants
because of subclass separation. Hence a di�erent admissibility condition could
be used for represents clauses, namely that rep model �elds of object c element
of context Ω and not mentioned in any invariant of c may depend only on �elds
of objects inside Ω.

6 Ownership in Jive and Isabelle

6.1 Formalizing Ownership

The universe type system is based on its ownership model. The information of
the ownership structure is stored at two places, namely in the universe types and
in the (hidden) owner �eld. The universe types enforce the universe invariant
statically, i.e. without any need for runtime checks to guarantee universe type
safety.

On the other hand the information stored in the owner �eld is indispensable for
checking casts at runtime or to prove them statically. Furthermore, the universe
invariant could be guarateed without typechecking the universe types but only
with the owner �eld together with invariants and assertions checked at runtime.
See �gure 14 for an example and [6, Section 2] for a description how this would
be done exactly.

The target of this thesis is to make Jive a big step nearer to modularity by
integrating the ownership proof technique into Jive. Since the ownership proof
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Figure 14: Second approach

class Node {
/*@ peer @*/ Node next, prev;
/*@ readonly @*/ Object data;

/*@ invariant next == null || next.owner == this.owner;
@ invariant prev == null || prev.owner == this.owner;
@*/

//@ requires n == null || n.owner == this.owner;
void setNext(/*@ peer @*/ Node n) {

next = n;
}

//@ ensures \result == null || \result.owner == this.owner;
/*@ peer @*/ Node getNext() {

return next;
}

}

class List {
/*@ rep @*/ Node first, last;

/*@ invariant first == null || first.owner == this;
@ invariant last == null || last.owner == this;
@*/

void add(/*@ readonly @*/ Object o) {
/*@ rep @*/ Node toAdd = new /*@ rep @*/ Node();
//@ assert toAdd == null || toAdd.owner == this;
last.next = toAdd;
//@ assert toAdd == null || toAdd.owner == this;
last = toAdd;
//@ assert toAdd == null || toAdd.owner == this;

}
}
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technique is based on the universe type system, it must be found a way how the
information the universe type system provides about the ownership structure
is formalized in Jive and how this formalization can be used to axiomatize the
ownership model.

The two places where universe information is stored can inspire this formaliza-
tion. So either the universe type is integrated into Jive's type system or the
formalization is done with the owner �eld. The axiomatization of the universe
invariant must be done according to the chosen formalization. Note that uni-
verse type safety itself is guaranteed, independently of the chosen formalization,
by the JML compiler used in the front-end of Jive.

Let's discuss some advantages and disadvantages of these two formalizations.
The approach integrating universe types into Jive's type system bene�ts from
the formalization of the Jive type system as for example the knowledge of
every locations type at any point in the program. Hence the universe type of
every location is known at any point in the program without any proof e�ort.
On the other hand no detailed ownership information is available, since with
universe types only peer and rep relationships can be expressed. Additionally no
ownership is available for readonly variable, although this information could be
tracked from previous statements due to substitutions in Hoare rules. Without
ownership information about readonly variables no universe cast can be proven.
Furthermore this approach misses universe information speci�ed in the program
itself in invariants and pre- and postcondition.

The second approach uses the owner �eld together with additional speci�cations
in invariants, pre- and postconditions to provide ownership information about
locations. This means that only at points of execution control transfer ownership
information is provided for free. At all other points in the program ownership
information must be derived from points of execution control transfer by using
the Hoare-style rules of Jive. Additionally the invariants, pre- and postcon-
ditions providing the ownership information can not just be used for free but
must be proven as well. The derivation of ownership information from points
of execution control transfer and the proof of ownership-speci�c invariants, pre-
and postcondition are in most cases unnecessary as the derived information is
already known or the truth of the speci�cation is already guaranteed by the
universe type system.

As these two approaches are both not suitable, let's state requirements on the
desired formalization.

• It should not loose any ownership information available from all parts of
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the source program including universe types and ownership information
in speci�cations.

• It should have proof obligations which are as weak as possible, meaning
that the veri�er should not be forced to prove things again that are already
assured by, for example, typechecking.

• It should reduce modi�cations to the existing rules and formalisms of
Jive to a minimum, specially conceptual changes should occur as little as
possible.

The approach taken in this thesis tries to consider all of these points.

Including universe types into Jive's type system would cause big changes to
the existing formalism as the universe type system actually uses multiple in-
heritance. For example peer String is a subtype of both, peer Object and
readonly String, although these two are not in a subtype relationship. And
introducing multiple inheritance into the formalization of the object store model
is beyond the scope of this thesis.

The approach taken in this thesis is to introduce an owner function in Isabelle
of type V alue → V alue returning the owner of the Value parameter. This
solution is similar to the approach based on the owner �eld15 but tries to avoid
the usage of additional invariants, pre- and postconditions.

Let's consider how this owner function is used to store all available ownership
information without the aid of unnecessary proof obligations. Lets de�ne two
helper functions, peer and rep. rep is of type Type → Store → V alue →
V alue → bool, whereas the type of peer is Store → V alue → V alue → bool.
Again the class where an object o was created in is stored in o's �eld declClass.

peer T OS X Y ≡ X = nullV ∨ (owner X = owner Y ∧ OS(X.declClass) = T )

rep OS X Y ≡ X = nullV ∨ (owner X = Y ∧ OS(X.declClass) = OS(Y.declClass))

peer T OS X Y is true i� X is null or its owner is Y 's owner and X was
created in class T . rep OS X Y is true i� X is null or its owner is Y and X

was created in the same class as Y . The store parameter is used for the �eld
accesses X.declClass resp. Y.declClass.

15and indeed the owner function could be de�ned as just being a short hand to the owner
�eld.
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In section 4.1 it was described that object in the root context have got no
owner. In order to be able to reason about objects in the root context using
the owner function, it will be de�ned that the special Value nullV is the owner
of all objects in the root context. Hence every value (besides nullV ) has got a
well-de�ned owner.

As opposed to Diet Java Card arrays are not supported in Java-KEx. The
formalization of ownership is done without considering arrays and hence for the
rest of this section the target language is assumed to be either Java-KEx or Diet
Java Card without arrays.

Fields Instead of using invariants to store the universe type of the �eld, Is-
abelle axioms are used. Hence for a rep �eld f and a peer �eld g of class C the
following lines are emitted as axioms in the program-dependent theories.

typeof X ¹ C ∧ alive OS X ∧ X 6= nullV =⇒ rep C OS OS(X.f) X

typeof X ¹ C ∧ alive OS X ∧ X 6= nullV =⇒ peer OS OS(X.g) X

This axioms states that for every value X being a subtype of C, being alive and
not null its f attribute is owned by X respectively its g attribute is owned by
the owner of X. These lines could be merged into one line.

typeof X ¹ C ∧ alive OS X ∧ X 6= nullV

=⇒ rep C OS OS(X.f) X ∧ peer OS OS(X.g) X

Note that shadowing is not a problem since in Jive unique attribute IDs are
used to access f and g. For a readonly �eld no ownership information is available
and thus nothing is emitted.

Locals and Parameters Since locals and parameters do not occur in any
program-dependent theory, the method used for �elds can not be applied to
locals and paramters. Instead, ownership information of locals and parameters
of the method in question is added to the implications exported to Isabelle.
Hence the ownership information provided by the universe type of a local or a
parameter is available (at least on the Isabelle level) without any proof e�ort.
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Return values Normally the ownership information delivered by the universe
type of a method's return value is preserved in the assigned variable's16 universe
type, but there are situations where this is not the case. So let's �nd these cases.

• If the assigned variable is of universe type rep or peer, then the universe
type of the return value is preserved.

• If the declared universe type of the return value is readonly, no ownership
information is available for the return value's universe type and hence
nothing can be done.

So if the assigned variable is of universe type readonly and the declared uni-
verse type of the return value is peer or rep, there is ownership information
available which is not preserved in the universe type of the assigned variable.
The available information in case of a statement readonly x = c.m() is:

• If the declared return value is of universe type peer, it is known that
peer $ x c holds.

• If the declared return value is of universe type rep, it is known that
rep st.typeof(this) $ x c holds.

$ denotes the store at in the poststate of the return value assignment, st.typeof(this)
means the static type of this, i.e. the class the method call occurs. Note that
this information is available even if c's universe type is readonly. Hence the
invoc-rule must be changed to add this information when needed.

So the poststate condition of the invoc-rule (rule (1)), which was

{Post[x/resV ]}

should now be when the universe type of x is readonly

{Post[x/resV ] ∧ rep st.typeof(this) $ x c}

in case of a rep return value and

{Post[x/resV ] ∧ peer $ x c}

in case of a peer return value.
16In Diet Java Card the assigned variable must even be a local.
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Universe up-casts In case of a universe up-cast ownership information is
lost, since in a universe up-cast the assigned variable is always of universe type
readonly. But as the equality of the right-hand side and the left-hand side of the
cast can be preserved, the lost universe type information can be reconstructed
from that equality. Hence nothing must be saved upon a universe up-cast.

Universe down-casts A universe down-cast passes only if the appropriate
universe type constraint holds respectively fails if the constraint does not hold.
Consider the cast x = (rep T) y appearing in class C, where y's universe type
is readonly. The constraint for this cast is rep C $ x c, meaning that y is either
null or its owner is this and y was created in a method of class C (subclass sep-
aration). Analogously, if it were a peer cast, the constraint would be peer $ x c.
Hence the cast-axiom is changed to

{
(Castpass ∧ P[e/x]) ∨
(Castfail ∧ P[$〈CastExc〉/$, new($,CastExc)/exc])

}
x = (T )e; {P}

where Castpass = ¬Castfail. For a rep cast Castpass and Castfail are

Castpass ≡ typeof(e) ¹ T ∧ rep st.typeof(this) $ x c

Castfail ≡ typeof(e) 6¹ T ∨ ¬rep st.typeof(this) $ x c

where st.typeof(this) denotes the static type of this, and for a peer cast Castpass

and Castfail are de�ned to be

Castpass ≡ typeof(e) ¹ T ∧ peer $ x c

Castfail ≡ typeof(e) 6¹ T ∨ ¬peer $ x c

Speci�cation Universe information occuring in speci�cations as invariants,
pre- and postconditions by using the owner �eld are transformed in the γ-
function into applications of the owner function. For example an expression
x.h.owner == y.owner is transformed to owner $(x.h) = owner y.
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This solution satis�es all stated requirements since it does not loose any avail-
able ownership information and no unnecessary proof obligations are generated.
Additionally the changes to the current Jive system are not very big. A disad-
vantage of this solution is that ownership information of locals and of parameters
is not available to Jive while performing the veri�cation calculus. The veri�ca-
tion calculus can still be performed by usage of strengthening and weakening,
but it might be confusing if produced implications seem unprovable in Jive
while in Isabelle they are provable due to the added information at export.

6.2 Axiomatization of the Ownership Model

In order to enable Isabelle (and hence Jive) to reason about ownership struc-
tures, Isabelle must be aware of the properties of the ownership model. For
example, how should Isabelle know if x is the owner of y that x 6= y ? Therefore
the formalization presented in the previous section is used to axiomatize the
ownership model in Isabelle.

Since ownership contexts form a tree with the root context as root, the ownership
relation of all alive objects form a tree with root the nullV value. This tree must
be axiomatized. Hence axioms for the owner function are to be declared stating
the owner function to form a tree. Some properties of a tree:

1. Every node has got exactly one father, except for the root node having no
father.

2. There are no cycles, meaning the father of a node can not be a descendant
of that node.

3. The root node is an ancestor of every node.

Property one is guaranteed by the owner function, since a function always maps
a speci�c element of the domain space to exactly one element of the image space.
For nullV , which is the root node, the owner function is simply not de�ned.

Some additional functions are needed to express transitivity of ownership, the
most important of which is owner_n of type V alue → nat → V alue return-
ing the value receiving after n + 1 applications of the owner function to the
parameter value17. owner_n's de�nition in Isabelle as primrec:

17The reason why owner_n is not de�ned to be n applications of owner is that it would
make many proofs more complicated since 0 would always be an exception of the rule to
prove. Furthermore inductions would always have to start from 1. Therefore the de�nition of
owner_n xs 0 = owner xs simpli�es many proofs and inductions.
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owner_n X 0 = owner X

owner_n X (Suc n) = owner (owner_n X n)

The function is_trans_owner_of with type V alue → V alue → bool is de�ned
as

is_trans_owner_of X Y ≡ ∃ n :: nat . owner_n Y n = X

stating that X is a transitive owner of Y if a natural number n exists so that
owner_n Y n = X.

Finally isRelevantTo with type V alue → V alue → bool is de�ned as

isRelevantTo X Y ≡ is_trans_owner_of (owner Y ) X

meaning that a value X is relevant to a value Y if the owner of Y is a transitive
owner of X.

Property two, the acyclicity of the tree, is stated as the following axiom

owner_n X n 6= X

Alternatively is could have been axiomatized using an induction. Hence the
basis and the step would have been formulated as Isabelle axioms

owner X 6= X

owner_n X n 6= X =⇒ owner_n X (Suc n) 6= X

with the add of which the acyclicity lemma could have been proven.

Property three is stated as
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X 6= nullV =⇒ is_trans_owner_of nullV X

Several other lemmas about properties of the ownership model are proven using
these axioms and de�nitions. Some of them can be found in Appendix B.
All these de�nitions, axioms and lemmas are part of the program-independent
Isabelle theories.

7 Integrating Ownership Proof Technique into Jive

The remaining task in order to integrate the ownership proof technique into
Jive is to design the modi�cations of those parts of current Jive that need to
be changed.

7.1 Invariant Formalization

First of all the new invariant semantics of section 5.2 must be re�ected in the
translation of invariants to �rst-order logic formulas.

Again the example of a method m() in class C executing in context Ω is taken.
All objects outside Ω might be executing and therefore they might have broken
invariants and cannot be considered. Hence they must be excluded in the in-
variant formalization. In section 2.4.2 the function InvT i for the invariant of
class Ti was de�ned as

InvT i(X, OS) ≡ typeof(X) ¹ Ti =⇒ ITi[X/this,OS/$]

The function INV quantifying over all alive and non-null values was de�ned as

INV (OS) ≡ ∀ X . (alive(X, OS) ∧ X 6= nullV =⇒ InvT i(X, OS) ∧ ... ∧ InvTn(X, OS))

This de�nition of INV does not �t with the modular ownership proof technique
since it quanti�es over all values, which could have broken invariants due to the
new invariant semantics. Instead, a new INV with type Store → V alue → bool
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is de�ned taking a single value and enforcing its invariant by conjoining all
type-guarded invariants of all known types.

INV (OS, X) ≡ alive(X, OS) ∧ X 6= nullV =⇒ InvT i(X) ∧ ... ∧ InvTn(X)

Since objects outside Ω are not considered and the invariants of all objects inside
Ω must hold upon the beginning of a function c.m() with m() 6= init() (point 1
of the ownership proof technique), a function quantifying over all objects inside
Ω should be de�ned. INVRel of type Store → V alue → bool satis�es this need
and is

INVRel(OS, X) ≡ ∀ Y . (isRelevantTo(Y, X) =⇒ INV (OS, Y ))

where isRelevantTo is the function described in section 6.2.

To satisfy point 2 of the ownership proof technique a special versions of INVRel

for init() methods is declared, namely INV CRel of type Store → V alue → bool

with the de�nition

INV CRel(OS, X) ≡ ∀ Y . (X 6= Y ∧ isRelevantTo(Y, X) =⇒ INV (OS, Y ))

where the invariants of all objects have to be relevant to can have broken in-
variants.

All functions besides the InvT i group and INV are program-independent.

It can be easily seen that the following rules hold.

Rule 1 (INV rules)

INV CRel(OS,X) ∧ INV (OS,X) = INV Rel(OS, X)

INV CRel(OS, X) ∧ isRelevantTo Y X ∧ ¬isRelevantTo X Y =⇒ INV Rel(OS, Y )

For an illustration of the second rule see �gure 15 .
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Figure 15: Second INV rule

7.2 Restrictions

While developing the ownership proof technique, several restrictions were im-
posed on the input Diet Java Card program. For these restrictions compile time
checks should be added to Jive. These restrictions are:

• No static invariants or represents clauses.

• Admissibility check of invariants and represents clauses.

• No static �eld access (unless constant) or method call in invariants or
represents clauses18.

• No �eld update on a target object others than this.

The restriction that readonly calls are only allowed on relevant objects can only
be checked as a part of the veri�cation process but not earlier as a static compiler
check.

18Actually already covered by the de�nition of admissibility.
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7.3 Method Triples and Invocation Rule

7.3.1 Direct Solution

The straightforward solution is to integrate the ownership proof technique as
de�ned at the end of section 5.6. Recall that the ownership proof technique is
using the new notation:

1. At the beginning of this.m() it can be assumed that INVRel($, this) holds.

2. At the beginning of this.init() it can be assumed that INV CRel($, this)
holds.

3. At the beginning of a method invocation o.p() with o of universe type peer
INV ($, this) must be re-established.

4. At the beginning of a method invocation o.p() with o of universe type rep
nothing must be assured.

5. At the beginning of a method invocation o.p() with o of universe type
readonly INV ($, this) must be re-established if o is in the same context
as c. Additionally it must be checked that o is relevant to c.

6. After a method invocation o.p() it can be assumed that INVRel($, o) holds,
meaning that if o is peer c's invariants hold.

7. At the end of c.m() INV ($, this) must be re-established.

Hoare triple To satisfy point 1 and 2 of the ownership proof technique the
Hoare prestate condition, which was

{INV ($) ∧ P}

is now

{INVRel($, this) ∧ P}

and for a init() method it is
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{INV CRel($, this) ∧ P}

Point 7 alters the Hoare poststate condition from

{INV ($) ∧ P}

to

{INV ($, this) ∧ P}

The new Hoare triple is now

{INVRel($, this) ∧ P} T :: m(par) {INV ($, this) ∧ Q}

for a regular method, and for a constructor-like init() method it is

{INV CRel($, this) ∧ P} T : init(par) {INV ($, this) ∧ Q}

Note that the following rules are not the �nal solution, they are just the straight-
forward integration of the ownership proof technique into Jive.

Rule of Non-Void Invocation Point 3 to 6 request a change in the invoc-
rule. First the non-void invoc-rule is considered. In current Jive it is

{Pre} C :: m(par) {Post}
{c 6= nullV ∧ Pre[c/this, e/par]} x = c.m(e) {Post[x/resV ]}

To comply to the ownership proof technique, the invoc-rule must be changed to

{IP ∧ P} C : m(par) {IQ ∧Q}
{c 6= nullV ∧ P [c/this, e/par] ∧ IPre} x = c.m(e) {(IPost ∧Q)[x/resV, c/this] ∧Own}
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where IPost and IQ are de�ned as

IPost ≡ INVRel($, this)

IQ ≡ INV ($, this)

IPre is de�ned di�erently for peer, rep and readonly calls.

IPre_peer ≡ INV ($, this)

IPre_rep ≡ true

IPre_readonly ≡ (owner c = owner this ⇒ INV ($, this)) ∧ isRelevantTo(c, this)

IPre_peer emerges from point 3, IPre_rep comes from point 4 and IPre_readonly

is the translation of point 5. Point 6 is re�ected in the conjunction of IP to the
de�ned (invariant-reduced) poststate condition Q.

Own represents the ownership information descibed on page 55. If x is of
universe type readonly, it is de�ned for a return value of universe type rep resp.
peer as

Ownrep ≡ rep st.typeof(this) $ x c

Ownpeer ≡ peer $ x c

For all other cases Own is just True and can be omitted.

Note that no special constructor version is needed, as IP can be either INVRel($, this)
or INV CRel($, this).

Rule of Void Invocation The rule of void invocation, which was

{Pre} C : m(par) {Post}
{c 6= nullV ∧ Pre[c/this, e/par]} c.m(e) {Post}

The ownership proof technique versions is
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{IP ∧ P} C : m(par) {IQ ∧Q}
{c 6= nullV ∧ P [c/this, e/par] ∧ IPre} c.m(e) {(IPost ∧Q)[c/this]}

where all predicates are de�ned as for the non-void invoc rule. Again no special
rule for constructors is needed.

The problem with this direct approach is that the rule is not just applied on the
complete prestate and poststate condition, as in current Jive where the pre-
respectively the poststate conditions are just substituted and conjoined to some
terms. The new rules need to split the prestate and the prestate condition and
deal with each part in a di�erent way.

In current Jive the invariant parts are conjoined in the front-end to the prestate
and the poststate condition and it is very di�cult to split them up in the back-
end when the di�erent invoc-rules are applied. Therefore an integration of the
ownership proof technique where the conjoined prestate and poststate condition
do not have to be split up would �t much smoother into the current design of
Jive. Let's call the following solution the compact solution.

7.3.2 Ownership Rule

In order to be able to make the integrated technique compact, an important
property of the ownership proof technique will be used to strengthen the proof
obligations for compactness purposes. To overcome the fact that stronger proof
obligations mean that properties actually known must again be proven unneces-
sarily, an additional rule will be added to Jive's rules enabling Jive to prevent
these unnecessary proof e�orts.

The important property of the ownership proof technique is observation 1 in
section 5.6, namely that no invariant of an object inside the current context
can have a broken invariant except for the this object and for a newly cre-
ated object before calling its init() method. Formally this property states
that INV CRel($, this) in case of no newly created object always hold during
the execution of the method in question. In case of a newly created object
INV CRel($, this) holds if $ is the store before the creation of the new object.

The new rule stating this property is the so called ownership rule saying that
INV CRel($, this) holds after a sequence of comprefs, if INV CRel($, this) holds
before the compref sequence and if the last statement in this compref sequence
is not a new object creation.



7 INTEGRATING OWNERSHIP PROOF TECHNIQUE INTO JIVE 66

{INV CRel($, this) ∧ P} cr_last_not_new{Q}
{INV CRel($, this) ∧ P} cr_last_not_new {INV CRel($, this) ∧ Q}

If the last compref is a new object creation, the ownership rule should be applied
to the compref sequence but without the last new object creation. Then the
prestate condition of the init() call, which must follow the new object creation,
can be derived using the new axiom together with Isabelle lemmas concerning
stores.

7.3.3 Compact Solution

Now a new strengthened version of the ownership proof technique can be formu-
lated which can be derived from the original version by the aid of the ownership
rule. The new strengthened and (nearly) symmetric version says that:

1. At the beginning of c.m() it can be assumed that INVRel($, c) holds.

2. At the beginning of c.init() it can be assumed that INV CRel($, c) holds.

3. At the beginning of a method invocation o.p() INVRel($, o) must be as-
sured to hold.

4. At the beginning of a method invocation o.init() INV CRel($, o) must be
assured to hold.

5. At the beginning of a method invocation o.p() with o of universe type
readonly additionally to point 3 isRelevantTo o c must be checked.19

6. After a method invocation o.p() it can be assumed that INVRel($, o) holds.

7. At the end of c.m() the INVRel($, c) must be assured to hold.

Now the derivation from original version is given. The ownership rule together
with the INV rules at the end of section 7.1 are used for this derivation.

• 1=⇒1: trivial

• 2=⇒2: trivial
19That is the non-symmetric part.
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• 3=⇒3: INV ($, c) =⇒ INVRel($, o). Since o is peer, owner c = owner o

holds and leads to INVRel($, o) = INVRel($, c). INV ($, c) =⇒ INVRel($, c)
is derived with the ownership rule and the �rst INV rule.

• 4=⇒3: true =⇒ INVRel($, o). Since o is rep, ¬isRelevantTo c o holds
(see subcase of lemma_twenty in Appendix B). Hence ¬isRelevantTo c o =⇒
INVRel($, o) is derived with the ownership rule and the second INV rule.

• 5=⇒3: (owner o = owner c → INV ($, c)) ∧ isRelevantTo o c =⇒
INVRel($, o). If owner c = owner o see two points before. If owner c 6=
owner o, ¬isRelevantTo c o must hold because of isRelevantTo o c .
Now see previous point.

• 3=⇒4, 4 =⇒4 and 5 =⇒4: As INVRel($, o) implies INV CRel($, o), see
previous points for a proof.

• 5=⇒5: trivial

• 6=⇒6: trivial

• 7=⇒7: INV ($, c) =⇒ INVRel($, c). Directly derived with the ownership
rule and the �rst INV rule.

The correspondingly modi�ed Hoare triples and invoc-rules are as follows.

Hoare triples The corresponding Hoare triple is

{INVRel($, this) ∧ P}T : m(par) {INVRel($, this) ∧ Q}

for a regular method, and for a constructor-like init() method it is

{INV CRel($, this) ∧ P} T : init(par) {INVRel($, this) ∧ Q}

Rule of Non-Void Invocation The non-void invoc-rule of the compact ver-
sion is split into six di�erent subrules.

Subrule 1

{Pre} C : m(par) {Post}
{c 6= nullV ∧ Pre[c/this, e/par]} x = c.m(e) {Post[x/resV, c/this]}
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Subrule 2

{Pre} C : m(par) {Post}
{c 6= nullV ∧ IR ∧ Pre[c/this, e/par]} x = c.m(e) {Post[x/resV, c/this]}

Subrule 3

{Pre} C : m(par) {Post}
{c 6= nullV ∧ Pre[c/this, e/par]}x = c.m(e){Post[x/resV, c/this] ∧ rep ST (this) $ x c}

Subrule 4

{Pre} C : m(par) {Post}
{c 6= nullV ∧ IR ∧ Pre[c/this, e/par] x = c.m(e){Post[x/resV, c/this] ∧ rep ST (this) $ x c}

Subrule 5

{Pre} C : m(par) {Post}
{c 6= nullV ∧ Pre[c/this, e/par]} x = c.m(e) {Post[x/resV, c/this] ∧ peer $ x c}

Subrule 6

{Pre} C : m(par) {Post}
{c 6= nullV ∧ IR ∧ Pre[c/this, e/par]} x = c.m(e) {Post[x/resV, c/this] ∧ peer $ x c}

where IR is a short-hand for isRelevantTo c this and ST (this) means st.typeof(this).
The following table explains the usage of each subrule.

c is peer or rep c is readonly
x is peer or rep Subrule 1 Subrule 2

x is readonly, m's return type is readonly Subrule 1 Subrule 2
x is readonly, m's return type is rep Subrule 3 Subrule 4
x is readonly, m's return type is peer Subrule 5 Subrule 6
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Rule of Non-Void Invocation The compact version of the void invoc-rule
is

{Pre} void C : m(par) {Post}
{c 6= nullV ∧ Pre[c/this, e/par]} c.m(e) {Post[c/this]}

for c of universe type rep or peer, and for a readonly c

{Pre} void C : m(par) {Post}
{c 6= nullV ∧ IR ∧ Pre[c/this, e/par]} c.m(e) {Post[c/this]}

8 Examples

8.1 Layered Structures

As �rst example the program fragment of �gure 5 should be considered. It
was this example that demonstrated the weakness of current Jive's logic. Con-
sider �gure 16 where the example of �gure 5 is now coded in Diet Java Card.
Additionally the proof obligations are substituted by the new ones.

Consider method Counter.inc(). As Counter and non of its supertypes declare
invariants INV ($, this) is always true. Additionally the ownership rule derives
INV CRel($, this) for the poststate of the method. The proof looks like:

{assume INV_Rel($,this)}
{INV_Rel($,this) -> INVC_Rel($,this)} // INV rule 1
{INVC_Rel($,this) /\ S = $} // save store
void inc() {

int t;
{S = $}
t = this.c;
{S = $ /\ t = $(this.c)}
{S = $ /\ t = S(this.c) /\ t' = t} // New logical variable
{t' = S(this.c) /\ t' = t} // subst
t = t + 1;
{t' = S(this.c) /\ t = t' + 1} // subst
this.c = t;
{t' = S(this.c) /\ t = $(this.c) /\ t = t' + 1}
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Figure 16: Layered Structure

class Counter {
private /*@ spec_public @*/ int c;

//@ ensures this.c == \old(this.c) + 1;
//@ assignable c;

{assume INV_Rel($,this)}
void inc() {

int t;
t = c;
t = t + 1;
c = t;

}
{assert INV_Rel($,this)}

}

class CounterWithCache {
private /*@ rep @*/ Counter counter;
int cache;

//@ invariant counter != null;
//@ invariant cache == counter.c;

{assume INV_Rel($,this)}
void addOne() {

/*@ rep @*/ Counter count;
int cache_local;
count = counter;

count.inc();

cache_local = cache;
cache_local = cache_local + 1;
cache = cache_local;

}
{assert INV_Rel($,this)}

}
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{$(this.c) = S(this.c) + 1} // subst
{$(this.c) = S(this.c) + 1 /\ INVC_Rel($,this)} // Ownership rule

}
{$(this.c) = S(this.c) + 1 /\
INVC_Rel($,this) /\ INV($,this)} // INV($,this) always true

{$(this.c) = S(this.c) + 1 /\ INV_Rel($,this)} // INV rule 1
{assert INV_Rel($,this) /\ $(this.c) = S(this.c) + 1}

Consider method CounterWithCache.addOne().

{assume INV_Rel($,this)}
void addOne() {

/*@ rep @*/ Counter count;

int cache_local;

{INV_Rel($,this)} // no action until here

count = this.counter;

{INV_Rel($,this) /\ count = $(this.counter)}

{INV_Rel($,this) /\ count = $(this.counter)
/\ $($(this.counter).c) = $(this.cache) // from INV_Rel($,this)
/\ $(this.counter) != nullV} // from INV_Rel($,this)

{count = $(this.counter) != nullV
/\ $($(this.counter).c) = $(this.cache)
/\ INV_Rel($,count)} // INV rule 2 since count is rep

{INV_Rel($,count) /\ $ = OS' // save $ to OS'
/\ oldcount' = OS'(count.c) // New logical variable
/\ count = $(this.counter) != nullV
/\ $($(this.counter).c) = $(this.cache)}

{INV_Rel($,count) /\ $ = OS' /\ oldcount' = OS'(count.c)
/\ count = $(this.counter) != nullV
/\ oldcount' = $(this.cache)} // subst

count.inc();
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{INV_Rel($,count) /\ $(count.c) = OS'(count.c) + 1 // Invoc-rule
/\ count = OS(this.counter) != nullV // Invoc-var-rule
/\ oldcount' = OS(this.cache) // Invoc-var-rule
/\ OS(this.counter) = $(this.counter) // Invoc-rule
/\ OS(this.cache) = $(this.cache)} // Invoc-rule

{INV_Rel($,count) /\ $(count.c) = oldcount' + 1 // subst
/\ count = $(this.counter) // subst
/\ oldcount' = $(this.cache) // subst
/\ $(this.counter) != nullV} // subst

{$($(this.counter).c) = $(this.cache) + 1 // substs and weakening
/\ $(this.counter) != nullV}

cache_local = this.cache;

{$($(this.counter).c) = $(this.cache) + 1 /\ cache' = $(this.cache)
/\ cache' = cache_local // New logical variable
/\ $(this.counter) != nullV}

{$($(this.counter).c) = cache' + 1 /\ cache' = cache_local // subst
/\ $(this.counter) != nullV}

cache_local = cache_local + 1;

{$($(this.counter).c) = cache' + 1 /\ cache_local = cache' + 1
/\ $(this.counter) != nullV}

{$($(this.counter).c) = cache_local // subst
/\ $(this.counter) != nullV}

this.cache = cache_local;

{$($(this.counter).c) = cache_local /\ $(this.cache) = cache_local
/\ $(this.counter) != nullV}

// as this.counter != this.cache && this != this.counter (type info)

{$($(this.counter).c) = $(this.cache) // subst
/\ $(this.counter) != nullV}
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{INV($,this)} // thats CounterWithCache's invariant

{INV($,this) /\ INVC_Rel($,this)} // ownership rule

{INV_Rel($,this)} // INV rule 1
}
{assert INV_Rel($,this)}

Hence the compact solution can successfully prove layered object structures !

8.2 Universe Cast

Consider the following methods appearing in class T :

/*@ pure rep @*/ Object repObj() {
/*@ rep @*/ Object temp;
temp = new /*@ rep @*/ Object;
return temp;

}
//@ signals (Exception) false;
{assume INV_Rel($,this)}
/*@ pure @*/ void testCallCast() {

/*@ readonly @*/ Object readonlyO;
/*@ rep @*/ Object repO;
readonlyO = this.repObj();
realrepR = (/*@ rep @*/ Object) repR;

}
{assure INV_Rel($,this)}

The interesting part is that the cast is proven not to throw an exception.

//@ signals (Exception) false;
{assume INV_Rel($,this)}
/*@ pure @*/ void testCallCast() {

/*@ readonly @*/ Object readonlyO;
/*@ rep @*/ Object repO;
{INV_Rel($,this)} // no action until here
readonlyO = this.repObj();
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{INV_Rel($,this) /\ rep T $ readonlyO this} // invoc-rule
{INV_Rel($,this) /\ rep T $ readonlyO this /\
type repR <: CClassT Object} // type info

// cast will pass !!
realrepR = (/*@ rep @*/ Object) repR;
{INV_Rel($,this)} // cast axiom

}
{assure INV_Rel($,this)}

8.3 Init

Consider the following code occuring in a class T

void init() {...}

void foo() {
/*@ rep @*/ T t;
...
t = new /*@ rep @*/ T();
t.init();
...

}

The problem is how to verify the init() call. This time the proof is done back-
wards.

{assure INV_Rel($,this)}
}

...
{INVC_Rel($,this)} // ownership rule (forward)
{INV_Rel($,t)} // weakening by INV rule 2 since t is rep
t.init();
{INVC_Rel($,t)} // invoc-rule
t = new /*@ rep @*/ T();
{INVC_Rel($<T>, new($,T))} // new axiom
{INVC_Rel($,this) -> INVC_Rel($<T>,new($,T))} // weakening (see below)
{INVC_Rel($,this)} // ownership rule (forward)
...
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/*@ rep @*/ T t;
void foo() {
{assume INV_Rel($,this)}

The question is how INV CRel($〈T 〉, new($, T )) is derived from INV CRel($, this).

The derivation is done as follows. INV rule 2 states that for an object o inside
but not element of this' context INV CRel($, this) =⇒ INVRel($, o) holds.
new($, T ) is inside but not element of this' context as it is a rep. Therefore let's
assume that o and new($, T ) will be elements of the same context.

Since no location in $ depends on new($, T ) as it is not alive, the invari-
ants of all objects relevant to o and alive in $ must still hold in store $〈T 〉.
Hence INV CRel($〈T 〉, new($, T )) holds as new($, T )'s invariant are excluded
in INV CRel($〈T 〉, new($, T )).

8.4 Universe Types

The foo method call in method bar in the following code snippet of class T can
not be proven without considering the information provided by universe types.

//@ requires a != b;
abstract void foo(/*@ readonly @*/ T a, /*@ readonly @*/ T b);

void bar(/*@ rep @*/ T c, /*@ peer @*/ T d) {
foo(c,d);
...

}

Let's prove bar.

{assume INV_Rel($,this)}
void bar(/*@ rep @*/ T c, /*@ peer @*/ T d) {

{INV_Rel($,this)}
{INV_Rel($,this) /\ rep T $ c this
/\ peer $ d this} // universe type info

{INV_Rel($,this) /\ owner c = this
/\ owner d = owner this} // from def of rep and peer
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{INV_Rel($,this) /\ owner c = this /\ owner d = owner this
/\ owner this /= owner} // lemma Ownership.basic

{INV_Rel($,this) /\ owner c /= owner d}
{INV_Rel($,this) /\ c /= d}
foo(c,d);
{INV_Rel($,this)} // invoc-rule
...

}
{assure INV_Rel($,this)}

8.5 Readonly method calls

Consider the following code of class T :

void bar() {...}

// requires T.owner.owner = this;
void foo(/*@ readonly @*/ T t) {

t.bar();
...

}

It is proven as follows:

{INV_Rel($,this) /\ owner (owner t)) = this}
void foo(/*@ readonly @*/ T t) {

{INV_Rel($,this) /\ owner (owner t)) = this}
{INV_Rel($,this) /\ owner_n (owner_n t 0) 0 = this} // def of owner_n
{INV_Rel($,this)
/\ owner_n t 1 = this} // rule Ownership.OwnerNFusion

{INV_Rel($,this)
/\ isRelevant t this} // rule Ownership.RelevantToTransitiveOwner

{INV_Rel($,t)
/\ isRelevant t this} // rule Ownership.INVToRelevantInv

t.bar();
{INV_Rel($,t)} // invoc-rule
...

}
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9 Implementation Details

As a part of this master thesis, the concepts described in earlier sections were
implemented in Jive. This section lists details about the implementation, where

• things were implemented di�erently than presented in earlier sections.

• parts still contain known problems.

• important design decisions were made.

Since implementation details are explained, knowledge of the implementation of
Jive is assumed.

9.1 Integrating Ownership into Jive

The ownership version of Jive was integrated into the non-modular version of
Jive in such a way that the user can choose which version of Jive he wants
to use by selecting the start-up option �-ownership�. Internally a variable is
set to determine whether the �-ownership� �ag was set, and accordingly the
appropriate code is executed.

For the rules the following convention was made. All changed rules were re-
named, where the string �_ownerver� (for ownership version) was added after
the rules name but before {forward,backward} (e.g. KEx_inst_cast_axiom is
changed to KEx_inst_cast_ownerver_axiom). The additional ownership rules
(backward and forward) are recognized by the string �ownership� in their names.

The new rules and axioms are:

• KEx_invoc_ownerver_forward and KEx_invoc_ownerver_backward

• KEx_invoc_void_ownerver_forward and KEx_invoc_void_ownerver_backward

• KEx_ownership_forward and KEx_ownership_backward

• KEx_inst_cast_ownerver_axiom and KEx_check_cast_ownerver_axiom
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9.2 Admissibility checks

Since the admissiblity checks were inserted into the JML compiler and not
into the Jive front-end speci�c code, all possible Java expression had to be
considered. As Java supports arbitrary nesting of expressions, it was very hard
to consider all possible cases of expression nesting.

The admissibility checker was implemented with the visitor pattern as stateful
visitor.

Constants All �elds declared as �nal are considered to be constant, as they
can not be modi�ed after their initialization.

Expressions It is non-trivial to extract all expressions to be checked by the
admissibility checker from an invariant. For example the expression (intfield
> 0 ? peerfield : peerfield2).outerfield contributes three expressions,
namely intfield, peerfield.outerfield and peerfield2.outerfield. Other
examples of expressions contributing several expressions to check are array ac-
cesses, new array creations, array initializers, new object creations and method
calls.

Universe Down-Casts Universe down-casts occuring in an expression must
be handled specially as they provide information about the expression to be
casted. For example it is known for an expression casted to rep that the object
the casted expression is referring to is an element of the context owned by the
this object. Hence further expressions building on this cast can pro�t from this
knowledge.

Let's illustrate this fact by an example expression ((rep T) repF.roF1).roF2,
where repF denotes a rep �eld and roF1 resp. roF2 denote readonly �elds,
all of type T . Without the cast this expression is not admissible, since the
object referred to by repF.roF1 might not be inside the context owned by
this. Therefore the invariant of this must not depend on a �eld of the object
referred to by repF.roF1 and hence repF.roF1.roF2 is not admissible. The
cast provides the information that repF.roF1 is inside the context owned by
this, therefore the invariant of this is allowed to depend on �elds of repF.roF1.
Hence ((rep T) repF.roF1).roF2 is admissible.
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Hidden this and subclass separation Subclass separation requires the left-
most �eld access to be on a �eld declared in the current class. The left-most
�eld access can be separated from this, e.g. this can be casted before the �eld
is actually accessed. Therefore special care must be taken in the admissibility
checker that subclass separation is not circumvented by trying to hide this.

Open problems. The current implementation of the admissibility checker
has two known problems:

• Array access on a newly created array with initializer: e.g. new Object[]{peerfield}[0]
is rejected by the admissibility checker, although it is actually admissible.
This expression is equal to peerfield, which of course is admissible. The
rejection is due to the fact that when the admissibility checker encounters
an array access it requires the left-most �eld access to be a rep �eld. This
requirement follows from the fact that for admissibility checking array ac-
cess are equal to �eld accesses. Furthermore admissible expressions with
the left-most �eld access of type other than rep may only have one �eld
access, when not considering newly created arrays. As an array access
can not be the left-most �eld access, the admissibility checker requires the
left-most �eld access to be a rep �eld when it encounters an array access.
Hence the above mentioned expression is rejected.

• Hidden this: e.g. (field < 0 ? this : this).field == 0 is reject
although actually admissible. The expression is admissible since it is equal
to the admissible this.field. As the admissibility checker does not re-
alize that the �eld access is the left-most one, since this is not the pre�x
of the �eld access, the expression is rejected.

Additional checks The following checks are part of the admissibility checks
done in the JML compiler but were implemented outside the main admissibility
checker classes:

• No static invariants

• No static represents clauses
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9.3 Ownership formalization

As mentioned in a footnote in section 6, the owner function could be de�ned
as a short-hand for an access to the owner �eld. In a early stage of this the-
sis the owner function was indeed de�ned that way. As a consequence the
owner function and all other related functions as owner_n, isRelevantTo and
is_trans_owner_of must take an additional parameter of type store in order
to access the owner �eld for a certain value.

In the current implementation of this thesis the store parameter was removed,
and hence the owner function has type V alue → V alue as described in section
6. The advantage of this solution is that ownership relations once they are
de�ned can be used for all di�erent stores without any proof e�ort. On the
other hand once de�ned these relations could be potentially used for not alive
objects, which would not make any sense. Further considerations are needed to
�nd out whether it could even cause soundness problems.

The use of a store parameter in the owner function requires additional axioms
for transferring an ownership relation from one store into subsequent stores, as
for example

∀OS :: Store OS′ :: Store . ((∀X :: V alue . alive(X,OS) =⇒ alive(X, OS′))

=⇒ owner OS X = owner OS′ X)

9.4 Subclass separation

Although subclass separation is fully considered in the previous sections, it was
only partially implemented. The current implementation checks that rep �elds,
methods returning rep objects and methods taking rep objects as parameters
must be declared to be private. These checks where implemented directly in the
JML compiler as part of the admissibility checks. Additionally the invariant
and represents clause admissibility checks are performed as described in section
5.5 including the parts contributed by subclass separation. Hence the only
place where subclass separation can still be circumvented are casts, since the
parts of the cast pass condition contributed by subclass separation are not yet
implemented. These tests would require an additional �eld declClass of type
\TY PE declared in java.lang.Object. Furthermore Jivemust be able to handle
�elds of type \TY PE correctly, as currently a �eld access in Jive yields a Value,
whereas types are of sort JavaType.
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9.5 Minor details

This Through this thesis the variable this was used in formulas to refer to
the receiver object of the current executing method. Lately this was forbidden
to occur in poststate conditions, which forced the addition of a logical variable
T . In the prestate condition this is saved to T . Afterwards T is used instead
of this. Although the implementation was changed to use only T in poststate
conditions, the formulas in this thesis were not changed.

Checks Besides admissibility and subclass separation checks the implementa-
tion checks in the Jive front-end whether all �eld updates are on target this.

Rules In section 7.3.3 several rules were split into di�erent subrules. In the
implementation these subrules could have been integrated into one class per
rule.

10 Future Tasks

Modularity In order to achieve full modularity, the semantics and the trans-
lation of assignable clauses must be changed.

A method p may modify a location f a client's model �eld m depends on. As m

can not be mentioned in the assignable clause of p, since the client in which m

is declared in is not known while writing p, the semantics of assignable clauses
must be changed to permit changes in model �elds of objects outside the current
execution context. Lately a so-called light ownership concept was introduced
into current Jive, where a method may modify all �elds not in the current con-
text. This approach is not su�cient as information about modi�ed �elds inside
the current context could be needed to verify the method in question. Addi-
tionally concrete �elds of objects outside the context of the method execution
can not be changed by this method.

Future work could elaborate whether the requirement on objects to specify on
what data groups their model �elds may depend would help. Additionally it
must be worked out what sort of constraints on the members of data groups are
useful. Possible constraints are for example context restrictions and disjunction
of data groups.
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Additionally the current downward closure computation requires the knowl-
edge of all subclasses, which renders this computation non-modular. In order
to achieve modularity, a technique must be developed where methods calling
virtual methods can be veri�ed without the knowledge of all subclasses of the
classes where these virtual methods are declared, but still permitting future
subclasses to add locations to their state. Maybe the introduction of residues
as described in [9] could help.

Proof Technique Ownership proof technique and its admissibility condition
does not allow invariants to depend on the state of objects in the same con-
text. Mutually dependent object structures can hence not be veri�ed since
their invariants are not ownership admissible. To solve this problem the visibil-
ity technique [3, Section 9], which was already metioned in section 5, could be
used. The visibility technique supports mutually dependent object structures by
weakening its admissibility condition, but its proof obligations are more di�cult
to prove. That is the trade-o� mentioned in the introduction, that a weaker
admissibility condition normally emerges in harder to prove proof obligations
and vice versa.

Arrays As remarked in section 2.1.1, Jive was planned to support Diet Java
Card programs, but currently only Java-KEx programs are fully supported.
The contribution of this thesis are valid for both target languages, Diet Java
Card and Java-KEx, with one exception. Arrays were not considered in the
formalization of the ownership model. When Jive will support full Diet Java
Card the implications on the contribution of this thesis emerging from the use of
the universe type system in connection with arrays should be further elaborated.

For example the cast-rule should have a special version for array casts to check
the second universe type. For an array arr casted to universe type rep peer
the checked term would be:

arr = null ∨ (owner arr = this ∧ $(arr.declClass) = st.typeof(this)

∧ ∀n :: nat . (0 ≤ n ∧ n < $(arr.length) =⇒ peer $ $(arr[n]) arr))

Tactics Jive is equipped with automatic proof tactics, one of which is a prac-
tical weakest precondition calculus tactic. Although in ownership Jive the
ownership versions of the invoc-rule, the invoc-void-rule and the cast-axiom are



11 CONCLUSION 83

used instead of their non-ownership equivalents in the practical weakest precon-
dition tactic, further considerations are needed whether this simple substitution
of the rules is sensible. Additionally the ownership rule is not yet integrated into
the practical weakest precondition tactic. Since the ownership rule is heavily
needed in the veri�cation calculus, the practical weakest precondition tactic of
the current version of ownership Jive will not be able to prove most programs
automatically. Therefore the integration of the ownership rule into the practical
weakest precondition tactic is an important future task. For example the prac-
tical weakest precondition tactic could for example apply the ownership rule
before every method invocation statement.

Isabelle Since a �rst version of the program module exporting the Jive-
generated �rst-order logic implications to Isabelle was ready just before the
end of this thesis, there are no results about the actual di�culty of proving
these implications in Isabelle. This applies to the Jive-generated implications
in general and to the parts dealing with ownership-speci�c properties in particu-
lar. Hence future work could investigate on the repertoire of axioms and lemmas
provided by the Ownership theory, whether they are useful or not, whether im-
portant lemmas or even axioms are missing and how these axioms and lemmas
are normally used in proving the exported lemmas.

11 Conclusion

This thesis introduced current Jive by describing its architecture and its
target language, Diet Java Card together with JML. While explaining invariants
the invariant semantics of Jive was emphasised, which requires the invariants
of all objects to hold at points of execution control transfer.

The basic elements of the formalization of the object store model of Poetzsch-
He�ter and Müller's program logic were explained. The JML transformation
to �rst-order logic formulas was then descibed, where current Jive's invariant
transformation was especially pointed out showing its non-modularity. Finally
those rules and axioms of Jive's logic relevant to this thesis were introduced.

As a next step it was shown that current Jive's proof technique is not able
to handle layered object structures since the used invariant semantics does not
permit objects to break the invariants of their clients. Therefore a �rst step was
taken to weaken the invariant semantics allowing objects to break the invariants
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of their clients but causing the new problem of re-entrant method calls on objects
with broken invariants.

This problem can be solved using the universe type system. A new invariant
semantics was de�ned, weaker than current Jive's but stronger than the �rst
step's. This new invariant semantics solves the problem of re-entrant method
calls. But if the invariant semantics was taken as proof obligation it would still
be non-modular.

It was then shown that if additional restrictions are imposed on the input pro-
gram the universe invariant guarantees that only the invariant of the currently
executing object can be broken by the currently executing method, therefore
INV CRel($, this) always holds. The most important restriction is the require-
ment of ownership admissible invariants and represents clauses which restricts
the locations they may depend on. Eventually the modular ownership proof
technique was formulated.

Since the ownership proof technique is based on the universe type system, Jive
must be aware of the properties of the ownership model. Several possible solu-
tions to formalize ownership were discussed. The chosen formalization uses the
owner function to represent ownership. The approach how this function is used
to preserve all available ownership information without generating new proof
obligations was explained in detail.

Eventually the integration of the ownership proof technique into Jive was de-
cribed by �rst showing how invariants should be transformed into �rst-order
logic formulas according to the new invariant semantics. The straightforward
solution of integrating the ownership proof technique into Jive is not feasible as
it requires Jive to split in the back-end the conjoined prestate resp. poststate
condition.

A compact solution was then developed not lacking this draw-back. This com-
pact solution requires an additional Hoare rule, the so-called ownership rule,
stating the if INV CRel($, this) holds at some point of execution in a method
m() it will hold at any subsequent point (if it is not a point of new object cre-
ation). It was proven that the compact solution can be derived from the original
one together with the ownership rule.

Some examples showed that the compact solution is indeed capable of proving
layered object structures. Additionally universe casts and ownership speci�ca-
tions are successfully handled by the compact solution.
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To improve the current implementation future work should consider arrays,
Jive's tactics handling ownership and get experience in actually proving the
exported implications in Isabelle using the provided axioms and lemmas.

An other approach to solve the problem of proving layered structures is
taken by the Boogie tool [18]. It tries to solve the problem by an explicit
treatment in speci�cation when invariants have to hold. In the Boogie technique,
an object is either in a valid or a mutable state. An object has to satisfy its
invariants only when it is in a valid state, and only objects in a mutable state can
be modi�ed. This state information is represented by a speci�cation-only �eld.
This �eld can be modi�ed through two special statements, pack and unpack. An
ownership structure is used similar to the one of the universe type system. As in
the ownership proof technique the Boogie technique enforces that all (transitive)
owner objects of a mutable object are also mutable allowing the mutable object
to break the invariants of its (transitive) owner objects. The invariants are
checked when the objects are packed, i.e. turned from mutable to valid. The
pack and unpack statements signi�cantly increase the speci�cation overhead,
as it is di�cult to �gure out where to use these two statements. Additionally
method speci�cations become more complex as it is needed to describe what
objects are valid. For the Boogie methodology see [20].

Future work should integrate the visibility technique into Jive in order to
handle mutually dependent object structures. Additionally one should investi-
gate the implications of the universe type system on modi�es clauses, in order
to achieve full modularity.
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A Ownership Relationship Notation

The following table lists the notation for di�erent ownership relations between
objects and contexts. While Roman letters denote objects, Greek letters mean
contexts.

X is in the same context as Y owner of X equals the owner of Y
X is an element of the context of Y owner of X equals the owner of Y
X is inside the context of Y owner of Y is a transitive the owner of X
X (directly) owns Y X is the owner of Y
X transitively owns Y X is a transitive owner of Y
X is owned by Y Y is the owner of X
X is inside the context owned by Y Y is a transitive owner of X
X is an element/member of Ω owner of Ω equals the owner of X
X is inside Ω owner of Ω is a transitive owner of X
X is in Ω (never used due to possible confusion)
X (directly) owns Ω X is owner of all members of Ω
X transitively owns Ω X is transitive owner of all members of Ω
Ω is the same as Ψ owner of of Ω equals the owner of Ψ
Ω is inside Ψ owner of Ψ is a transitive owner of Ω
Ω is a descendant of Ψ a transitive owner of Ω is a member of Ψ

The owner of Ω the owner of all elements of Ω
Context of X all objects with owner equals owner of X

Ω is the context of X owner of Ω equals the owner of X
X is owned by Ω owner of X is a member of Ω
Ω is a child of Ψ owner of Ω is a member of Ψ
Ω is the owner of Ψ owner of Ψ is a member of Ω

Negations are analogous, just replace is by is not, inside by outside or add does
not. As a simple rule: X is element of or X is in the same refer to exactly one
context, wereas X is inside is transitiv and several contexts can be meant. In
is not used since it is confusing whether X is in Y 's context means X is inside
the context of Y , X is in the same context as Y or X is in the context owned
by Y . In could actually be de�ned here but since it is probably used in other
papers with a di�erent semantics, the reader will be confused.
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B Selected Ownership Lemmas

These de�nitons, axioms and lemmas are program-independent and taken from
the Ownership theory.

B.1 De�nitions

owner_n

owner_n X 0 = owner X

owner_n X (Suc n) = owner (owner_n X n)

is_trans_owner_of

is_trans_owner_of X Y ≡ ∃ n :: nat . owner_n Y n = X

isRelevantTo

isRelevantTo X Y ≡ is_trans_owner_of (owner Y ) X

B.2 Axioms

Acyclic
owner_n X n 6= X

B.3 Lemmas

Basic This lemma states the non-re�exitivity of the ownership function. It is
called basic since it is the most basic ownership property.

owner X 6= X
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Induction This rule is the induction step of acyclicity

owner_n X n 6= X =⇒ owner_n X (Suc n) 6= X

Acyclic2

Acyclicity de�ned by the is_trans_owner_of function

¬is_trans_owner_of X X

OwnerIsNotTransitivelyOwned The following lemma states that the owner
of an object is not transitively owned

X = owner Y =⇒ ¬is_trans_owner_of Y X

NonRe�exive This lemma states the non-re�exivity of owner and is_trans_owner_of
for two equal values

X = Y =⇒ X 6= owner Y ∧ Y 6= owner X

∧ ¬is_trans_owner_of Y X

∧ ¬is_trans_owner_of X Y

RelevanceRe�exivity An object is relevant to itself.

isRelevantTo X X

PeerRelevance Peer objects are always relevant

owner X = owner Y =⇒ isRelevantTo X Y
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RelevantToTransitiveOwner An object is always relevant to all its transi-
tive owners

owner_n X n = Y =⇒ isRelevantTo X Y

with the subcase RepRelevance

owner X = Y =⇒ isRelevantTo X Y

OwnerNFusion Two applications of owner_n can be combined to one appli-
cation. Note the +1 in the sum of the nat parameters. It's because owner_n X 0
is not X but owner X.

owner_n (owner_n X n1) n2 = owner_n X (n1 + n2 + 1)

TransitiveOwnerNotRelevance Transive owners are not relevant

∀n :: nat . ¬isRelevantTo (owner_n X n) X

with the subcase OwnerNotRelevance

¬isRelevantTo (owner X) X

INVRelToINVCRel

INV _Rel OS X =⇒ INV C_Rel OS X

INVRelToINV

INV _Rel OS X =⇒ INV OS X
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Relevance_splitting This is INV rule 1

INV C_Rel OS X ∧ INV OS X = INV _Rel OS X

INVToRelevantInv (not yet proven)

INV _Rel OS X ∧ isRelevantTo Y X =⇒ INV _Rel OS Y

INV_rule_2 (not yet proven)

INV C_Rel OS X ∧ isRelevantTo Y X ∧ ¬isRelevantTo X Y =⇒ INV _Rel OS Y
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