
PROVING TEMPORAL PROPERTIES BY ABSTRACT INTERPRETATION
MASTER THESIS PROJECT DESCRIPTION

Samuel Ueltschi
Supervisor: Caterina Urban

ETH Zürich
Zürich, Switzerland

March 2017

Introduction

Temporal logic is a widely accepted language for the spec-
ification of the intended behavior of various systems (oper-
ating systems, embedded systems, network communication
protocols, etc.). Powerful tools have emerged over the years
for proving temporal logic properties of programs. Useful
properties that temporal logic allows to express are safety
properties like partial correctness (i.e., the program does not
produce the wrong answer), mutual exclusion (i.e., two pro-
cesses are not in their critical section at the same time), and
deadlock-freedom (i.e., the program does not reach a dead-
lock state), and liveness properties like termination (i.e.,
the program eventually terminates), and starvation freedom
(i.e., a process eventually receives service).

Abstract interpretation is a general theory for approximating
the semantics of a program that was developed by Patrick
Cousot and Radhia Cousot in the late 1970s. The theory
of abstract interpretation has been recently used to prove
temporal logic properties, specifically guarantee (something
good happens at least once) and recurrence properties (some-
thing good happens infinitely often) [1].

Liveness properties such as guarantee and recurrence prop-
erties can be expressed using computation tree logic (CTL).
Guarantee properties are expressed by the CTL formula ∀♦φ
(for all paths there will be a state that satisfies φ), recurrence
properties by ∀�∀♦φ (for all paths it will always be true
that ∀♦φ holds). Consider the example program in listing 1,
there the guarantee property ∀♦(x = 5) and the recurrence
property ∀�∀♦(x = −10) can be shown to hold.

x = 0 ;
whi le (x < 10) x ++;
whi le (t r u e) x = −x ;

Listing 1. Example Program

Proving temporal properties by abstract interpretation re-
quires the definition of an abstract interpretation on the max-
imal trace semantics of a program. In case of guarantee
properties ∀♦φ this is done by defining the guarantee se-
mantics τg[S] ∈ Σ ⇀ O that assign each program state an
upper bound on the number of program steps until the guar-
antee property is satisfied. The guarantee semantics τg[S] is
usually not computable. However, it can be approximated
by the abstract domain of piecewise-defined ranking func-
tions [2]. The semantics for recurrence properties ∀�∀♦φ
is defined based on the definition of guarantee semantics.

The previous work on guarantee and recurrence properties
demonstrates how atomic CTL formulae (e.g. ∀♦φ) can
be approximated with abstract interpretation, and how the
combination of atomic CTL formulae (e.g. ∀�∀♦φ) can be
defined by composing the semantics of the atomic opera-
tors. The goal of this thesis is to extend the existing tech-
niques to support more atomic CTL formulae and to come
up with ways to combine them to form more complex CTL
formulae. Ideally, a significant subset that corresponds to
a universal fragment of CTL (∀CTL) can be supported. In
addition to that, the devised approach should also be imple-
mented and integrated within the static analyzer FuncTion1

and then evaluated with a set of experiments.

1. CORE GOALS

The core goal of this thesis is to extend the existing frame-
work to support the universal fragment of CTL, which is
given here by the following inductive definition:

Φ ::= > | ⊥ | a | ¬a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 |
∀ © Φ | ∀♦Φ | ∀�Φ | ∀(Φ1 U Φ2)

This requires the following steps:

1https://www.di.ens.fr/ urban/FuncTion.html

• Defining the concrete semantics for each atomic op-
erator (∀©, ∀�, ∀♦, ∀U), boolean combinator (∧, ∨)
and the nesting of the operators with each other. Ide-
ally, the concrete semantics of the atomic operators
follow a compositional approach that allows arbitrary
nesting of formulae.

• Defining an abstraction of the concrete semantics in
the domain of piecewise-defined ranking functions.
This might also require an extension of the abstract
domain to support all operators of ∀CTL.

• Implementing the devised approach in FuncTion fol-
lowed by an evaluation.

So far this has only been done for the atomic operator ∀♦
and the corresponding composition ∀�∀♦.

2. EXTENSIONS

2.1. Existential Quantifiers in CTL

One possible extensions for this thesis would be to investi-
gate supporting existential quantifiers of CTL e.g formulae
of the form ∃♦φ, ∃�φ or ∀�∃♦φ. The formula ∀�∃♦(start)
for instance, states that from each point in the program it is
always possible to go back to the start. Supporting existen-
tial quantifiers would require extending the existing frame-
work to support atomic operators ∃�, ∃♦, ∃© and ∃U .
Hopefully these can then be combined with the existing op-
erators of the universal fragment by using the same compo-
sitional approach.

2.2. Support LTL Properties

Another possible extension is generalizing the approach to
support properties expressed in (a significant subset of) linear-
time temporal logic (LTL). Supporting LTL formulae is chal-
lenging because CTL and LTL are not comparable i.e. there
are statements that can only be expressed in LTL but not
CTL and vice versa. One example for this is the LTL for-
mula ♦�φ and CTL formula ∀♦∀�φ. Intuitively these may
seem equivalent, however one can show that there are tran-
sition systems that satisfy the LTL but not the CTL for-
mula [3]. Furthermore, LTL is not as easily composable
as CTL. The semantic of CTL is defined in terms of states
which makes it possible to take a set of states that satisfy
one CTL formula as input to another atomic CTL opera-
tor. In LTL however, the semantic is defined in terms of
traces starting from an initial state. If one can show that a
property holds for a set of traces, it is not obvious how that
information can be reused to show that a more complex LTL
formula holds.

3. REFERENCES

[1] Caterina Urban and Antoine Miné, “Proving Guarantee
and Recurrence Temporal Properties by Abstract Inter-
pretation,” in VMCAI, 2015, pp. 190–208.

[2] Caterina Urban, “The Abstract Domain of Segmented
Ranking Functions,” in SAS, 2013, pp. 43–62.

[3] Christel Baier and Joost-Pieter Katoen, Principles of
Model Checking (Representation and Mind Series), The
MIT Press, 2008.

