
Semester Thesis

Design of a Java/Jml Frontend for BoogiePL

Samuel Burri
saem [at] student.ethz.ch

supervised by:

Prof. Peter Müller
peter.mueller [at] inf.ethz.ch

October 2005

Abstract

This report describes a translation of a subset of the language Jml, extend with a few additional constructs, to the
intermediate language BoogiePL for program analysis and program verification. The suggested translation has been
implemented and may be used to reason about specifications of object-oriented software components.

1

Design of a Java/Jml Frontend for BoogiePL

Contents

Contents 2

1 Introduction and Idea 3

1.1 Outline of Semester Thesis . 3

2 Subset of supported JML Grammar 5

2.1 Notations . 5

2.2 Types, Programs and Classes . 5

2.3 Method Declarations and Specifications . 6

2.4 Statements . 7

2.5 Expressions . 9

3 Translation to BoogiePL 11

3.1 Setup . 11

3.2 Types . 12

3.3 Programs and Classes . 14

3.4 Method and Constructor Declarations and Specifications . 15

3.4.1 Translation of the One-Expression . 17

3.4.2 Pre- and Postconditions . 18

3.4.3 Modifies Clauses . 19

3.4.4 Method Body Translation . 22

3.5 Statements . 23

3.5.1 Variable Declaration . 23

3.5.2 Method Call . 24

3.5.3 Assignments . 25

3.5.4 Control Flow Statements . 31

3.5.5 Specification Statements . 32

3.6 Expressions . 33

3.6.1 Checking for Definitions . 35

4 Implementation 37

4.1 Structure of JtoBPL . 37

4.2 How to get the Software . 37

4.3 Usage . 37

References 38

2

Design of a Java/Jml Frontend for BoogiePL

1 Introduction and Idea

The Java Modeling Language (JML) [3] allows one to formally specify the behavior and interfaces of Java classes and methods.
Proving correctness of a given class or method according to its specification is somewhat difficult since the the object-oriented
structure of such components has very rich semantics.

However, we follow the approach to translate a given set of JML classes to BoogiePL [1] which is an intermediate language for
program analysis and program verification. BoogiePL programs can be verified using the static verifier Boogie which is part of the
Microsoft Spec# [7, 8] programming framework and may (at this time) be downloaded for free.

Nevertheless statically proving correctness or an arbitrarily property of a software component is still a semi-decidable problem.
Consequently we won’t be able to proof the absolute absence of errors but we might be able to find some or state that there are no
errors with a high probability of success.

1.1 Outline of Semester Thesis

First, we decided on a subset of Jml that we will support in our translation throughout this thesis. All the supported constructs
can be found in section 2 on page 5. The most important language constructs are taken into account. Anyhow, some concepts are
missing. The most important ones are listed below:

Binary Classes Only classes that appear in regular source files (*.java or *.jml) are supported.
For Java SDK classes (e.g. String) one can use the annotated Jml classes
provided by the Jml framework in the specs folder.

Interfaces Only classes are supported.

Overloading We don’t consider overloading. Methods can be renamed to support the same
functionality.

Shadowing All fields of a class (including inherited fields from superclasses) should have
different names.

Access Modifiers We don’t consider visibility and access control of classes, methods and fiels.
i.e. packages, and modifiers such as public or private are not translated.

Exceptions Exceptions are not supported either.

For-Loops The only loop we consider is the annotated While-Loop. But all For-Loops can
be rewritten as as While-Loops.

Case-Statements Only If-Then-Else statements are supported. One may model a case statement
using several If-Then-Else statements.

Full Jml Support Pre- and postconditions, modifies clauses, invariants, assume and assert
statements and loop invariants are considered. However, model fields and
other more complex specification statements are not supported.

Additionally we introduced a couple of constructs which are currently not part of the Jml language. Following one finds the most
interesting ones:

Pack and Unpack Statement A way to kind of unwrap an object instance, moving its inv flag one step up
respectively down the class hierarchy and asserting all invariants.

Ownership When creating a new object or array instance one may specify an owner of
this new reference.

Ownership-Expressions Using this expressions one can access the specified owner object or owner
type of a given reference.

One-Expression This expression helps to reference the type of an object from the callers and
the callees perspective.

3

Design of a Java/Jml Frontend for BoogiePL

Second, we formulated a translation in a pattern-matching fashion which fits the structure of abstract syntax trees provided by the
Jml compiler. One can find all translation rules in section 3 on page 11. The modeling of the heap, the used functions and quiet a
few translation rules are inspired by the translation suggested in BoogieOOL: An object-oriented language for program verification [2].

We start out with the definition of some functions, predicates and axioms and introduce a couple of global variables in order to
model the heap and arrays. Then we go trough every class in the provided set of compilation units and translate its methods and
fields and state some axioms to model inheritance and object access. Class methods are being translated to BoogiePL procedures
where we can use the procedure specifications provided by BoogiePL. We translate only one constructor per class which also be-
comes a procedure in the BoogiePL code and will be called when a new object instance is created.

Third, we implemented the suggested translation in Java. We extended the existing MultiJava [5] and Jml [4] framework and called
our tool JtoBPL (packages org.jtobpl.*). Details about our implementation can be found in section 4 on page 37. Basically we
extended the Jml compiler using the ANTLR tool [9] in order to integrate our new language constructs in the supported language.
In a second step we inspect the abstract syntax tree we get from the parser and make sure that only constructs that we support
have been parsed. In the end the given Jml compilation units are translated to BoogiePL according to our translation rules.

Our source code and Jar files can be downloaded from http://n.ethz.ch/student/burrisa/jtobpl/.

4

Design of a Java/Jml Frontend for BoogiePL

2 Subset of supported JML Grammar

As we have pointed out in section 1.1, Outline of Semester Thesis on page 3, only a subset of the Jml language is considered in our
translation. We attempted to find a reasonable subset, not to small and imposing to many restrictions and not to big so that our
translation has still a feasible size. We tried to stick to the grammar rules documented in the JML Reference Manual [3] in Appendix
A, Grammar Summary. However, you may note that we had to make some changes to the grammar in order to make the structure
easier to translate. More details will be mentioned throughout the grammar description.

Although this section deals only with the theoretical definition of the extended Jml subset, we also include comments and restric-
tions that are rather concerned with the implementation of the translation.

2.1 Notations

The common EBNF formalism is employed.

Prod Exactly one occurrence of production Prod.

(Prod)* Zero or arbitrarily many repetitions of production Prod.

(Prod)+ Arbitrarily many repetitions of production Prod - at least one.

[Prod] Production Prod might occur or not.

Prod1 | Prod2 Either production Prod1 or production Prod2 occurs.

term Terminal.

Class Name of Java Class that represents one ore more productions in the syntax tree.
This is very helpful if you try to follow the implementation in the visitor classes.
If a class name starts with a J it’s usually a MultiJava class, if it with Jml it’s
normally a Jml class and classes starting with B indicate that this class was
introduced in JtoBPL.

2.2 Types, Programs and Classes

The usual naming convention is applyed.

Ident ::= Letter (Letter| Digit)* String, JLocalVariableExpression

The only basic numeric type we support is int.

Type ::= void CVoidType

| boolean CBooleanType

| int CNumericType

| ReferenceType CClassNameType

Only class types that appear in a source file (*.java or *.jml) can be used. Object is the only exception of a built in class type that
is supported. However, one may want to use the special fields inv or commit which are usually not defined in Object. In this case
one can use the provided Object.jml file in the folder specs/java/lang and compile it together with the individual Java and/or
Jml files. Arrays are only allowed to have one dimension.

ReferenceType ::= Object

| Ident
| Type [] CArrayType

5

Design of a Java/Jml Frontend for BoogiePL

A compilation unit - basically a *.java or *.jml file - is a set of class definitions. Note that neither interfaces nor package
declarations nor import declarations are accepted.

CompilationUnit ::= (ClassDefinition)* JmlCompilationUnit

Note that no access modifiers such as public or private are considered in the class definition. As usual a class can be subclass
of another class (again: every class, except Object, has to appear in the source code) or implicitly extend Object.

ClassDefinition ::= class Ident [extends Ident] { (Member)* } BClassDeclaration <: JmlClassDeclaration

A class member is either a method declaration, a field declaration or an invariant. None of them is allowed to have access
modifiers.

Member ::= MethodDeclaration
| FieldDeclaration
| /* invariant Expression ; */ JmlInvariant

Shadowing is not supported: The name of a field has to be unique, i.e. no field is allowed to have the same name as another field
in a superclass.

FieldDeclaration ::= Type Ident [= Expression] ; JmlFieldDeclaration

2.3 Method Declarations and Specifications

A method declaration may either be a definition of a regular method or a definition of a constructor. Only one constructor per class
will be allowed. Overloading is not supported but this limitation can be overcome using different method names. Overriding is
allowed.

MethodDeclaration ::= MethodSpecification Type Ident Formals CompoundStatement BMethodDeclaration

<: JmlMethodDeclaration

| MethodSpecification Ident Formals ConstructorBlock BConstructorDeclaration

<: JmlConstructorrDeclaration

Formals ::= ([ParameterDeclaration (, ParameterDeclaration)*])

ParameterDeclaration ::= Type Ident JmlFormalParameter

A constructor block is a special instance of a regular block (see CompoundStatement) where the first statement may be a super
constructor call. Sometimes Jml adds implicitly such a super call although it doesn’t appear in the source code. Calling another
constructor in the same class (e.g. this();) is not allowed since there is only one constructor per class expected.

ConstructorBlock ::= { [SuperConstructorInvocation] (Statement)* } JConstructorBlock

SuperConstructorInvocation ::= super([ExpressionList]); JExplicitConstructorInvocation

6

Design of a Java/Jml Frontend for BoogiePL

Methods may have specification clauses. If we add specifications to an overriding method the specification block has to start with
also. Only a small subset of all the possible Jml specification constructs is supported. Basically we only support preconditions,
postconditions and Modifies clauses. The ordering of the clauses is crucial. 1

MethodSpecification ::= (RequiresClause)* (EnsuresClause | ModifiesClause)* JmlSpecification

/*@ also */ (RequiresClause)* (EnsuresClause | ModifiesClause)* JmlExtendingSpecification

Requires and ensures clauses expect an expression with boolean return value. Since we don’t support access modifiers there
should be no visibility conflicts. There is a special requires case which is discussed on in section 3.4.1, Translation of the One-
Expression on page 17.

RequiresClause ::= /*@ requires Expression ; */ JmlRequiresClause

EnsuresClause ::= /*@ ensures Expression ; */ JmlEnsuresClause

Modifies clauses consist of a list of store reference expressions denoting different memory locations which may be altered during
execution of the method. Since the Jml class JmlName offers a rather simple interface, we don’t support a very flexible grammar
for store reference expressions. Every expression is supposed to start with this. Then one can continue with a certain field of the
class or simply end with .* which basically means that the entire object instance can be changed. If the denoted field is an array
we can also specify which elements of this array are altered. Either we specify a certain index using [Expression] or we allow
every array element to be changed using [*].

ModifiesClause ::= /*@ modifies StoreRefExpression (, StoreRefExpression)* ; */ JmlAssignableClause

StoreRefExpression ::= this [. Ident] StoreRefNameSuffix JmlConditionalStoreRef and JmlStoreRefExpression

StoreRefNameSuffix ::= . Ident JmlName (isIdent())
| .* JmlName (isFields())
| [Expression] JmlName (isPos())
| [*] JmlName (isAll())

2.4 Statements

A compound statement is simply a sequence of statements.

CompoundStatement ::= { (Statement)+ } JCompoundStatement or JBlock

1Internally Jml has the following grammar for this subset of specification clause:

JmlSpecification ::= (JmlGenericSpecCase ⊂ JmlSpecCase)*
JmlGenericSpecCase ::= (JmlRequiresClause)* [JmlGenericSpecBody, JmlNormalSpecBody ⊂ JmlSpecBody]
JmlGenericSpecBody ::= (JmlRequiresClause, JmlEnsuresClause, JmlAssignableClause ⊂ JmlSpecBodyClause)*
JmlNormalSpecBody ::= (JmlNormalSpecClause)*

7

Design of a Java/Jml Frontend for BoogiePL

One of the strongest limitations in this subset is the differentiation between a RightHandSide and an Expression. In Jml method calls
2 and the creation of new object or array instances 3 are allowed in every expression. Here we restrict this constructs to appear
only on the right hand side of an assignment 4 or a method may be called as a simple statement. Using some additional helper
variables this limitation can be overcome quiet easily.

The only supported loop statement is a while-loop. For-loops can be simulated using a while loop.

At this point we introduce two new statements, namely pack and unpack. The provided identifier indicates as what type the
referenced object should be packed or from which type the object should be unpacked. Packing or unpacking as Object is not
possible.

Statement ::= CompoundStatement
| VariableDeclarations ;
| MethodCall ; JExpressionStatement and BMethodCallExpression

| Expression = RightHandSide ; JExpressionStatement and BAssignmentExpression

| if (Expression) Statement [else Statement] JIfStatement

| (Maintaining)* while (Expression) Statement JmlLoopStatement and JWhileStatement

| return [Expression] ; JReturnStatement

| ; JEmptyStatement

| /*@ assert Expression ; */ JmlAssertStatement

| /*@ assume Expression ; */ JmlAssumeStatement

| /*@ pack Expression : Ident ; */ BPackStatement

| /*@ unpack Expression : Ident ; */ BUnpackStatement

As for fields, we don’t allow a variable to hide another variable in an outer block or a field of the class, i.e. every variable has to
have a unique name.

VariableDeclarations ::= Type VariableDeclarator (, VariableDeclarator)* ; JVariableDeclarationStatement

VariableDeclarator ::= Ident [= Expression] BVariableDefinition <: JmlVariableDefinition

<: JVariableDefinition <: JLocalVariable

As mentioned above all right hand side expressions are a special subset of expressions which are only allowed to appear in a
special context.

RightHandSide ::= Expression
| NewExpression
| MethodCall

MethodCall ::= DereferenceExpression ([ExpressionList]) BMethodCallExpression <: JMethodCallExpression

In the new-expression we made a little change so that one can specify an owner of the newly created object or array instance.
Nevertheless, declaring an owner is optional. An owner consists of an owner object/reference and an owner type.

NewExpression ::= new [Owner] Type ([ExpressionList]) BNewObjectExpression

| new [Owner] Type [Expression] BNewArrayExpression and JArrayDimsAndInits (1 dim.)

2Jml grammar derivation of a method call: Expression ::= ... ::= DereferenceExpression | ... ::= DereferenceExpression ([ExpressionList]) | ...
3Jml grammar derivation of a new-expresssion: Expression ::= ... ::= DereferenceExpression | ... ::= PrimaryExpression | ... ::= NewExpression | ...
4Jml grammar derivation of an assignment: Statement ::= ExpressionStatement | ... ::= Expression = Expression | Expression

8

Design of a Java/Jml Frontend for BoogiePL

Owner ::= < DereferenceExpression , ReferenceType > BOwner

In the maintaining-clause one can declare a condition that holds throughout every execution of a loop.

Maintaining ::= /*@ maintaining Expression ; */ JmlLoopInvariant

2.5 Expressions

Expressions are rather straightforward. Besides the limitations mentioned above dealing with method calls and new-statements,
basically all major expressions are supported. We didn’t include shifting operators, bit operators and unary increment and decre-
ment operators.

ExpressionList ::= Expression [, ExpressionList] JExpressionListStatement

Expression ::= ImpliesExpression
| ImpliesExpression EquivalenceOp EqualityExpression JmlRelationalExpression

EquivalenceOp ::= <==> | <=!=>

ImpliesExpression ::= LogicalOrExpression
| LogicalOrExpression (==> LogicalOrExpression)+ JmlRelationalExpression

| LogicalOrExpression (<== LogicalOrExpression)+ JmlRelationalExpression

LogicalOrExpression ::= LogicalAndExpression
| LogicalAndExpression || LogicalOrExpression JConditionalOrExpression

LogicalAndExpression ::= EqualityExpression
| EqualityExpression && LogicalAndExpression JConditionalAndExpression

EqualityExpression ::= RelationExpression
| RelationExpression EqualityOp RelationExpression JEqualityExpression

| RelationExpression instanceof Type JInstanceofExpression

EqualityOp ::= == | !=

RelationExpression ::= AdditiveExpression
| AdditiveExpression RelationOp AdditiveExpression JmlRelationalExpression

RelationOp ::= < | <= | >= | > | <:

AdditiveExpression ::= MultExpression
| MultExpression + AdditiveExpression JAddExpression

| MultExpression - AdditiveExpression JMinusExpression

9

Design of a Java/Jml Frontend for BoogiePL

MultExpression ::= UnaryExpression
| UnaryExpression * MultExpression JMultExpression

| UnaryExpression / MultExpression JDivideExpression

| UnaryExpression % MultExpression JModuloExpression

UnaryExpression ::= CastExpression
| - UnaryExpression JUnaryExpression

| ! UnaryExpression JUnaryExpression

CastExpression ::= DereferenceExpression
| (Type) UnaryExpression JCastExpression

DereferenceExpression ::= PrimaryExpression
| DereferenceExpression . Ident JClassFieldExpression and JArrayLengthExpression

| DereferenceExpression [Expression] JArrayAccessExpression

PrimaryExpression ::= Ident
| Literal
| super JSuperExpression only allowed for method calls - not for field access
| true | false JBooleanLiteral

| this JThisExpression

| null JNullLiteral

| (Expression) JParenthesedExpression

| JmlPrimary

As mentioned earlier on, the only basic numeric type we support is int. Therefore the only supported numeric literal is one that
represents an integer number. Other literals, e.g. strings, are not expected.

Literal ::= 0 | 1 ... Integer: JOrdinalLiteral iff type is int

Below one can find the specification specific expressions that we will support. We added three new expressions. The one-
expression helps to reference the type of an object from the callers and the callees perspective. It is only allowed to appear in
requires clauses in the form: requires inv == \one;. Section 3.4.1, Translation of the One-Expression, on page 17 explains the use
and translation of \one in more detail. The other two new expressions, \ownerobject(Expression) and \ownertype(Expression),
help to access the owner fields introduced in the new-statements.

JmlPrimary ::= \old(Expression) JmlOldExpression

| \typeof(Expression) JmlTypeOfExpression

| \type(Type) JmlTypeExpression

| \result JmlResultExpression

| \one BOneExpression

| \ownerobject(Expression) BOwnerObjectExpression

| \ownertype(Expression) BOwnerTypeExpression

10

Design of a Java/Jml Frontend for BoogiePL

3 Translation to BoogiePL

3.1 Setup

We start every translation with the definition and introduction of some uninterpreted functions to model inheritance, heap and
field access and to simplify some predicates used during translation later on. Furthermore we define types, constants and global
variables.

This definitions are written to the output file by the method writeSetup() implemented
in class org.jtobpl.translation.Translator.

We start with the definition of type elements which will be used for arrays.

type elements;

The heap is modeled using several arrays. For each type we define a special heap.

var ObjectHeap : [ref, name]ref;

var BoolHeap : [ref, name]bool;

var IntHeap : [ref, name]int;

var ElemementsHeap : [ref]elements;

var NameHeap : [ref, name]name;

Literal names for special fields.

const alloc: name;

const inv: name;

const commit: name;

Using the following functions we get access to the readonly fields.

function length (ref) returns (int);

function ownerObject (ref) returns (ref);

function ownerType (ref) returns (name);

Next, we introduce a couple of functions to access and modify arrays.

function boolElementSelect (elements, int) returns (bool);

function intElementSelect (elements, int) returns (int);

function refElementSelect (elements, int) returns (ref);

function boolElementStore (elements, int, bool) returns (elements);

function intElementStore (elements, int, int) returns (elements);

function refElementStore (elements, int, ref) returns (elements);

11

Design of a Java/Jml Frontend for BoogiePL

The array access and modification functions have to obey the following axioms:

axiom(forall e: elements, i: int, j: int, val: bool ::

((i == j) ==> (boolElementSelect (boolElementStore (e, i, val), j) == val)) &&

((i != j) ==> (boolElementSelect (boolElementStore (e, i, val), j) == boolElementSelect (e, j))));

axiom(forall e: elements, i: int, j: int, val: int ::

((i == j) ==> (intElementSelect (intElementStore (e, i, val), j) == val)) &&

((i != j) ==> (intElementSelect (intElementStore (e, i, val), j) == intElementSelect (e, j))));

axiom(forall e: elements, i: int, j: int, val: ref ::

((i == j) ==> (refElementSelect (refElementStore (e, i, val), j) == val)) &&

((i != j) ==> (refElementSelect (refElementStore (e, i, val), j) == refElementSelect (e, j))));

3.2 Types

We will only use the following types of BoogiePL throughout the translation:

bool This type is corresponding to the Java/Jml type boolean and represents the boolean values true
and false.

int Corresponding to the Java/Jml type int, representing the integer numbers.

ref A reference type is comparable to basic pointers and will be used for all sorts of Java/Jml object
and array instances. A variable of type ref might have the value null which is a built-in literal.
Equality and inequality are the supported operations on type ref.

name Type name represents different kinds of defined names such as variable names, field names,
method names or names of Java/Jml types. The language supports equality, inequality and the
partial order (<:) operation.

elements As introduced in section 3.1, Setup, on page 11 we use the user-defined type elements

for all sorts arrays.

First, we need a mapping of Java/Jml types to BoogiePL types. This translation is implemented by the following method:
BPLType translateCoarseType(CType type) which can be found in class org.jtobpl.translation.TranslatorOrInspector.

CoarseType [[boolean]] = bool

CoarseType [[int]] = int

CoarseType [[ReferenceType]] = ref

Note: Type void will not appear in a CoarseType translation.

12

Design of a Java/Jml Frontend for BoogiePL

Since BoogiePL doesn’t offer a very rich type system we model Java/Jml types as BoogiePL names and therefore we need
the following mapping of Java/Jml types to BoogiePL names. Method String translateType(CType type) in
class org.jtobpl.translation.TranslatorOrInspector implements the translation.

Type [[boolean]] = basicBool

Type [[int]] = basicInt

Type [[Object]] = Object

Type [[Ident:I]] = I for all user defined classes
Type [[Type:T[]]] = arrayType (Type [[T]])

Note: Type void will not appear in a Type translation.

Throughout the translation we will use the following notation: ↪→ (var varName: BPLType type, BPLName name;) to indi-
cate that we introduce a new variable with name varName , BoogiePL type type and BoogiePL name name. Normally, if type equals
ref we don’t need to care about name. Since local variables can only be introduced in the beginning of a BoogiePL procedure we
have to collect them temporarily as we introduce them during translation and place them in front of all statements later on. See
also section 3.4.4, Method Body Translation, on page 22.

Constant literals denote the built-in type Object and the basic types int and boolean. All other names of class types will be
introduced as we translate every class.

const basicBool: name;

const basicInt: name;

const Object: name;

Uninterpreted function isProperSubClass helps to specify a direct subclass.

function isProperSubClass (subclass: name, superclass: name) returns (bool);

axiom(forall n: name, o: name :: isProperSubClass (n, o) <==> (n <: o && n != o));

The function arrayType maps a type T to an array type with elements of type T.

function arrayType (name) returns (name);

Following three axioms for array types:

axiom(forall n: name :: isProperSubClass (arrayType (n), Object));

axiom(forall n: name, o: name :: (arrayType (n) == arrayType (o)) <==> (n == o));

axiom(forall n: name, o: name :: (n <: o) ==> (arrayType (n) <: arrayType (o)));

Function isOfType is used as predicate to model the type system and inheritance for references.

function isOfType (ref, name) returns (bool);

axiom(forall r: ref, n: name :: isOfType (r, n) <==> (r == null || typeOf (r) <: n));

13

Design of a Java/Jml Frontend for BoogiePL

Function typeOf maps a reference to its name (if it was defined by isOfType earlier on).

function typeOf (ref) returns (name);

The following two functions assign class members to their classes and types.

function fieldType (name) returns (name);

function fieldHome (name) returns (name);

And finally function isAllocated to model allocation on the heap.

function isAllocated (ref, [ref, name]bool) returns (bool);

axiom(forall r: ref, BoolHeap :[ref, name]bool ::

isAllocated (r, BoolHeap) <==> (r == null || BoolHeap [r, alloc]));

3.3 Programs and Classes

Now we start with the real translation which is predominately implemented by the two visitor classes Inspector and Translator

both part of package org.jtobpl.translation.

We go through every compilation unit and translate class by class, ignoring java.lang.Object if it is one of the encountered
classes.

Tr [[(ClassDefinition)*:CDs]] = # for all c ∈ CDs
Tr [[c]]

end for all

Throughout the following translations C will be used to denote the name of the currently translated class. Initialization expressions
of class fields will be handled in the constructor. Class invariants are only needed in pack and unpack statements. If a dummy
constructor is needed we invoke method void translateDummyConstructor(BDummyConstructor dummyConstructor) in class
org.jtobpl.translation.Translator.

Following the translation rules for a class that implicitly extends java.lang.Object.

Tr [[class Ident:C { (Member)*:Ms }]] =

const C: name;

axiom(C <: Object);

for all (Type:T Ident:I [= Expression] ; ∈ Ms
const C.I: name;

if T is ReferenceType then
axiom(fieldHome (C.I) == Type [[C]]);

axiom(fieldType (C.I) == Type [[T]]);

end if
end for all
for all MethodDeclaration:MD ∈ Ms

Tr [[MD]]
end for all
if there is no constructor defined within class C

Tr [[C () {;}]]
end if

14

Design of a Java/Jml Frontend for BoogiePL

And the translation rules for a class that explicitly extends another class.

Tr [[class Ident:C extends Ident:E { (Member)*:Ms }]] =

const C: name;

axiom(C <: E);

for all (Type:T Ident:I [= Expression] ; ∈ Ms
const C.I: name;

if T is ReferenceType then
axiom(fieldHome (C.I) == Type [[C]]);

axiom(fieldType (C.I) == Type [[T]]);

end if
end for all
for all MethodDeclaration:MD ∈ Ms

Tr [[MD]]
end for all
for all MethodDeclaration:MDsuper in superclasses of C which are not overridden

TrDummyMethod [[MDsuper]]
end for all
if there is no constructor defined within class C

Tr [[C () {;}]]
end if

3.4 Method and Constructor Declarations and Specifications

Translation of a regular method. Since overloading is not supported C.N will unambiguously identify the BoogiePL procedure
that we want to call. If we would like to support overloading too, we had to introduce a different naming rule for procedures at it
is done in the Spec# translation to BoogiePL.

Tr [[MethodSpecification:MS Type:RT Ident:N Formals:F CompoundStatement:Body]] =

procedure C.N TrSig [[N , F , RT]] ; TrSpec [[N , MS]]
implementation C.N TrSig [[N , F , RT]] TrMethodBody [[N , F , RT , Body]]

Translation of a constructor (N = C). Because we only allow one constructor per class (and implement a dummy constructor if
there is no constructor given in the source code) we always know which constructor we have to call when we create a new object
instance. All class fields will be initialized in the constructor although they may not be mentioned explicitly in the constructor
implementation. That’s why we collect all field declarations in FieldDecList and have a constructor specific body translation
TrConstructorBody.

Tr [[MethodSpecification:MS Ident:N Formals:F CompoundStatement:Body]] =

procedure C.N TrSig [[N , F , void]] ; TrSpec [[N , MS]]
var FieldDecList = ∅ ;
for all FieldDeclaration:FD in class C and all its superclasses

FieldDecList = FieldDecList ∪ FD ;
end for all
implementation C.N TrSig [[N , F , void]] TrConstructorBody [[N , F , FieldDecList , Body]]

15

Design of a Java/Jml Frontend for BoogiePL

A dummy method is added if class C inherits this method from its superclass B but doesn’t overwrite it. This is only done for
regular methods - not for constructors. Section 3.4.1, Translation of the One-Expression, on page 17 explains in more detail why we
include an assert and assume statement if requires inv == \one appears in the method specification MS.

This translation is implemented by the method void translateDummyMethod(BDummyMethod dummyMethod)

in class org.jtobpl.translation.Translator.

TrDummyMethod [[MethodSpecification:MS Type:RT Ident:N Formals:F]] =

procedure C.N TrSig [[N , F , RT]] ; TrSpec [[N , MS]]
implementation C.N TrSig [[N , F , RT]]

VDs = variables introduced in pack and unpack statement
PMs = variables introduced in signature translation
generate symbol start
{

VDs
start:

if (requires inv == \one) appears in method specs MS
assume NameHeap [this, inv] == C;

end if
AssumeTypes [[VDs ∪ PMs]]
if (requires inv == \one) appears in method specs of N

assert NameHeap [this, inv] == typeOf (this);

end if
Tr [[unpack this : C ;]]
if RT is void

call B.N (this

else
call N.result := B.N (this

end if
for all (Type Ident:I) ∈ F

, I
end for all
);

Tr [[pack this : C ;]]
return;

}

16

Design of a Java/Jml Frontend for BoogiePL

Translation of a method or constructor signature. For every parameter we introduce a new variable which will only be used in the
AssumeTypes function that we will call inside the procedure body to make sure that all variables and parameters are allocated and
a BoogiePL name is defined for references.

This translation is implemented by the method
void translateSignature(BMethodOrConstructorDeclarationInterface methodOrConstructor)

in class org.jtobpl.translation.Translator.

TrSig [[Ident:N , Formals:F , Type:RT]] = (this: ref

for all (Type:T Ident:I) ∈ F
, I: CoarseType [[T]]
↪→ (var I: BPLType CoarseType [[T]], BPLName Type [[T]];)

end for all
if RT is void

)

else
) returns (N.return: CoarseType [[RT]])

end if

The TrSpec function is called for every method and constructor, regardless whether there is a specification or not.

The implementation of this translation can be found in method
void translateSpecification(BMethodDeclaration methodNode) in class org.jtobpl.translation.Translator.

TrSpec [[Ident:M , MethodSpecification:Specs]] =

requires TrRequires [[C , M]] ;

ensures TrEnsures [[C , M]] ;

ModifiesContribution [[C , M]]

3.4.1 Translation of the One-Expression

Expression \one is only allowed to appear in preconditions or regular methods in the form requires inv == \one;. If there is
such a requires clause in method specification MS of method M, defined in class Class, we don’t take this clause into account when
translating the specifications of M. However, we insert the following assertion code before calling M in every caller:

...

receiver := Tr [[DereferenceExpression]];
assert receiver != null;

assert NameHeap [receiver, inv] == typeOf (receiver);

call Class.M (receiver, ...

...

17

Design of a Java/Jml Frontend for BoogiePL

Inside the body of the BoogiePL procedure Class.M corresponding to method M, we make the following assumption:

...

{
start:

assert NameHeap [this, inv] == typeOf (this);

...

3.4.2 Pre- and Postconditions

Note, the following translation of pre- and postconditions is not equivalent with the semantics of pre- and postconditions in Jml.

For every method Method we build the conjunction of its requires predicates (req). For method Method and all the methods that
Method has overridden we build the disjunction of this conjunctions (... || req’ || req).

This translation is implemented by the method
void translateRequires(BClassDeclaration classNode, BMethodDeclaration methodNode)

in class org.jtobpl.translation.Translator.

TrRequires [[Ident:Class , Ident:Method]] = # if method Method is not defined in class Class
false

else
SupClass is superclass of Class
MS is method specification of Method in Class
var req = true

for all (/*@ requires Expression:R; */) ∈ MS
(/*@ requires inv == \one */) will be ignored here
req && Tr [[R]]

end for all
TrRequires [[SupClass , Method]] || (req)

end if

18

Design of a Java/Jml Frontend for BoogiePL

Similarly for every method Method we build the conjunction of its requires predicates (req) and the conjunction of its ensures
predicates (ens). Next, we build an implication, letting the precondition imply the postcondition (old (req)==> ens). For method
Method and all the methods that Method has overridden we build a conjunction of this implications (... && (old (req’)==> ens’)
&& (old (req)==> ens)).

The implementation of this translation can be found in method
void translateEnsures(BClassDeclaration classNode, BMethodDeclaration methodNode)

in class org.jtobpl.translation.Translator.

TrEnsures [[Ident:Class , Ident:Method]] = # if method Method is not defined in class Class
true

else
SupClass is superclass of Class
MS is method specification of Method in Class
var req = true;
for all (/*@ requires Expression:R; */) ∈ MS

(/*@ requires inv == \one */) will be ignored here
req && Tr [[R]]

end for all
var ens = true;
for all (/*@ ensures Expression:E; */) ∈ MS

ens && Tr [[E]]
end for all
TrEnsures [[SupClass , Method]] && (old(req) ==> ens)

end if

3.4.3 Modifies Clauses

Note, the following translation of modifies clauses is not equivalent with the semantics of modifies clauses in Jml.

First, we state that our procedure may change all possible heaps using BoogiePL’s own modifies statement. Then we ensure that
for all objects o and fields f :

o.f == old (o.f) The field is unchanged or ...

o.f ∈ m ... f appears in the modifies list m or ...

!old (o.alloc) ... o wasn’t allocated when entering the method or ...

old (o.commit) ... o was committed when we entered the method.

A modifies statement is only valid if the precondition is satisfied. Therefore we build a similar conjunction of implications as we
did for postconditions (... && (old (req’) ==> mod’) && (old (req) ==> mod)).

This following three translations are implemented by the functions
void modifiesContribution(...), void translateModifiesFields(...) and void translateModifiesArrays(...).
all in class org.jtobpl.translation.Translator.

19

Design of a Java/Jml Frontend for BoogiePL

ModifiesContribution [[Ident:Class , Ident:Method]] =

modifies BoolHeap , IntHeap , ObjectHeap , ElemementsHeap , NameHeap ;

for all h ∈ { BoolHeap , IntHeap , ObjectHeap , ElemementsHeap , NameHeap }
ensures(forall x: ref, n: name ::

if h == ElemementsHeap

(h[x] == old (h)[x]) ||

else
(h[x, n] == old (h)[x, n]) ||

end if
(TrModifiesFields [[Class , Method , x , n]])

|| (! old (BoolHeap)[x,alloc]) || (old (BoolHeap)[x,commit])

);

end for all
for all selectFunc ∈ { boolElementSelect , intElementSelect , refElementSelect }

ensures(forall x: ref, i: int ::

(selectFunc(ElemementsHeap [x], i) == selectFunc(old (ElemementsHeap)[x], i)) ||

(TrModifiesArrays [[Class , Method , x , i]])

(! old (BoolHeap)[x,alloc]) || (old (BoolHeap)[x,commit])

);

end for all

TrModifiesFields [[Ident:Class , Ident:Method , Ref , Name]] =

if method Method is not defined in Class
true

else
SupClass is superclass of Class
MS is method specification of Method in Class
var req = true;
for all (/*@ requires Expression:R; */) ∈ MS

(/*@ requires inv == \one */) will be ignored here
req && Tr [[R]]

end for all
var m = ∅ ;
for all (/*@ modifies (StoreRefExpression (, StoreRefExpression)*):Mlist ; */) ∈ Specs

m = m ∪ Mlist;
end for all
var mod = false ;
for all (StoreRefName:Pref StoreRefNameSuffix:Suf) ∈ m

if Suf == (. Ident:I) then
mod || (Ref == old (Tr [[Pref]]) && Name == I)

if Suf = (.*) then
mod || (Ref == old (Tr [[Pref]]))

end if
end for all
TrModifiesFields [[SupClass , Method , Ref , Name]] && (old(req) ==> mod)

end if

20

Design of a Java/Jml Frontend for BoogiePL

TrModifiesArrays [[Ident:Class , Ident:Method , Ref , Index]] =

if method Method is not defined in Class
true

else
SupClass is superclass of Class
MS is method specification of Method in Class
var req = true;
for all (/*@ requires Expression:R; */) ∈ MS

(/*@ requires inv == \one */) will be ignored here
req && Tr [[R]]

end for all
var m = ∅ ;
for all (/*@ modifies (StoreRefExpression (, StoreRefExpression)*):Mlist ; */) ∈ Specs

m = m ∪ Mlist;
end for all
var mod = false ;
for all (StoreRefName:Pref StoreRefNameSuffix:Suf) ∈ m

if Suf = ([Expression:E]) then
mod || (Ref == old (Tr [[Pref]]) && Index == old (Tr [[E]]))

if Suf = ([*]) then
mod || (Ref == old (Tr [[Pref]]))

end if
end for all
TrModifiesArrays [[SupClass , Method , Ref , Name]] && (old(req) ==> mod)

end if

21

Design of a Java/Jml Frontend for BoogiePL

3.4.4 Method Body Translation

Following we state the translation rules for methods and constructors. The only difference is, that within the constructor all fields
of the newly created object instance are implicitly initialized. Either the given initialization value is used or we use the function
Zero to create an initial value for a given type. Inside the body, we list all local variables that have been introduced during
translation or did appear as variable declarations in the original method code. Next, we invoke AssumeTypes to make sure that all
references are marked as allocated and the BoogiePL name representing the original class type is known. Finally we place a return
statement if the method has no return value and we leave the procedure.

The implementation of the next two translations can be found in the methods
void translateMethodBody(BMethodDeclaration method) and
void translateConstructorBody(BConstructorDeclaration constructor)

both in class org.jtobpl.translation.Translator.

TrMethodBody [[Ident:N , Formals:F , Type:RT , CompoundStatement:Body]] =

VDs = variables introduced during translation of Body.
PMs = variables introduced in signature translation of N
generate symbol start

{

VDs
start:

if (requires inv == \one) appears in method specs of N
assume NameHeap [this, inv] == C;

end if
AssumeTypes [[VDs ∪ PMs]]
Tr [[Body]]
if RT is void

return;

end if
}

TrConstructorBody [[Ident:N , Formals:F , (VariableDeclarations)*:Members , CompoundStatement:Body]] =

VDs = variables introduced during translation of Body.
PMs = variables introduced in signature translation of constructor
generate symbol start

{

VDs
start:

AssumeTypes [[VDs ∪ PMs]]
for all FieldDeclaration:FD ∈ Members

if FD = (Type:T Ident:I = Expression:E ;)
Assign [[this.I , E]]

if FD = (Type:T Ident:I) ;
Assign [[this.I , Zero [[T]]]]

end if
end for all
Tr [[Body]]
return;

}

22

Design of a Java/Jml Frontend for BoogiePL

As we have mentioned them quiet a few times above, functions AssumeTypes and GlobalTypes are used to make sure that every
reference is marked as allocated and that the BoogiePL names of references are known. AssumeTypes is implemented by method
void assumeTypes(BPLVariable[] variableBindings) in class org.jtobpl.translation.Translator.

AssumeTypes [[variableBindings]] = # for all (var x: BPLType T, BPLName N;) ∈ variableBindings
if T = ref then

assume isOfType (x, N) && isAllocated (x, BoolHeap);

end if
end for all
GlobalTypes [[]]

GlobalTypes is implemented by method void globalTypes() in class org.jtobpl.translation.Translator.

GlobalTypes [[]] = assume(forall x: ref, n: name :: isOfType (ObjectHeap [x, n], fieldType (n)));

assume(forall x: ref, n: name ::

BoolHeap [x, alloc] ==> isAllocated (ObjectHeap [x, n], BoolHeap));

assume(forall a: ref, n: name, i: int :: isOfType (a, arrayType (n)) ==>

isOfType (refElementSelect (ElemementsHeap [a], i), n));

assume(forall a: ref, i: int :: BoolHeap [a, alloc] ==>

isAllocated (refElementSelect (ElemementsHeap [a], i), BoolHeap));

3.5 Statements

Next, we describe the translation of statements. Translating compound statements and the empty statement is straightforward.

Tr [[CompoundStatement:CS]] = # for all s∈ CS
Tr [[s]]

end for all

Tr [[;]] = ∅

3.5.1 Variable Declaration

As we have mentioned earlier, every local variable that is needed in a BoogiePL procedure needs to be declared in the beginning
of the procedure. Therefore we collect all local variables and assign an initial value, either given as an expression or by the Zero
translation, to them.

23

Design of a Java/Jml Frontend for BoogiePL

Tr [[Type:T (VariableDeclarator (, VariableDeclarator)*):VDs ;]] =

for all VD ∈ VDs
if VD = (Ident:I = Expression:E)

↪→ (var I: BPLType CoarseType [[T]], BPLName Type [[T]];)

Assign [[I , E]]
else VD = (Ident:I)

↪→ (var I: BPLType CoarseType [[T]], BPLName Type [[T]];)

Assign [[I , Zero [[T]]]]
end if

end for all

Zero is implemented by method public JExpression zeroValue(CType type, JPhylum surroundingNode)

in class org.jtobpl.translation.Translator.

Zero [[boolean]] = false

Zero [[int]] = 0

Zero [[ReferenceType]] = null

3.5.2 Method Call

If a method within the given class is called, then JML will automatically add this as DereferenceExpression. Let T denote the type
of DereferenceExpression:DE. See also section 3.5.3, Assignments, on page 25 for method calls with return values.

Tr [[DereferenceExpression:DE . Ident:N (ExpressionList:EL)]] =

generate symbol receiver
↪→ (var receiver: BPLType ref, BPLName Type [[T]];)

if DE != super

assert DefCk [[DE]] ;

receiver := Tr [[DE]] ;

assert receiver != null;

else
receiver := this ;

end if
for all e ∈ EL

assert DefCk [[e]] ;

end for all
let MS be the method specifications of N
if (requires inv == \one;) ∈ MS

assert NameHeap [receiver, inv] == typeOf (receiver);
end if
if DE == super and Super is superclass of C

call Super.N (receiver
else - N is defined in Class C

call C.N (receiver
end if
for all e ∈ EL

, Tr [[e]]
end for all
);

24

Design of a Java/Jml Frontend for BoogiePL

3.5.3 Assignments

First, we differentiate between different kinds of left hand sides of the given assignment. This can be an object field, an array
element or a local variable. Attention: Writing to parameters may not be allowed in BoogiePL.

For a field I of type T in a class C:

Tr [[DereferenceExpression:E . Ident:I = Expression:Rhs ;]] =

assert DefCk [[E]];
generate symbol e, i
↪→ (var e: BPLType ref, BPLName Type [[C]];)

↪→ (var i: BPLType CoarseType [[T]], BPLName Type [[T]];)

e := Tr [[E]];
assert e != null;

assert isProperSubClass (C, NameHeap [e, inv]);

Assign [[i , Rhs]]
if type T is boolean

BoolHeap [e, C.I] := i;
if type T is int

IntHeap [e, C.I] := i;
else

ObjectHeap [e, C.I] := i;
end if

For an dereference expression E whose type AT is an array with elements of type T:

Tr [[DereferenceExpression:E [Expression:N] = Expression:Rhs;]] =

assert DefCk [[E]] && DefCk [[N]];
generate symbol e, f , n
↪→ (var e: BPLType ref, BPLName Type [[AT]];)

↪→ (var n: BPLType int, BPLName basicInt;)

↪→ (var f: BPLType CoarseType [[T]], BPLName Type [[T]];)

e := Tr [[E]];
n := Tr [[N]];
assert e != null;

assert 0 <= n && n < length (e);
Assign [[f , Rhs]]
if type T is boolean

ElemementsHeap [e] := boolElementStore (ElemementsHeap [e], n, f);
if type T is int

ElemementsHeap [e] := intElementStore (ElemementsHeap [e], n, f);
else

ElemementsHeap [e] := refElementStore (ElemementsHeap [e], n, f);
end if

Assignment to a local variable:

Tr [[Ident:I = Expression:Rhs ;]] = Assign [[I , Rhs]]

25

Design of a Java/Jml Frontend for BoogiePL

Next, we distinguish between the four possible right hand sides of an assignment. We may deal with a method call, a new object
instance expression, a new array instance expression or a regular expression. Depending on the type of assignment we call a
different Assign function.

Assigning a regular expression. This translation is implemented by method
void assignExpression(BPLVariable I, JExpression Rhs) in class org.jtobpl.translation.Translator.

Assign [[Ident:I , Expression:E]] = assert DefCk [[E]];
I := Tr [[E]];

Assigning a new class instance with an owner declaration to a local identifier I. Let OOT denote the type of
DereferenceExpression:OO.

The next two translations are implemented by method
void assignNewClassInstance(BPLVariable I, BNewObjectExpression Rhs) in class org.jtobpl.translation.Translator.

Assign [[Ident:I , new < DereferenceExpression:OO, ReferenceType:OT > Type:T (ExpressionList:EL)]] =

havoc I;
assume I != null;

assume typeOf (I) == Type [[T]];
generate symbol oobj
↪→ (var oobj: BPLType ref, BPLName Type [[OOT]];)

assert DefCk [[OO]];
oobj := Tr [[OO]];
assume ownerObject (I) == oobj;
assume ownerType (I) == Type [[OT]];
assume NameHeap [I, inv] == Object;

assume (forall n: name :: ObjectHeap [I, n] == null);

assume (forall n: name :: BoolHeap [I, n] == false);

assume (forall n: name :: IntHeap [I, n] == 0);

BoolHeap [I, alloc] := true;

for all e ∈ EL
assert DefCk [[e]];

end for all
call T.T (I
for all e ∈ EL

, Tr [[e]]
end for all
);

26

Design of a Java/Jml Frontend for BoogiePL

Assigning a new class instance without an owner declaration to a local identifier I.

Assign [[Ident:I , new Type:T (ExpressionList:EL)]] =

havoc I;
assume I != null;

assume typeOf (I) == Type [[T]];
assume ownerObject (I) == null;

assume NameHeap [I, inv] == Object;

assume (forall n: name :: ObjectHeap [I, n] == null);

assume (forall n: name :: BoolHeap [I, n] == false);

assume (forall n: name :: IntHeap [I, n] == 0);

BoolHeap [I, alloc] := true;

for all e ∈ EL
assert DefCk [[e]];

end for all
call T.T (I
for all e ∈ EL

, Tr [[e]]
end for all
);

27

Design of a Java/Jml Frontend for BoogiePL

Assigning a new array instance with an owner declaration to a local identifier I. Let OOT denote the type of
DereferenceExpression:OO.

The next two translations are implemented by method
void assignNewArrayInstance(BPLVariable I, BNewArrayExpression Rhs) in class org.jtobpl.translation.Translator.

Assign [[Ident:I , new < DereferenceExpression:OO, ReferenceType:OT > Type:T [Expression:E]]] =

assert DefCk [[E]];
havoc I;
generate symbol oobj, n
↪→ (var oobj: BPLType ref, BPLName Type [[OOT]];)

↪→ (var n: BPLType int, BPLName basicInt;)

assert DefCk [[OO]];
oobj := Tr [[OO]];
assume ownerObject (I) == oobj;
assume ownerType (I) == Type [[OT]];
n := Tr [[E]];
assert 0 <= n;
assume I != null;

assume typeOf (I) == arrayType (Type [[T]]);
assume length (I) == n;
assume NameHeap [I, inv] == Object;

assume BoolHeap [I, commit] == false;

if type T is boolean
assume (forall i: int :: boolElementSelect (ElemementsHeap [I], i) == false);

if type T is int
assume (forall i: int :: intElementSelect (ElemementsHeap [I], i) == 0);

else
assume (forall i: int :: refElementSelect (ElemementsHeap [I], i) == null);

end if
BoolHeap [I, alloc] := true;

28

Design of a Java/Jml Frontend for BoogiePL

Assigning a new array instance without an owner declaration to a local identifier I.

Assign [[Ident:I , new Type:T [Expression:E]]] =

assert DefCk [[E]];
havoc I;
generate symbol n
↪→ (var n: BPLType int, BPLName Type [[basicInt]];)

assume ownerObject (I) == null;

n := Tr [[E]];
assert 0 <= n;
assume I != null;

assume typeOf (I) == arrayType (Type [[T]]);
assume length (I) == n;
assume NameHeap [I, inv] == Object;

assume BoolHeap [I, commit] = false;

if type T is boolean
assume (forall i: int :: boolElementSelect (ElemementsHeap [I], i) == false);

if type T is int
assume (forall i: int :: intElementSelect (ElemementsHeap [I], i) == 0);

else
assume (forall i: int :: refElementSelect (ElemementsHeap [I], i) == null);

end if
BoolHeap [I, alloc] := true;

29

Design of a Java/Jml Frontend for BoogiePL

Method call with a return value which is assigned to local variable I of type T. Let DET denote the type of DereferenceExpression:DE.

This translations is implemented by method void assignMethodCall(BPLVariable I, BMethodCallExpression Rhs)

in class org.jtobpl.translation.Translator.

Assign [[Ident:I , DereferenceExpression:DE . Ident:N (ExpressionList:EL)]] =

generate symbol receiver
↪→ (var receiver: BPLType ref, BPLName Type [[DET]];)

if DE != super

assert DefCk [[DE]] ;

receiver := Tr [[DE]] ;

assert receiver != null;

else
receiver := this ;

end if
for all e ∈ EL

assert DefCk [[e]] ;

end for all
let MS be the method specifications of N
if (requires inv == \one;) ∈ MS

assert NameHeap [receiver, inv] == typeOf (receiver);
end if
if DE == super and Super is superclass of C

call I := Super.N (receiver
else - N is defined in Class C

call I := C.N (receiver
end if
for all e ∈ EL

, Tr [[e]]
end for all
);

AssumeTypes [[T I]]

30

Design of a Java/Jml Frontend for BoogiePL

3.5.4 Control Flow Statements

Translating control flow statements is straightforward. We exploit the fact that BoogiePL chooses an arbitrary block out of the list
if a goto statement lists more than one label.

If-Then-Else statement.

Tr [[if (Expression:C) Statement:T else Statement:E]] = assert DefCk [[C]];
generate symbol then, else, join
goto then, else, join;
then:

assume Tr [[C]];
Tr [[T]];
goto join;

else:
assume ! Tr [[C]];
Tr [[E]];
goto join;

join:

If-Then statement.

Tr [[if (Expression:C) Statement:T]] = assert DefCk [[C]];
generate symbol then, join
goto then, join;
then:

assume Tr [[C]];
Tr [[T]];
goto join;

join:

While loop.

Tr [[(Maintaining)*:M while (Expression:C) Statement:S]] = # generate symbol top, body, after
goto top;
top:

for each m ∈ M
assert Tr [[m]];

end for each
assert DefCk [[C]];
goto body, after;

body:
assume Tr [[C]];
Tr [[S]];
goto top;

after:
assume !(Tr [[C]]);

31

Design of a Java/Jml Frontend for BoogiePL

Returning from method M with a return value. First we assign the return expression to the designated return variable F.return
and then we leave the procedure.

Tr [[return Expression:R;]] = Assign [[M.return , R]]
return;

Returning from a method without a return value.

Tr [[return;]] = return;

3.5.5 Specification Statements

Assert and assume statements can be translated using the BoogiePL built-in statements assert and assume.

Tr [[/*@ assert Expression:E; */]] = assert Tr [[E]];

Tr [[/*@ assume Expression:E; */]] = assume Tr [[E]];

Let S denote the immediate superclass of T and let ObjInv denote the invariant declarations in class T. Furthermore let ET denote
the type of Expression:E.

Tr [[/*@ pack Expression:E : Ident:T; */]] =

assert DefCk [[E]];
generate symbol e, heap
↪→ (var e: BPLType ref, BPLName Type [[ET]];)

↪→ (var heap: BPLType bool[ref, name], BPLName ∅;)

e := Tr [[E]];
assert e != null;

assert NameHeap [e, inv] == S;
assert (forall r: ref ::

(r != null && BoolHeap [r, alloc] && ownerObject (r) == e && ownerType (r) == T) ==>

NameHeap [r, inv] == typeOf (r));

for all (/* invariant Expression:I; */) ∈ ObjInv
let I’ = I in which this has been replaced by e in
assert Tr [[I’]];

end for all
heap := BoolHeap ;

havoc BoolHeap ;

assume (forall r: ref :: BoolHeap [r, commit] <==>

(heap[r, commit] || (ownerObject (r) == e && ownerType (r) == T)));

NameHeap [e, inv] := T;

32

Design of a Java/Jml Frontend for BoogiePL

Let ET denote the type of Expression:E.

Tr [[/*@ unpack Expression:E : Ident:T; */]] =

assert DefCk [[E]];
generate symbol e, heap
↪→ (var e: BPLType ref, BPLName Type [[ET]];)

↪→ (var heap: BPLType bool[ref, name], BPLName ∅;)

e := Tr [[E]];
assert e != null;

assert NameHeap [e, inv] == T;
NameHeap [e, inv] := S;
heap := BoolHeap ;

havoc BoolHeap ;

assume (forall r: ref :: BoolHeap [r, commit] <==>

(heap[r, commit] && (ownerObject (r) != e || ownerType (r) != T)));

3.6 Expressions

There is not to much that needs to be written about expressions. Most of the nodes can be translated ont-to-one to BoogiePL.

Tr [[ImpliesExpression:E <==> ImpliesExpression:F]] = Tr [[E]] <==> Tr [[F]]
Tr [[ImpliesExpression:E <=!=> ImpliesExpression:F]] = !(Tr [[E]] <==> Tr [[F]])

Tr [[LogicalOrExpression:E ==> LogicalOrExpression:F]] = Tr [[E]] ==> Tr [[F]]
Tr [[LogicalOrExpression:E <== LogicalOrExpression:F]] = Tr [[E]] <== Tr [[F]]

Tr [[LogicalAndExpression:E || LogicalOrExpression:F]] = Tr [[E]] || Tr [[F]]

Tr [[EqualityExpression:E && LogicalAndExpression:F]] = Tr [[E]] && Tr [[F]]

Tr [[RelationExpression:E == RelationExpression:F]] = Tr [[E]] == Tr [[F]]
Tr [[RelationExpression:E != RelationExpression:F]] = Tr [[E]] != Tr [[F]]

Tr [[RelationExpression:E instanceof Type:T]] = isOfType (Tr [[E]], Type [[T]])

Tr [[AdditiveExpression:E < AdditiveExpression:F]] = Tr [[E]] < Tr [[F]]
Tr [[AdditiveExpression:E <= AdditiveExpression:F]] = Tr [[E]] <= Tr [[F]]
Tr [[AdditiveExpression:E >= AdditiveExpression:F]] = Tr [[E]] >= Tr [[F]]

Tr [[AdditiveExpression:E > AdditiveExpression:F]] = Tr [[E]] > Tr [[F]]
Tr [[AdditiveExpression:E <: AdditiveExpression:F]] = Tr [[E]] <: Tr [[F]]

Tr [[MultExpression:E + AdditiveExpression:F]] = Tr [[E]] + Tr [[F]]
Tr [[MultExpression:E - AdditiveExpression:F]] = Tr [[E]] - Tr [[F]]

Tr [[UnaryExpression:E * MultExpression:F]] = Tr [[E]] * Tr [[F]]
Tr [[UnaryExpression:E / MultExpression:F]] = Tr [[E]] / Tr [[F]]
Tr [[UnaryExpression:E % MultExpression:F]] = Tr [[E]] % Tr [[F]]

Tr [[- UnaryExpression:E]] = - Tr [[E]]
Tr [[! UnaryExpression:E]] = ! Tr [[E]]

33

Design of a Java/Jml Frontend for BoogiePL

Tr [[(Type) UnaryExpression:E]] = Tr [[E]]

The special fields inv, commit and length are translated using the designated functions or heap fields.

Tr [[DereferenceExpression:E .inv]] = NameHeap [Tr [[E]], inv]

Tr [[DereferenceExpression:E .commit]] = BoolHeap [Tr [[E]], commit]

Tr [[DereferenceExpression:E .length]] = length (Tr [[E]]) (only for arrays)

Let C denote the type of the DereferenceExpression:E. Regular object access can be done by looking up the value of the designated
heap at index [Tr [[E]], C.I].

Tr [[DereferenceExpression:E . Ident:I]] = # if type of I is boolean
BoolHeap [Tr [[E]], C.I]

if type of I is int
IntHeap [Tr [[E]], C.I]

else
ObjectHeap [Tr [[E]], C.I]

end if

Arrays can be accessed using the appropriate selection function and the ElemementsHeap .

Tr [[DereferenceExpression:E [Expression:F]]] = # elements of array E are of type boolean
boolElementSelect (ElemementsHeap [Tr [[E]]], Tr [[F]])

elements of array E are of type int
intElementSelect (ElemementsHeap [Tr [[E]]], Tr [[F]])

else
refElementSelect (ElemementsHeap [Tr [[E]]], Tr [[F]])

end if

Next, the translation rules for literals, constants and parenthesized expressions.

Tr [[inv]] = NameHeap [this, inv]

Tr [[commited]] = BoolHeap [this, commit]

Tr [[Ident:I]] = I
Tr [[Literal:L]] = L (only integers)

Tr [[super]] = ∅ (handled in function calls directly)
Tr [[true]] = true

Tr [[false]] = false

Tr [[this]] = this

Tr [[null]] = null

Tr [[(Expression:E)]] = (Tr [[E]])

34

Design of a Java/Jml Frontend for BoogiePL

\old() can be translated using the built-in function old(), \typeof() corresponds to function typeOf that we have introduced
earlier on. The result of a procedure can be referenced using it’s unique name N.return where N is the name of the method.
\ownerobject() and \ownertype() are translated using the two functions ownerObject and ownerType .

Tr [[\old(Expression:E)]] = old (Tr [[E]])
Tr [[\typeof(Expression:E)]] = typeOf (Tr [[E]])

Tr [[\type(Type:T)]] = Type [[T]]
Tr [[\result]] = N.return (N is name of the method)

Tr [[\one]] = ∅
Tr [[\ownerobject(Expression:E)]] = ownerObject (Tr [[E]])

Tr [[\ownertype(Expression:E)]] = ownerType (Tr [[E]])

3.6.1 Checking for Definitions

Sometimes we need to make sure that a given expression is defined, i.e. we need to check that there are no array accesses with a
bad index, no divisions by zero, no illegal cast, etc. The following translation rules do this checking. They are implemented by the
visitor class DefinitionChecker which is part of the package org.jtobpl.translation.

DefCk [[ImpliesExpression:E EquivalenceOp ImpliesExpression:F]] = DefCk [[E]] && DefCk [[F]]

DefCk [[LogicalOrExpression:E ==> LogicalOrExpression:F]] = DefCk [[E]] && (Tr [[E]] ==> DefCk [[F]])
DefCk [[LogicalOrExpression:E <== LogicalOrExpression:F]] = DefCk [[F]] && (Tr [[F]] ==> DefCk [[E]])

DefCk [[LogicalAndExpression:E || LogicalOrExpression:F]] = DefCk [[E]] && (Tr [[E]] || DefCk [[F]])

DefCk [[EqualityExpression:E && LogicalAndExpression:F]] = DefCk [[E]] && (Tr [[E]] ==> DefCk [[F]])

DefCk [[RelationExpression:E EqualityOp RelationExpression:F]] = DefCk [[E]] && DefCk [[F]]
DefCk [[RelationExpression:E instanceof Type:T]] = DefCk [[E]]

DefCk [[AdditiveExpression:E RelationOp AdditiveExpression:F]] = DefCk [[E]] && DefCk [[F]]

DefCk [[MultExpression:E (+ | -) AdditiveExpression:F]] = DefCk [[E]] && DefCk [[F]]

DefCk [[UnaryExpression:E * MultExpression:F]] = DefCk [[E]] && DefCk [[F]]
DefCk [[UnaryExpression:E (/ | %) MultExpression:F]] = DefCk [[E]] && DefCk [[F]] && (Tr [[F]] != 0)

DefCk [[(- | !) UnaryExpression:E]] = DefCk [[E]]

DefCk [[(Type:T) UnaryExpression:E]] = DefCk [[E]] && (isOfType (Tr [[E]], T))

DefCk [[DereferenceExpression:E . Ident:I]] = DefCk [[E]] && (Tr [[E]] != null)

DefCk [[DereferenceExpression:E [Expression:F]]] = DefCk [[E]] && (Tr [[E]] != null) && DefCk [[F]]
&& (0 <= Tr [[F]]) && (Tr [[F]] < length (Tr [[E]]))

DefCk [[Ident | Literal]] = true

DefCk [[super | true | false | this | null]] = true

DefCk [[(Expression:E)]] = DefCk [[E]]

35

Design of a Java/Jml Frontend for BoogiePL

DefCk [[\old(Expression:E)]] = old (DefCk [[E]])
DefCk [[\typeof(Expression:E)]] = DefCk [[E]]

DefCk [[\type(Type)]] = true

DefCk [[\result]] = true

DefCk [[\one]] = true

DefCk [[\ownerobject(Expression:E)]] = DefCk [[E]]
DefCk [[\ownertype(Expression:E)]] = DefCk [[E]]

36

Design of a Java/Jml Frontend for BoogiePL

4 Implementation

4.1 Structure of JtoBPL

JtoBPL is programmed in Java as an extension to the MultiJava [5] and Jml [4] framework. Both packages can be downloaded from
the corresponding websites and are free to use under GNU General Public License. First we extended and changed the grammar of
the Jml parser using the ANTLR tool. We formulated our own grammar files as an extension to the existing ones. The *.g files
can be found in the directory org/jtobpl/parser. However, we didn’t change the whole parser but rather extended it slightly
where it was needed.

An Example: Since we had to extend some classes to store some additional values, such as helper variables needed by the transla-
tion (e.g. BVariableDefinition <: JmlVariableDefinition), we let our parser create instances of this subclasses instead of the original
Jml classes. All newly introduced abstract syntax tree node classes can be found in package org.jtobpl.ast.

Another Example: Because we wanted to include the pack and unpack statement we had to change the parser’s production for
statements and include two new productions for parsing pack and unpack.

Almost the entire Jml grammar is still accepted by the parser. Our parser can still parse a new-object expression as an actual
method parameter for example. But after parsing we walk through the entire abstract syntax tree that we get from the parser
and make sure that such code is not accepted. This is done by the visitor class Inspectorin package org.jtobpl.translation.
Besides checking the structure of the syntax tree the Inspector also introduces local helper variables where they are needed for
the translation, creates dummy classes for classes that are not overridden and much more.

Finally, if the Inspector doesn’t encounter any errors we start the translation which is done by the visitor class Translator

which is also part of package org.jtobpl.translation.

4.2 How to get the Software

The entire source code of JtoBPL can be downloaded from http://n.ethz.ch/student/burrisa/jtobpl/.

If one is only interested in using the tool the provided Jar-files might be enough. Otherwise it’s possible to download all the source
files and also the make files to create the different parsers and token files. Since the sources of MultiJava and Jmlare also evolving
over time the latest sources that we have used from this projects is also available.

4.3 Usage

As described above, one can use JtoBPL as if it was Jml but only sources that are supported according to our language subset
may be translated without errors. If the Jar-files are used, the following files have to be provided: MultiJava.jar, Jml.jar and
JtoBPL.jar. in a subfolder called utils one should place the Jar-files ant.jar, antlr-2.7.5.jar, java-getopt-1.0.11.jar,
junit.jar and tools.jar.

Now JtoBPL can be invoked as follows:

[AluOSX:BoogieSemesterarbeit/Completion/JtoBPLJars] saem% java -jar JtoBPL.jar Test.java

... and the translation can be found in file BoogiePLTranslation.bpl in the same directory.

If one wants to use the fields inv and commit then the Jml file Object.jml should be used. It can be found in folder specs/java/lang
and should be compiled together with the other source files. E.g:

[AluOSX:BoogieSemesterarbeit/Completion/JtoBPLJars] saem% java -jar JtoBPL.jar -S ./specs/ InvTest.java

Option -S indicates that alternative API classes can be found in the provided directory.

37

Design of a Java/Jml Frontend for BoogiePL

References

[1] Robert DeLine, K. Rustan M. Leino:
BoogiePL: A typed procedural language for checking object-oriented programs.
Technical Report MSR-TR-2005-70, 2005.

[2] K. Rustan M. Leino:
BoogieOOL: An object-oriented language for program verification.
Manuscript KRML 130, 2003.

[3] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok, Joseph Kiniry:
JML Reference Manual.
Draft, Revision 1.132, 2005.

[4] The Java Modeling Language (JML) Website.
http://www.cs.iastate.edu/ leavens/JML/.

[5] The MultiJava Project Website.
http://multijava.sourceforge.net/.

[6] K. Rustan M. Leino, Peter Müller:
Object Invariants in Dynamic Contexts.
ECOOP 2004, LNCS vol. 3086, Springer, 2004.

[7] Mike Barnett, K. Rustan M. Leino, Wolfram Schulte:
The Spec# Programming System: An Overview.
Manuscript KRML 136, 2004.

[8] Microsoft Spec# Website.
http://research.microsoft.com/specsharp/.

[9] ANTLR Website.
http://www.antlr.org/.

38

