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Abstract

This master thesis is based on B2BPL, a translator from BML annotated Java Bytecode to Boo-
giePL conceived and implemented in previous work at ETH Zurich. We are primarily interested
in extending the existing translator with some more elaborate mechanisms in terms of translating
method invocations and invariant checks.

Although B2BPL is doing fine in translating annotated Bytecode programs already, there is
still room for improvement. We are also keen to see B2BPL integrated in a broader verification
environment, where Java Bytecode can be directly translated to BoogiePL and verified by Boogie
in an integrated development environment like Eclipse.

In order to achieve these goals, we roll up the existing implementation of the method call
translation algorithm and introduce a mechanism to perform simple but more flexible invariant
checks (with a particular focus on method calls).

The translation of method calls is improved by using the Boogie-specific call command while at
the same time, exception handling is extended with an additional level of flexibility. Furthermore,
invariant checks are refined such that only the invariants of modified objects need to be checked,
and that inadmissible invariants are ruled out automatically. In addition to these modification in
the translator itself, an Eclipse plugin is developed which is intended to integrate the translator
seemlessly into the Eclipse IDE as well as the anticipated Mobius workspace, which is aimed at
developers who want to have even more capabilities to verify their Java/Bytecode projects in
Eclipse.
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Chapter 1

Introduction

Software verification is a methodology to prove that a given piece of software fulfills its specified
requirements, and can be divided into two separate disciplines; dynamic verification and static
verification. While dynamic verification is performed during runtime and checks the behavior of
a program dynamically, static verification is used to check software requirements by inspecting
the actual source code. These checks are performed over a certain specification or property of the
program using formal methods.

During the process of software verification, the program source code and the specification (or a
compiled version of both) is usually translated into an intermediate representation such as guarded
commands [5], for which so-called verification conditions (VCs) are computed. These verification
conditions are then passed to a theorem prover, which tries to prove them. Successful proofs
confirm the correctness of the program with respect to its specification, whereas failed proofs lead
to useful error messages (including counterexamples) which programmers can use to correct the
program. Figure 1.1 gives you a general idea of the software verification process.

SMT Solver
(Simplify)

VC Generator
(Boogie)

Verification Condition

Java Compiler
JDK

Bytecode Translator
(B2BPL)

Annotated Java
Source Code (JML)

BoogiePL

Annotated Java
Bytecode (BML)

JACK / Umbra

Figure 1.1: Software verification process

In this thesis, we are particularly concentrating on the translation from Bytecode to Boo-
giePL [3] via B2BPL (highlighted box). B2BPL takes a compiled Java program (or alternatively a
set of compiled Java classes) and creates an abstract syntax tree (AST) and a control flow graph
(CFG) for every method of every class type it encounters. The AST is generated via the ASM
framework [7], a fast and light-weight Bytecode manipulation framework developed at INRIA (In-
stitut National de Recherche en Informatique) in France. Both AST and CFG are then used to
translate the Bytecode into BoogiePL procedures. Visitors [17] are used to perform the trans-
lation from Bytecode instructions to BoogiePL blocks and to write the resulting BoogiePL code
to a file. The translation also includes BML specifications (see Section 1.1.2) such as assertions,
assumptions, and loop specifications.
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8 1 Introduction

1.1 Preliminaries

1.1.1 The Mobius Project

Mobius (for “Mobility, Ubiquity and Security”) is an integrated project launched under the FET
Global Computing Proactive Initiative [8]. The project started on September 1, 2005 and is sup-
ported by the European Commission [2]. Its consortium is composed of 16 partners, one of which
is the Software Component Technology Group at ETH Zurich.

Mobius aims at developing the technology for establishing trust and security for the next
generation of global computers, using the Proof Carrying Code (PCC) paradigm. The essential
features of the mobius security architecture will be:

• Innovative trust management, dispensing with centralized trust entities, and allowing indi-
vidual components to gain trust by providing verifiable certificates of their innocuousness.

• Static enforcement mechanisms, sufficiently flexible to cover the wide range of security con-
cerns arising in global computing, and sufficiently resource-aware and configurable to be
applicable to the wide range of devices in global computers.

• Support for system component downloading, for compatibility with the view of a global
computer as an evolving network of autonomous, heterogeneous and extensible devices.

As part of this project, a Bytecode specification language was developed [11] to define program
specifications directly at Bytecode level (see Section 1.1.2). This has some advantages over using
specifications only in Java source code. On the one hand, it is common in the industry (mainly
for developers of mobile applications for cell phones) to write software directly in Java Bytecode
in order to produce clean, optimized and, most importantly, small code. On the other hand,
annotations in Bytecode can be deployed more easily, which allows clients to perform their own
verifications as they see fit.

1.1.2 JML and BML

The Java Modelling Language (JML) [10] is a behavioral interface specification language (BISL)
which allows developers to annotate their programs with specifications such as pre- and postcon-
ditions, frame conditions or invariants directly in the Java source code. Because JML is based on
JavaDoc, adding JML annotations to a Java program is straightforward, and static verification can
be performed instantly with an appropriate assertion-checking compiler (such as ESC/Java2 [6]
for instance).

For the reasons explained in the previous section, a counterpart to JML has been created to
provide the same specification capabilities for Java Bytecode. The Bytecode Modeling Language
(BML) was designed to be directly written in Java Bytecode, and the language currently sup-
ports the most frequently used JML constructs. BML not only lets you write your annotated
Java application directly in Bytecode (which happens to be the preferred proceeding of software
developers of mobile applications), but the correctness of the program can also be verified at any
time (i.e. even after deployment, potential customers themselves can check whether the program
really fulfills its specification).

1.1.3 Spec# and Boogie

In order to transform BML into verification conditions, it is first translated into an intermediate
representation, which improves the interoperability of different tools and facilitates the computa-
tion of small and (more importantly) efficient verification conditions. For our purpose, we chose
BoogiePL as intermediate language, because Boogie is one of the most sophisticated VC generators
available at the moment. It performs loop-invariant inference using abstract interpretation and
generates verification conditions to be passed to an automatic theorem prover [1], e.g. Simplify [21].
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Although Boogie accepts input directly written in BoogiePL (which decouples it from any
concrete programming language), it was originally designed for Spec# (a superset of C# with
specification features), and the existing translator only processes Spec# files. To allow compiled
and annotated Java class files as input for Boogie, a translation tool has been built (see Sec-
tion 1.1.4), which we will improve in the course of this thesis.

1.1.4 Previous Work on B2BPL

A translator for converting BML annotated Java Bytecode to BoogiePL was formalized in [12, 24],
and a first version was implemented in [16]. Throughout this report, we will refer to the translator
as B2BPL (short for Bytecode to BoogiePL). While some aspects have not yet been considered (as
for example floating-point arithmetic), a notable amount of programs can already be translated
to BoogiePL. The translator takes a compiled Java class together with its source file, produces an
abstract syntax tree and outputs a BoogiePL file. This file can then be passed to Boogie, which
will generate the resulting verification conditions.

We assume in this thesis that the reader is familiar with the formalization of B2BPL [24],
especially the heap model, which is rather different from the one used by Spec#.

A lot of research in the area of software verification and static program checking has been done
by Robert DeLine and K. Rustan M. Leino at Microsoft Research [22]. Although some of their
ideas will also be discussed briefly in this report, the task of translating BML annotated Bytecode
to BoogiePL is different from the translation of Spec# to BoogiePL in such a way that we are
going to address somewhat different issues here for the most part.

1.2 Notation

Although this thesis addresses the translation from BML (annotated Java Bytecode) to BoogiePL,
we will give most of our examples in JML (annotated Java source code), simply for the reason of
legibility. However, keep in mind that we are always translating directly from Java Bytecode.

Nonetheless, we are dealing with a couple of different languages and formalizations and there-
fore use a selection of distinct notations to make those code passages and formulas easier to
distinguish.

1.2.1 Source Code

Source code fragments written in Java, Java Bytecode, and BoogiePL respectively are shown in
typewriter font in order to separate code examples more distinctly from the remaining formal
extracts, and keywords are highlighted according to the respective language.

1 public int twice(int x) {

2 return x + x;

3 }

1.2.2 Formal Transformations

Formalized transformation algorithms are presented similarly to those in previous work. Abstract
functions and variable names are written in italics, whereas branch conditions and loops in the
formalization itself are colored in a light gray tone. However, BoogiePL code does not appear
directly in the formalizations. Instead, we use abstract functions, and we will give a couple of
comprehensive examples after each formalization to illustrate how the individual transformations
work.

value := heap.get(object, field);
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Chapter 2

Method Calls

The current version of B2BPL (as formalized in [24] and implemented in [16]) handles method
invocations by directly performing pre- and postcondition checks through assumptions and asser-
tions. However, BoogiePL offers a built-in statement for method calls. Instead of handling the
contract of every method manually, the call statement takes care of all necessary steps automat-
ically. One of the advantages of using this particular syntactic sugar is that the contract of a
method has to be declared only once in the appropriate method declaration. It is not necessary
to perform these checks explicitely every time a method is called.

Consider the following method declaration in BoogiePL:

procedure C.m ( args ) returns ( results ) {

requires P;

modifies mm;

ensures Q;

}

where P is the precondition of method C.m, Q its postcondition, and args, results and mm
are lists of variables (Note that BoogiePL has no notion of lists. It is only a shorthand used in
this thesis to avoid unnecessarily cluttered code fragments). If we invoke this method with the
predefined call statement

call results := C.m ( args );

it will be desugared and interpreted by Boogie as

var temp_args, temp_results; // fresh variables in the local scope

temp_args := args; // save old version of method arguments

assert P; // assert precondition of C.m

havoc mm; // destroy all knowledge about global variables in mm

assume Q; // assume postcondition of C.m

results := temp_results; // assign return values

Note again that all variables mentioned in the example above are actually lists of variables.
For simplicity, we write x := y when we actually assign each value of x an according value of y
(i.e. x1 := y1, x2 := y2 etc.).

Unfortunately, the call statement has no means of exception handling whatsoever. In order to
translate method calls which may throw exceptions correctly, we need to provide a mechanism for
recovering from exceptions thrown by the method and delegating the control flow to an appropriate
exception handler manually.

In this chapter, we develop a formal specification for translating method calls from BML to
BoogiePL. To illustrate the improvements of the translation compared to the existing solution, we

11



12 2 Method Calls

will fall back on the example used in [24]. The example is based on a simple Account class which
contains several methods and will be used throughout this thesis.

Listing 2.1: Sample class used in this thesis (implementation omitted)

1 public class Account {

2

3 int balance;

4

5 public C(int initial) {

6 this.balance = initial;

7 }

8

9 public int clear() { /* ... */ }

10

11 public void deposit(int amount) { /* ... */ }

12

13 public void withdraw(int amount)

14 throws InsufficientFundsException { /* ... */ }

15

16 public static void transfer(Account src, Account dest, int amount)

17 throws TransferFailedException { /* ... */ }

18 }

2.1 Preliminaries

2.1.1 Method Specifications

Before we go into detail, let us take a look at method specifications in general. Method speci-
fications are used to describe a method’s behavior in terms of requirements (preconditions) and
effects (postconditions), expressed as predicates over abstract states. The methodology of defin-
ing precise and checkable interface specifications for software components based upon the theory
of abstract data types is also known as Design by Contract [18]. Essentially, every method can
specify requirements which have to be met before it can be called. If the caller satisfies these
requirements, the method guarantees certain consequences in return (hence the term contract).

Preconditions

Preconditions are predicates over fields of the current class and all its superclasses1 on the one hand,
and over method arguments on the other hand. Preconditions must hold before the corresponding
method is called. If the caller of a method cannot satisfy the method’s preconditions, a precondition
violation is triggered, and the method call is invalid. This also implies that the called method is
not bound to fulfill its part of the contract.

We usually denote preconditions as P . In BoogiePL, a precondition is encased in a requires
statement right after a procedure declaration:

requires P;

Postconditions

While preconditions express premises which the caller must satisfy prior to a method call, post-
conditions express conditions which the callee must guarantee at the end of its invocation. Unlike

1Here and throughout, the term superclass comprises all parent classes as well as the base class itself.
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preconditions, postconditions are not only predicates over fields of the current class, all its super-
classes and method arguments, but also over their corresponding state prior to the method call
(usually refered to as the old state). Hence, postconditions are also called two-state predicates. If a
method does not fulfill its postcondition, a postcondition violation will be triggered. This implies
that the method implementation is faulty, and that the method body needs to be revised.

Postconditions are commonly denoted as Q. However, the relation between pre- and postcondi-
tion has to be explicitely specified. If we want to guarantee that Q holds after a method execution
only if the precondition P was valid at the beginning, we have to express our postcondition as
P ⇒ Q in BoogiePL:

ensures P ==> Q;

Note: This conception of postconditions is somewhat ambiguous. Actually, Q should be suf-
ficient as postcondition, because if P does not hold, we would not be allowed to call the method
in the first place. Since P can be assumed to hold when a method is called (P = true), P ⇒ Q
can be reduced to Q. In general, we will write postconditions in their expanded form, i.e. P ⇒ Q
(especially in formalizations) to point out that P is an implicit part of it. However, we will omit
P in some of our examples where the actual pre- and postcondition is irrelevant.

Exceptional Postconditions

If a method terminates by throwing an exception, the normal postcondition might not hold. To
avoid a totally unpredictable program state in this particular case (that is, to prevent a postcondi-
tion violation), special postconditions can be declared along with any exception type that is thrown
by the method, which enables programmers to reason about exceptional method termination.
These conditions can be formalized as (exception = MyException) ⇒ (QMyException) and state
that if the exception that was thrown is of type MyException, the postcondition QMyException will
hold. In order to make postcondition declarations more legible, every exceptional postcondition is
defined in a separate ensures clause:

ensures P && (exception == MyException) ==> Q_MyException;

Method Frame

If a method is not side-effect-free (that is, if it modifies local class fields), it is imperative that all
the fields that are modified by this method are specified as part of the contract. A method C.m is
not allowed to change fields which are not explicitely defined as being modified in C.m. Variables
declared within the scope of the method can always be modified without special declaration. Both
JML and BML provide the modifies keyword to define modified variables:

modifies C.a;

2.1.2 Checked and Unchecked Exceptions

Checked exceptions force the programmer to define the occurrence of exceptions explicitely. An ex-
ception is called checked if a method has to explicitely define that it potentially throws an exception
of that particular type. On the other hand, exceptions which can be thrown without an explicit dec-
laration are called unchecked. Unchecked exceptions have not to be specified mainly because they
can occur at virtually any place in the program (like the OutOfMemoryException in Java) or be-
cause they signal unrecoverable errors (like DivisionByZeroException or NullPointerException
in Java). However, Java and C#2 handle checked and unchecked exceptions quite differently.

2We include C# in our considerations because Boogie was originally intended to verify source code written in
C#/Spec#. Other translators whose target language is BoogiePL presumably have to deal with C#/Spec# in one
way or another.
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In Java, all exceptions inherit from the class Throwable, which is a checked exception. That
is, if a given exception is a subtype of Throwable, it will usually be a checked exception. Only
a few subtypes of Throwable (such as Error and RuntimeExceptions and their subtypes) are
unchecked exceptions.

The methodology behind exception handling in C# (or Spec# for that matter) on the other
hand works the other way around. The base class for any exception is Exception, which is an
unchecked exception. This means that all derived exception types are usually unchecked. There
are no checked exceptions in Spec# by default. However, if checked exceptions are needed for
specific purposes, they can implement the ICheckedException interface.

2.1.3 Subtyping and Subclassing

Subclassing is one of the most important and most powerful mechanisms in object-oriented pro-
gramming. Subclasses inherit properties from their superclasses, but can specify additional prop-
erties which makes them more specific than their base classes. Subtyping on the other hand
expresses the fact that whenever an object of type T is required, the applied object can be either
of type T or a subtype thereof.

Of course, a subclass inherits its specifications from the base class as well, which includes
class invariants, method pre- and postconditions, and frame conditions. However, a subclass can
refine these conditions to adapt them to its particular needs. In order not to violate the rules of
subtyping, there are certain restrictions for those refinements:

• A class invariant for example can only be made weaker, i.e. existing invariants can be
redefined to be less restrictive. If a class C defines the invariant x > 3 for instance, a
subclass C ′ of C can only state that x > 0, but not x > 5. This rule can be expressed as:

inv(C) ⇒ inv(C ′)

• The precondition of an inherited method C ′.m must be weaker than the precondition of the
corresponding base class method C.m:

pre(C.m) ⇒ pre(C ′.m)

• The postcondition of an inherited method C ′.m must be stronger than the postcondition of
the corresponding base class method C.m. This leads to the following relation:

post(C ′.m) ⇒ post(C.m)

Let C be a class and C ′ a direct subclass of C. Further, let P and P ′ be the explicitely defined
preconditions (or true if none are specified) and Q and Q′ the explicitely defined postconditions
(or true if none are specified) of C and C ′ respectively.

During the translation, we need to take into account that P is part of C ′’s precondition and
Q part of C ′’s postcondition as well. According to the rules specified above, we use the following
contract conditions for the methods C.m and C ′.m:

inv(C) := I
pre(C.m) := P

post(C.m) := P ⇒ Q
inv(C ′) := I ∨ I ′

pre(C ′.m) := P ∨ P ′

post(C ′.m) := (P ∨ P ′) ⇒ (Q ∧Q′)
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2.2 Procedure Declarations and Method Calls in BoogiePL

In BoogiePL, method declarations consist of two separate constructs; its signature declaration
(which also includes the contract specifications for that particular method) and an optional imple-
mentation [3]. Methods can have an arbitrary number of input and output parameters. However,
the signature of a concrete implementation must match the signature of its corresponding specifi-
cation declaration. C.m can be replaced by an arbitrary method name.

1 procedure C.m ( in_1: t_in_1, ..., in_n: t_in_n )

2 returns ( out_1: t_out_1, ..., out_n: t_out_n );

3 requires P;

4 modifies M;

5 ensures Q;

6

7 procedure C.m ( in_1: t_in_1, ..., in_n: t_in_n )

8 returns ( out_1: t_out_1, ..., out_n: t_out_n ) {

9 var x: t_x;

10 init:

11 // do something

12 return;

13 }

The syntax of method calls is straightforward and resembles method invocations of common
programming languages. Again, the number and type of the method arguments and the return
values must match the exact signature of the called method.

call result_1, ..., result_n := C.m ( arg_1, ..., arg_n );

2.3 Formal Translation

This section addresses the formal translation of method calls and the corresponding method spec-
ifications involved. A detailed description of the actual implementation in BoogiePL can be found
in Section 2.4.

Basically, our method call consists of n(+1) method parameters (n for the actual arguments
and 1 for referencing the this object, if the method is non-static) as well as three return values:

C.m ( this, arg0, arg1, . . . , argn ) returns ( state, result, exception )

This is, every method invocation yields a triple of special values. state indicates whether the
method was terminated properly (i.e. without exception) or whether an exception was thrown. In
the former case, result will contain the corresponding return value, and in the latter the thrown
exception will be returned in the variable exception. result may be omitted if the method has no
return value (void).

Since a method call can either result in a return value or an exception, but not both at the same
time, it is tempting to use a single return value which can potentially contain both normal and
exceptional “return values”. However, we decided to separate both types of method terminations.
One reason was that a method’s regular return value can be of an arbitrary type (however, only ref
and int are currently available in BoogiePL), whereas the thrown exception is always of type ref
(and in fact a subtype of Exception). Furthermore, normal and exceptional method termination
are not the same thing from a conceptional point of view, and we also need more flexibility in
terms of exception handling later on.
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2.3.1 The callee’s commitments

Let C.m be an arbitrary method with precondition P , postcondition Q, and exceptional postcondi-
tions QEx0 , . . . , QExn

(all of which are explicitely specified as BML annotations in the Bytecode).
In its most general form, C.m has to guarantee that, if P holds at the beginning of its execution,
either Q holds after a normal method termination, or QExi holds after an exceptional method
termination where an exception of type Exi was thrown.

This sounds fairly simple, but unfortunately, the predicates mentioned above are not the only
components of the contract. Behind the scenes, P and Q have to be extended to perform additional
type checks, and the heap needs to be managed accordingly.

Precondition

In particular, P is required to check the types of the method arguments and whether they are
alive on the heap. In case of a non-static method, the this object must not be null. In addition,
the object invariant I is required to hold as well. This yields the new precondition for method
C.m (see Listing 2.2).

Listing 2.2: Formal translation of preconditions

TrPre(C.m) :=
require(P );
if C.m is not a constructor {

require(Ipre(C.m));
}

if C.m is not static {

require(this 6= null);
}

for all input parameters pi do {

require(heap.alive(pi));
require(type(pi) = Tpi);

}

Note that we will omit all details of I and postpone in-depth explanations about invariant
checks to Chapter 3.

Postcondition

Extending the postcondition is a bit trickier, but follows the same rules. First of all, we define the
postcondition for the normal method termination (state = tn). Regardless of any other property,
we always guarantee Q and the frame condition FC (see paragraph Frame Condition below) to
hold. If method C.m has a return value, we also need to check the type of the return value.
Constructors on the other hand use the return value to return their initialized owner object.

In case of an exceptional method termination (state = tex), we guarantee QExi and make sure
that exception contains a valid exception object.

Taking all these considerations into account, we propose the postcondition for method C.m
(see Listing 2.3).

Listing 2.3: Formal translation of postconditions

TrPost(C.m) :=
if C.m has a return value {

ensure(P ⇒ state = tn ⇒ (Q ∧ FC(C.m) ∧ heap.alive(result) ∧ type(result) = Tresult));
} else if C.m is a constructor {

ensure(P ⇒ state = tn ⇒ (Q ∧ FC(C.m) ∧ heap.alive(result) ∧ type(result) = Towner));
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} else {

ensure(P ⇒ state = tn ⇒ (Q ∧ FC(C.m)));
}

for each potential exception Exi do {

ensure(P ⇒ state = tex ⇒ type(exception) = TExi ⇒ (QExi ∧ heap.alive(exception)));
}

ensure(Ipost(C.m));

where Tx denotes the static type of object x.

Frame Condition

FC denotes the method’s frame condition, which ensures that only variables mentioned in the
modifies clause are modified, and all other variables remain unchanged on the heap. As we will
explain in detail later, the heap is invalidated in the course of a method call, and all knowledge
about it has to be reestablished at the end of a method call. The frame condition makes sure that
after a method body is executed, the new heap is equal to the heap prior to the method execution,
except that the fields that are listed in the method’s modifies clause may possibly have been
altered.

Because our new algorithm only relies on the invariants (and not on the actual values), we first
considered removing the postcondition which ensured that values on the heap remained intact over
method calls by explicitely guaranteeing their equality. However, it turned out that this was not
quite possible, because explicitely defined postconditions ensuring exactly this property in case of
an exception relied on this transitive property. Imagine an arbitrary method C.m which, in case
of an exceptional termination, ensures that some variables keep their original value. This property
has to be somehow propagated to the caller so the caller can rely on it in its own postcondition.
Hence, every method call that takes place within C.m must also ensure the equality property for
all unmodified fields:

FC(C.m) := ∀ loc, v : v = loc.value ⇒ old heap.alive(v) ⇒ heap.alive(v) ∧
(¬loc.modified ⇒ heap.get(loc) = old heap.get(loc));

where v denotes a value and loc its location on the heap. FC states that, if a given location
was properly allocated prior to the method call, it will still be allocated after the method has
terminated. Also, the value stored at the given location on the heap is equal to the corresponding
value on the old heap (that is, as long as the location is not modified by C.m).

Note that in this version of the fame condition, invariants are not yet considered. In order
to handle object invariants, we use the predicate I which is already present in the formalizations
in Listings 2.2 and 2.3. We will discuss the exact formalization and implementation of object
invariants in Sections 3.6 and 3.7 respectively.

Boogie’s Desugaring of the Callee

If a given BoogiePL procedure with manually defined precondition P and postcondition Q is pro-
cessed by Boogie, these specifications will be transformed into a pair of assertions and assumptions
and replace the actual method implementation as follows:

Listing 2.4: Boogie’s transformation of the invoked method (inside the callee)

1 init:

2 // precondition check

3 assume P;

4

5 // method implementation

6 /* ... */
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7

8 // postcondition check

9 assert Q;

10 return;

2.3.2 The caller’s commitments

By incorporating BoogiePL’s call statement into the translation process, the actual code needed
to perform a method call becomes conveniently compact. The formalization is essentially the same
as our method declaration we presented at the beginning of Section 2.3:

TrCall(C.m) := (state, result, exception) = C.m(this, p1, ..., pn);

Boogie’s Desugaring of the Caller

If a call statement to a given BoogiePL procedure with manually declared precondition P and
postcondition Q is processed by Boogie, the specifications will be interpreted as the following
sequence of statements:

Listing 2.5: Boogie’s transformation of the method invocation (inside the caller)

1 // Precondition is required to hold here

2 assert P;

3

4 // call result := C.m(params); // obsolete

5

6 // Postcondition holds after method termination

7 assume Q;

This is, the actual method call is omitted and replaced by its contract conditions.

2.3.3 Additional Modifications

Due to the fact that method calls are an integral part of object-oriented software, introducing
the call command meant a lot of minor changes in the existing background logic as well. It was
especially challenging to adapt the behavior of the existing heap model. A method call implicitely
destroys all knowledge about the current state of the heap (because all objects that were allocated
during method execution must be removed from the stack), and the heap properties have to be
reestablished by the method’s frame condition. These modifications will be described in detail in
the course of Section 2.4.

2.4 Implementation in BoogiePL

In this section, we will describe the actual implementation of our formalization from the previous
section in BoogiePL by first presenting the individual components and exemplifying the translation
in detail at the end of this chapter.

2.4.1 Background Theory for handling the Return State

As explained above, method calls return three distinct values—one of which is the return state
(which can either be normal or exceptional). We define two constants of a new special type
ReturnState to model these two values:
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1 type ReturnState;

2

3 const $normal: ReturnState;

4 const $exceptional: ReturnState;

Depending on the value of a method’s return state, either the default postcondition or one
of the exceptional postconditions must hold. Listing 2.6 shows all required modifications of the
background theory to support this notion of normal and exceptional method termination.

Listing 2.6: Background theory for handling the return state

1 function isNormalReturnState(ReturnState) returns (bool);

2 function isExceptionalReturnState(ReturnState) returns (bool);

3

4 axiom (forall s: ReturnState :: s != $normal <==> !isNormalReturnState(s));

5 axiom (forall s: ReturnState :: s != $exceptional <==> !isExceptionalReturnState(s));

Essentially, we define two helper functions to easily check whether a given return state is
normal or exceptional, and we make sure that a variable of type ReturnState must be either
$normal or $exceptional in order to satisfy either of the two helper functions.

Now let us take a look at the concrete implementation of a method invocation. Let state be
a variable of type ReturnState. As explained in Section 2.3, state is the first return parameter
of our translated method call, followed by a variable of type ref (or int if the method returns an
integer value) and another variable of type ref containing a reference to the exception thrown (if
applicable).

After a method invocation, the caller has to branch undeterministically to all possible re-
turn states (i.e. the normal method termination state on the one hand and all of the possible
exceptional method termination states on the other hand). In case of a normal method termi-
nation, the control flow continues at the next regular line in the code (i.e. after the exception
handlers, if any are present). Otherwise, the program jumps to the appropriate exception handler.

Listing 2.7: Method invocation with exception handling (conceptional example)

1 method_call:

2 call state, result, exception := C.m( /* ... */ );

3 goto normal_state, exception_1, exception_2; // ...

4

5 normal_state:

6 assume isNormalReturnState(state);

7 // result contains return value

8 goto end_method_call;

9

10 exception_1:

11 assume isExceptionalReturnState(state) && isInstanceOf(rval(exception), $Exception1);

12 // exception contains Exception1 object

13 goto exception_handler_A;

14

15 exception_2:

16 assume isExceptionalReturnState(state) && isInstanceOf(rval(exception), $Exception2);

17 // exception contains Exception2 object

18 goto exception_handler_B;

19

20 exception_handler_A:

21 // handle exception A

22 goto end_method_call;

23

24 exception_handler_B:
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25 // handle exception B

26 goto end_method_call;

27

28 end_method_call:

2.4.2 Frame Condition

The translation of a typical frame condition FC (without any assignables) into BoogiePL is straigh-
forward. Keep in mind that the frame condition is part of the normal postcondition (P ⇒ Q∧FC):

Listing 2.8: Source code for frame condition

ensures (forall v: Value :: alive(v, old(heap)) ==> alive(v, heap));

ensures (forall l: Location :: alive(rval(obj(l)), old(heap)) ==>

get(heap, l) == get(old(heap), l);

If we want to consider assignables as well, we must adapt the second clause accordingly (as-
suming that m is a modified location):

ensures (forall l: Location :: alive(rval(obj(l)), old(heap)) ==>

l != m ==> get(heap, l) == get(old(heap), l);

2.4.3 Stack and Register Values

So far, the translator used special variables of the form stack#_r and stack#_i to cope with stack
operations as well as reg#_r and reg#_i to temporarily store method arguments at the beginning
of a method. For method calls, we introduce additional variables rs#, rv# and ex# to cope with
the special return values. Every method call uses a fresh set of those variables. They are basically
used to evaluate the return state of a method and to jump to the correct instruction afterwards.
After that, they are not used any further.

If the return value of a method is used after a method call, it will first be assigned to a stack
variable stack#_r though:

Listing 2.9: Calling a normal method or a constructor (simplified example)

call rs0, rv0_r, ex0 := C.m(arg0, arg1, arg2 /* ... */);

stack1_r := rv0_r;

However, this behavior applies only to normal methods and constructor calls. There is an
exceptional case when a super-constructor is called within a constructor. In this particular case,
the return value (which we then define to be the instantiated object) is always assigned to the
corresponding register variable reg#_r which already contains the (unitialized) object. This is
done because every time a class field is either read or updated, the reference to the current this
object is loaded from register 0, where the initialized object is supposed to be located. By storing
the return value of a super-constructor directly to the correct register variable, we make sure that
subsequent accesses to fields are always performed on a properly initialized this object.

Listing 2.10: Calling a super-constructor (simplified example)

stack0_r := reg0_r;

call rs0, rv0_r, ex0 := $java.lang.Object..init(stack0_r);

reg0_r := rv0_r;
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2.4.4 Constructors

The handling of constructors differs slightly from the handling of normal methods, mainly because
constructors have to establish the class invariant, unlike normal methods which only have to
preserve it. To do so, constructors are responsible for initializing the current class in which they
are defined (which also includes instantiating and initializing all field variables).

First, let us assume that we want to create a new object of type C and therefore need to call
the constructor of that particular class. Our method call is translated into BoogiePL as follows:

1 // A new object of type C is allocated on the heap and assigned to stack2_r:

2 havoc stack1_r;

3 assume new(heap, objectAlloc($C)) == rval(stack1_r);

4 heap := add(heap, objectAlloc($C));

5 stack2_r := stack1_r;

6

7 // The constructor of C is called, and the constructor’s postcondition is assumed:

8 call rs0, rv0_r, ex0 := C..init(stack2_r);

9 assume true;

10

11 // Exception handling omitted here.

12

13 // The instantiated object of type C is stored in stack1_r for further use:

14 stack1_r := rv0_r;

After this block of code, the topmost variable on the stack (stack1 r in our example above)
contains the initialized object, which is returned by the constructor of C on line 6.

2.4.5 Example

To clarify the general issues of the previous sections, we resume our example from the begin-
ning of this chapter and translate a sample implementation into (readable) BML and BoogiePL
consecutively.

Listing 2.11: Class Account in Java

1 public class Account {

2

3 protected int balance;

4

5 rotected int interest; // [%]

6

7 //@ invariant this.balance >= 0 && this.interest >= 1;

8

9 public Account() {

10 this.balance = 0;

11 this.interest = 1;

12 }

13

14 //@ requires initial >= 0;

15 //@ ensures this.balance == initial;

16 public Account(int initial) {

17 this.balance = initial;

18 this.interest = 1;

19 }

20

21 //@ requires amount >= 0;

22 //@ modifies this.balance;

23 //@ ensures this.balance == \old(this.balance) + amount;
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24 public void deposit(int amount) {

25 this.balance += amount;

26 }

27

28 //@ requires this.balance >= amount;

29 //@ modifies this.balance;

30 //@ ensures this.balance == \old(this.balance) - amount;

31 //@ signals (InsufficientFundsException e) this.balance == \old(this.balance);

32 public void withdraw(int amount) throws InsufficientFundsException {

33 if (this.balance < amount) {

34 throw new InsufficientFundsException();

35 } else {

36 this.balance -= amount;

37 }

38 }

39

40 //@ requires source != null && target != null && amount <= source.balance;

41 //@ ensures \old(source.balance) - source.balance == amount &&

42 // target.balance - \old(target.balance) == amount;

43 //@ signals (TransferFailedException e) source.balance == \old(source.balance) &&

44 // target.balance == \old(target.balance);

45 public static void transfer(Account source, Account target, int amount)

46 throws TransferFailedException {

47 try {

48 source.withdraw(amount);

49 } catch (InsufficientFundsException e) {

50 throw new TransferFailedException();

51 }

52 target.deposit(amount);

53 }

54

55 //@ ensures \\result == this.balance;

56 public int getBalance() {

57 return this.balance;

58 }

59 }

Listing 2.12: Class Account in Java Bytecode

1 class Account {

2 public void <init>()

3 0: aload_0

4 1: invokespecial java.lang.Object.<init> ()V (11)

5 4: aload_0

6 5: iconst_0

7 6: putfield Account.balance I (13)

8 9: aload_0

9 10: iconst_1

10 11: putfield Account.interest I (15)

11 14: return

12

13 public void <init>(int initial)

14 {| requires initial >= 0

15 ensures this.balance == initial |}

16 0: aload_0

17 1: invokespecial java.lang.Object.<init> ()V (11)

18 4: aload_0

19 5: iload_1
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20 6: putfield Account.balance I (13)

21 9: aload_0

22 10: iconst_1

23 11: putfield Account.interest I (15)

24 14: return

25

26 public void deposit(int amount)

27 {| requires amount >= 0

28 modifies this.balance

29 ensures this.balance == \old(this.balance) + amount |}

30 0: aload_0

31 1: dup

32 2: getfield Account.balance I (13)

33 5: iload_1

34 6: iadd

35 7: putfield Account.balance I (13)

36 10: return

37

38 public void withdraw(int amount)

39 throws InsufficientFundsException

40 {| requires this.balance >= amount

41 modifies this.balance

42 ensures this.balance == \old(this.balance) - amount

43 signals (InsufficientFundsException e) this.balance == \old(this.balance) |}

44 0: aload_0

45 1: getfield Account.balance I (13)

46 4: iload_1

47 5: if_icmpge #16

48 8: new <InsufficientFundsException> (27)

49 11: dup

50 12: invokespecial InsufficientFundsException.<init> ()V (29)

51 15: athrow

52 16: aload_0

53 17: dup

54 18: getfield Account.balance I (13)

55 21: iload_1

56 22: isub

57 23: putfield Account.balance I (13)

58 26: return

59

60 public static void transfer(Account src, Account dest, int amount)

61 throws TransferFailedException

62 {| requires source != null && target != null && amount <= source.balance

63 ensures \old(source.balance) - source.balance == amount &&

64 target.balance - \old(target.balance) == amount

65 signals (TransferFailedException e) source.balance == \old(source.balance) &&

66 target.balance == \old(target.balance) |}

67 0: aload_0

68 1: iload_2

69 2: invokevirtual Account.withdraw (I)V (34)

70 5: goto #17

71 8: astore_3

72 9: new <TransferFailedException> (32)

73 12: dup

74 13: invokespecial TransferFailedException.<init> ()V (36)

75 16: athrow

76 17: aload_1

77 18: iload_2
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78 19: invokevirtual Account.deposit (I)V (37)

79 22: return

80

81 public int getBalance()

82 {| ensures \result == this.balance |}

83 0: aload_0

84 1: getfield Account.balance I (13)

85 4: ireturn

86

87 }

The resulting BoogiePL code of class Account above is relatively large and encompasses several
hundreds of lines of code. Instead of giving you the full translation here, we will focus only on the
translation of method transfer, since this is the only method where we actually call other methods.

Listing 2.13: Method transfer in BoogiePL

1 procedure Account.transfer.Account.Account.int

2 (param0: ref, param1: ref, param2: int)

3 returns (retstate: ReturnState, exception: ref);

4 requires alive(rval(param0), heap) && isOfType(rval(param0), $Account);

5 requires alive(rval(param1), heap) && isOfType(rval(param1), $Account);

6 requires (forall o: ref, t: name :: alive(rval(o), heap) && t <: typ(rval(o)) ==>

7 inv(t, o, heap));

8 requires param0 != null && param1 != null &&

9 param2 <= toint(get(heap, fieldLoc(param0, Account.balance)));

10 modifies heap;

11 ensures isNormalReturnState(retstate) ==>

12 param0 != null && param1 != null &&

13 param2 <= toint(get(old(heap), fieldLoc(param0, Account.balance))) ==>

14 toint(get(old(heap), fieldLoc(param0, Account.balance))) -

15 toint(get(heap, fieldLoc(param0, Account.balance))) == param2 &&

16 toint(get(heap, fieldLoc(param1, Account.balance))) -

17 toint(get(old(heap), fieldLoc(param1, Account.balance))) == param2;

18 ensures isExceptionalReturnState(retstate) &&

19 isOfType(rval(exception), $TransferFailedException) ==>

20 (

21 param0 != null &&

22 param1 != null &&

23 param2 <= toint(get(old(heap), fieldLoc(param0, Account.balance))) &&

24 ==>

25 toint(get(heap, fieldLoc(param0, Account.balance))) ==

26 toint(get(old(heap), fieldLoc(param0, Account.balance))) &&

27 toint(get(heap, fieldLoc(param1, Account.balance))) ==

28 toint(get(old(heap), fieldLoc(param1, Account.balance)))

29 ) && alive(rval(exception), heap);

30 ensures true && inv(typ(rval(param0)), param0, heap) &&

31 inv(typ(rval(param1)), param1, heap);

32

33 implementation Account.transfer.Account.Account.int

34 (param0: ref, param1: ref, param2: int)

35 returns (retstate: ReturnState, exception: ref)

36 {

37 var reg0_r: ref;

38 var reg1_r: ref;

39 var reg2_i: int;

40 var reg3_r: ref;

41 var stack0_r: ref;

42 var stack1_i: int, stack1_r: ref;
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43 var rs0: ReturnState, ex0: ref;

44 var rs1: ReturnState, rv1_r: ref, ex1: ref;

45 var rs2: ReturnState, ex2: ref;

46

47 init:

48 reg0_r := param0;

49 reg1_r := param1;

50 reg2_i := param2;

51 retstate := $normal;

52 goto block_2;

53

54 block_2:

55 stack0_r := reg0_r;

56 stack1_i := reg2_i;

57 assert stack0_r != null;

58 call rs0, ex0 := Account.withdraw.int(stack0_r, stack1_i);

59 assume (forall o: ref, t: name :: true && (o != param0 || t != typ(rval(param0))) &&

60 (o != param1 || t != typ(rval(param1))) ==> inv(t, o, heap));

61 goto block_2_Normal_0, block_2_X_#InsufficientFundsException_0;

62

63 block_2_X_#InsufficientFundsException_0:

64 assume isExceptionalReturnState(rs0) &&

65 isInstanceOf(rval(ex0), $InsufficientFundsException);

66 goto block_2_Handler_#InsufficientFundsException;

67

68 block_2_Handler_#InsufficientFundsException:

69 retstate := $exceptional;

70 assume isInstanceOf(rval(stack0_r), $InsufficientFundsException);

71 exception := stack0_r;

72 goto block_4;

73

74 block_2_Normal_0:

75 assume isNormalReturnState(rs0);

76 goto block_3;

77

78 block_3:

79 goto block_5;

80

81 block_4:

82 reg3_r := stack0_r;

83 havoc stack0_r;

84 assume new(heap, objectAlloc($TransferFailedException)) == rval(stack0_r);

85 heap := add(heap, objectAlloc($TransferFailedException));

86 stack1_r := stack0_r;

87 call rs1, rv1_r, ex1 := TransferFailedException..init(stack1_r);

88 assume (forall o: ref, t: name :: true && (o != param0 || t != typ(rval(param0))) &&

89 (o != param1 || t != typ(rval(param1))) ==> inv(t, o, heap));

90 goto block_4_Normal_1;

91

92 block_4_Normal_1:

93 assume alive(rval(rv1_r), heap);

94 assume isOfType(rval(rv1_r), $TransferFailedException);

95 assume isNormalReturnState(rs1);

96 stack0_r := rv1_r;

97 assert stack0_r != null;

98 goto postX_TransferFailedException;

99

100 block_5:
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101 stack0_r := reg1_r;

102 stack1_i := reg2_i;

103 assert stack0_r != null;

104 call rs2, ex2 := Account.deposit.int(stack0_r, stack1_i);

105 assume (forall o: ref, t: name :: true && (o != param0 || t != typ(rval(param0))) &&

106 (o != param1 || t != typ(rval(param1))) ==> inv(t, o, heap));

107 goto block_5_Normal_2;

108

109 block_5_Normal_2:

110 assume isNormalReturnState(rs2);

111 goto exit;

112

113 postX_TransferFailedException:

114 assume isInstanceOf(rval(exception), $TransferFailedException);

115 assume alive(rval(exception), heap);

116 retstate := $exceptional;

117 goto exit;

118

119 exit:

120 return;

121 }

The method contract on lines 4 to 31 contains all necessary pre- and postconditions we discussed
in this chapter. Let us explain them here in detail:

Line 4 and 5: The first two input parameters are checked to be of type Account.

Line 6: All invariants (i.e. the invariants of all allocated and instantiated objects) must hold.

Line 8: The first two input parameters must not be null, and the third parameter must be less
or equal to the value of the class field balance.

Line 10: The heap is the only entity which is modified in the BoogiePL procedure. If fields of
class Account would be modified in this method, they would not be listed here. Instead,
additional pre- and postconditions would be introduced to cope with them.

Line 11: This is the postcondition for the normal method termination. The value of balance
is modified according to the explicitely defined postconditions in the original Java code or
Bytecode respectively.

Line 18: This is the postcondition for the exceptional method termination where an exception of
type TransferFailedException is thrown. Here, the explicitely defined exceptional postcon-
dition is established (i.e. the values of balance of both Account classes remains unchanged).

Line 30: The object invariant of the first two input parameters is checked, for either of them
could have been modified during the transaction.

Line 58: Method withdraw is called.

Line 59: The invariant of all non-modified variables can be safely assumed. Modified variables at
this particular point of time are stack0 r and stack1 r (although only stack0 r is a reference
type variable).

Line 63: Exception handling: If an exception of type TransferFailedException was thrown,
the program flow is transfered to the appropriate exception handler (line 68).

Line 74: Normal method termination: The program flow is transfered to the next ordinary pro-
gram statement (line 100).
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Line 81f: In case of a TransferFailedException, a new object of type TransferFailedException
is instantiated and initialized. Therefore, the appropriate constructor TransferFailed-
Exception..init is called. Afterwards, the control flow jumps to line 113, where the newly
created exception object is thrown and the method transfer is aborted.

Line 100: Method deposit is invoked. This method call proceeds similarly to the one before,
except that there is no exception thrown in deposit.
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Chapter 3

Invariant Checks

Object invariants are predicates over a set of object fields and an integral part of static software
verification. An invariant is said to hold if the objects referred to in the invariant are in a consistent
state, i.e. the properties stated in the invariant apply to every initialized object of the same type
at any visible state during program execution. Visible states are:

• At the beginning of any method which can be invoked from outside the class in which it
is defined. Private methods which can only be invoked by the same class do not have to
satisfy the object invariant, because the transitional states between those kinds of method
executions are not visible to other classes. If the object invariant is required to hold at the
beginning of a method, the invariant becomes part of the method’s precondition.

• At the end of any method which can be invoked from outside the class in which it is de-
fined. The callee is responsible for establishing the object invariant before the control flow
is handed back to the caller. In this case, the object invariant becomes part of the method’s
postcondition.

• Before and after a public method is invoked. It does not matter whether the invoked method
is part of the same object or another one. Before a caller can invoke a method, the object
invariant has to be established by all means.

Note that there is an important exception to this rule: Before an object is initialized (usually
by calling its constructor), its object invariant can obviously not hold because none of the fields
are initialized. The constructor is responsible for initializing all fields properly and to establish the
object invariant. Therefore, the object invariant cannot be part of a constructor’s precondition in
the first place.

3.1 Verification Methodology

According to [19], a technique for specifying and reasoning about invariants must address the
following fundamental issues about invariants themselves:

• Encapsulation

• Admissibility

• Semantics

• Modular proof techniques

We are going to address all of these issues briefly in the following four sections.

29
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3.2 Encapsulation

Encapsulation determines the scope in which read or write access in granted for individual vari-
ables. A variable x is said to be encapsulated in a class C if access to x is limited to methods of
C. In connection with object invariants, it is particularly important to define the encapsulation
properties of variables that appear in object invariants.

For our considerations in this chapter however, we do not impose any specific encapsulation
properties apart from the restrictions that are already entailed by the Java type system and the
Java compiler [23].

3.3 Admissibility

Admissibility essentially defines which variables an invariant may depend on. We need to make
sure that no location on which an invariant depends is subject to uncontrolled modification. We
therefore limit variables used in invariants to class fields which are declared in the same class as
the object invariant itself.

1 public class C {

2

3 int f;

4 A a;

5

6 //@ invariant this.f != 0; // admissible invariant

7

8 //@ invariant this.a.f != 0; // inadmissible invariant

9

10 }

3.4 Semantics

The semantics of an invariant defines the points in the program flow where an object invariant
must hold. For our verification methodology, we use the visible state semantics which we have
already explained at the beginning of this chapter.

3.5 Modular Proof Techniques

The goal of a modular proof technique is to show that objects satisfy their invariants without
having to examine the entire program. We want to start with a sound proof technique, and try to
gradually refine it by removing unnecessary invariant checks.

3.5.1 A Sound Approach

For now, we claim that all object invariants of our whole type universe must hold at all visible
states, and that object invariants may only contain predicates about local fields that are defined in
the same class as the invariant itself. With this limitations, we can establish an invariant predicate
I which leads to a sound but extremely over-approximated check for object invariants:

I := ∀o, T : invT (o, heap);

where o denotes an object reference, T an object type, and invT (o, heap) the object invariant
of a concrete object of type T referenced by o on a given heap. The equation states that for all
object references o to objects of type T , the object invariant holds. To be precise, it actually states
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that inv holds for all possible references o and types T , but invT (o, heap) only considers correctly
instantiated objects, i.e.

invT (o, heap) := o.isInstanceOf(T ) ⇒ explicit invT (o, heap)

where the explicitely defined invariant explicit invT (o, heap) is only tested if the object refer-
enced by o is indeed an instance of T .

As we have explained above, the invariant I has to be checked at all visible states (particularly
in both pre- and postcondition of every visible method) to maintain soundness. Apparently, the
formula is not very performant if there are hundreds of potentially modified objects involved. Even
the most basic Java programs rely heavily on predefined types from the Java Runtime Library
(such as Object, String, Exception, etc.), whose invariants would have to be checked every time
we entered or left a method. Instead, we want to reduce the complexity of invariant checks by
making I context-dependent.

3.5.2 Refining Invariant Checks

Because we have defined in Section 3.3 that object invariants can only contain fields which are
defined in the same class (in contrast to fields defined in other classes and superclasses), an invariant
can only be broken if a local field is modified (either by a method in the same class or by another
class). Let us look at some examples:

Listing 3.1: Breaking the invariant

1 //@ invariant x >= 1; // invariant 1

2 //@ invariant a != null; // invariant 2

3

4 this.x = 0;

5 // invariant 1 is broken

6

7 this.a = getA();

8 // invariant 2 is broken (assuming that getA() returns null)

9

10 this.a.f = 0;

11 // invariant of object ’a’ might be broken

Note that on line 4 and 7, the invariant of the owner object is broken, whereas on line 10,
the invariant of object a might be broken. In all three cases, the appropriate invariant has to be
checked at the end of the enclosing method.

In order to demonstrate the benefits of only checking the object invariants of those objects
which might have broken their invariant, we consider the following example:

Listing 3.2: Checking only broken invariants is crutial

1 public clasc C {

2

3 A a, B b, /* ... */ Z z;

4

5 //@ modifies a;

6 public void m() {

7 // assume all invariants to hold

8

9 /* ... */

10

11 // only check invariant of ’a’ (and ’this’)

12 }

13

14 }
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In order to keep our invariant checks at a bare minimum, we need to find out exactly which
objects might be modified in a given method and check only the invariants of those particular
objects. Because the object invariant of a given object can only be violated if fields of that object
are modified, we will consider field assignments in particular.

3.6 Formalization Concept

In this section, we will give you the formal specification for checking object invariants. The
specification varies depending on whether a normal method, a constructor or a super-constructor
is called, or whether a precondition or postcondition is translated. For clarity, we will give a
separate formalization for each of these cases, and discuss them separately.

3.6.1 Normal Method Calls

Normal methods assume that all invariants hold before they are called (see Precondition below).
In return, they guarantee that all violated invariants are established before the method is left (see
Postcondition).

Precondition

Basically, we assume all invariants to hold before a method is called. In the existing heap model,
we ought to narrow down the necessary checks by looking only at objects which are actually
allocated on the heap, and which are an instance of the appropriate type or subtype respectively.

Ipre(C.m) := ∀o, T : heap.alive(o) ∧ T ≺ o.type ⇒ invT (o, heap);

where ≺ is a binary operator denoting subtype relationship (T ≺ o.type denotes that T is a
subtype of the type of o).

Postcondition

The postcondition looks similar to the precondition, except that we are now more restrictive. At
this point, we want to check invariants of modified objects only. If an object was not modified in
C.m, its invariant will not be checked here. This is perfectly admissible and can be expressed as
follows:

Ipost(C.m) := ∀o, T : heap.alive(o) ∧ T ≺ o.type ∧ 〈o, T 〉 ∈ MC.m ⇒ invT (o, heap);

where MC.m is the set of all modified objects of C.m.

3.6.2 Constructor Calls

Constructors are handled slightly differently from other methods, because they have other require-
ments and a different behavior. Constructors do not presume any invariant to hold at all, but
rather they are respondible for establishing the object invariant of the current object in the first
place.

Precondition

The difference between the precondition of a normal method and the one of a constructor is that for
the this object, the invariant does not hold initially (since the object has not yet been initialized).
So the this object is excluded from the invariant check. Because a constructor is responsible for
establishing the object invariant, it actually does not require any other object invariant to hold,
which is why we say that the precondition of a constructor generally assumes true:
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Ipre(C..init) := >

Postcondition

The invariant check at the end of a constructor looks exactly like the one performed at the end of
normal methods.

Ipost(C..init) := ∀o, T : heap.alive(o) ∧ T ≺ o.type ∧ 〈o, T 〉 ∈ MC..init ⇒ invT (o, heap);

where MC..init has basically the same semantics as MC.m, i.e. it contains the set of all modified
variables. The only difference is that MC..init actually contains all reference type fields of class C,
because they are all modified (i.e. initialized) in the constructor.

3.6.3 Caller

Since our postconditions only ensure that the invariants of modified objects hold, the caller of a
method is allowed (or actually obliged) to assume all other invariants to hold according to our
proof technique. In fact, it is imperative that all other invariants are assumed by the caller in
order to constitute a sound state where all invariants hold again. Thus, the following assumption
has to be made after every single method call:

Iafter(C.m) := ∀o, T : heap.alive(o) ∧ T ≺ o.type ∧ 〈o, T 〉 /∈ MC.m ⇒ invT (o, heap);

Note that this is no assertion, but an assumption, i.e. Boogie does not have to check whether
these invariants hold. Rather, we tell Boogie that these invariants hold on any account.

3.7 Implementation

This sections explains the translation process from the implementational point of view. We will
show the main issues that made implementing our formalization from the previous section more
challenging than expected before working through a complete example of a real-life translation.

3.7.1 Finding Modified Objects

Finding out which objects might have been modified in a given method forms the basis of our new
algorithm. At first glance, this problem sounds trivial—at least for a program written in JML. If
we take the declaration of the following method for example, it is obvious that we need to check
the invariants of the class fields x, y and z respectively in order to guarantee soundness (unless
they are value types of course).

//@ modifies x, y, z;

public void C.m() {

/* ... */

}

However, this looks a bit more complicated at the level of Bytecode or BoogiePL code. First of
all, the modifies clause is not translated from BML to BoogiePL. Although Boogie does provide
the modifies keyword (with the same semantics as its JML counterpart), it is not used in the
translation process because the heap model did not allow for it when it was designed. In fact,
BoogiePL’s modifies keyword is only used in B2BPL to express that the heap is modified. Thus,
every method which is generated in the course of the translation process will contain the following
line:
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modifies heap;

where heap refers to a publicly declared variable which serves as the global heap of the program.
Every field access (both reading and writing) is performed on this heap variable. No further
variables will occur in the modifies clause.

But even if we knew what objects were going to be modified in a method (which we actually
do because the modifies clause from a JML program is directly translated into a corresponding
modifies clause in BML which we could read out directly from the given Bytecode file), it does not
exactly help us solve the problem either, because variables are handled differently in BoogiePL.

Imagine a field update in the form a.f = 0 in Java. This assignment will be translated into
something like update(heap, fieldLoc(〈o〉 , $f), 0) in BoogiePL. Depending on its exact occurrence
in the program (i.e. the current size of the stack the be precise), o might be either stack0 r,
stack1 r or in fact any other stack variable. This is why we need to keep track of which variables
refer to which objects in order to be able to tell exactly which object is modified if we encounter
a field update.

Basically, modified objects can only be either method arguments or references to field locations
on the heap, and they are only modified via assignment statements. Method arguments (as well
as local register and stack variables for that matter) are usually directly assigned to other local
variables. Field updates on the other hand are performed via the update function.

During the translation of a Bytecode program, the algorithm looks for these assignment state-
ments and checks whether the target of the assignment is a method argument or the global heap
variable. In the latter case, we know that a field was modified if the right hand side of the as-
signment is a heap update. At the end of the current method, we know that we have to check the
invariants of all these method arguments and heap locations.

As we have already stated, invariants can only make predications about fields that are declared
in the same class. Similarly, pre- and postconditions can only refer to method arguments as well
as fields declared in the same class. With other words, locally declared objects within a method
body can be used in neither pre- nor postcondition and are thus (almost) irrelevant for reasoning
about the contract of the method they are declared in. The invariant of a locally declared object
must only hold after its constructor is called, and before (and after) a method is invoked on this
object. However, this lies in the responsibility of the called method and does not concern us at
the moment. If a locally defined variable is modified by a field update and assigned to either a
method argument, the method’s return value or another field, the invariant of the target object of
the assignment has to be included in the invariant check as well.

Example

To illustrate the problem, consider the following extract of a BoogiePL program:

1 implementation C.m (arg1: ref, arg2: ref) returns (result: ref) {

2 init:

3 stack0_r := arg1;

4 heap := update(heap, fieldLoc(stack0_r, $C.f), 5);

5 }

On line 4, we notice that field f of class C is modified. However, the only reference given is
stack0 r, which we cannot use in a postcondition, because it is only locally available within the
method body of C.m. In order to check the object invariant of the correct object, we need to go
back until we can resolve the reference stack0 r to the method argument arg1, which is allowed
to appear in a postcondition.
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Algorithm

In order to find those object references relevant for the invariant checks, we step through the
instructions of the given Bytecode program (during the translation process). As soon as we detect
a field update (indicated by the putfield Bytecode instruction), we add the reference name of the
receiver object to an internal list of modified variables.

As noted above, heap updates are usually performed on local stack variables, i.e. a typical
update looks as follows:

heap := update(heap, fieldLoc(stack0_r, $C.f), ival(stack1_i));

where the value of integer variable stack1 i is assigned to the field f of an object of type C
referenced by the local stack variable stack0 r. Because stack variables are only visible locally
within a method, they cannot be part of any method contract. If we examine the program
carefully, we note that stack variables contain references to either locally instantiated objects
or method arguments. The invariants of the former must be checked if they are assigned to
method arguments or if they are used as return values, whereas the invariants of the latter are
always checked, as method arguments are exposed references (i.e. they can also be used as output
parameters of methods).

The idea behind our algorithm is that we use variable assignments to find out what object a
given stack variable refers to (either a method argument, the method’s return value or an arbitrary
field). For this purpuse, we build up a hash table storing exactly this information. Assume we
had the following sequence of assignments in our BoogiePL program:

Listing 3.3: Possible assignments statements in translated code

1 reg0_r := param0;

2

3 // ... use reg0_r every time ’this’ is used

4 stack0_r := reg0_r;

5

6 // ... modify stack0_r, e.g. change some fields

7 return := stack_0r;

On line 1, we assign the first method parameter (which is a reference to the current object,
i.e. this, if the current method is a non-static method) to a local register variable. Every time we
need a reference to the owner object, we use this register variable. This has to be done because
in BoogiePL, method arguments cannot be modified. Thus, the input parameter param0 has to
be assigned to a local variable first. When register variables are used during the program, they
are loaded onto the stack (via the aload statement in Java Bytecode), which is translated into the
assignment on line 3. Finally, on line 5, we have used another assignment which is used when an
object is assigned to be the return value of the given method.

As you can see, there are several different situations in which assignments are involved. Every
time we encounter an assignment, we add it to our hash table, defining that the variable name
on the left hand side references the same object as the variable name on the right hand side. If
the stack variable stack0 r is used in a heap update as reference to the target object (as on line 4
for example), we know that at this time, it is actually the same object as referenced by param0,
which means that we need to include param0 in the postconditional invariant check. Every time
we add another tuple 〈x, y〉 to our hash table (where x is the name of the target variable and y
the name of the assigned variable), we need to check whether y has already been added before,
and add a new tuple 〈x, hashmap.get(y)〉 accordingly. In the example above, we try to add the
tuple 〈stack0 r, reg0 r〉 to the hash table on line 3, but since reg0 r is already included (through
the assignment on line 1), the tuple 〈stack0 r, param0〉 is added instead.

When we reach the end of a method body, we use the union of all collected variables for the
invariant check. This is primarily done to circumvent the difficulties of analyzing conditional
assignments as in Listing 3.4.
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stack0_r param0

stack0_r := param0;

stack0_r param0

stack1_r := param1;

stack1_r param1

stack0_r param0

stack1_r := stack0_r;

stack1_r param1

param0

Figure 3.1: Example: In a first assignment (left), stack0 r is set to param0. Both variables names are
added as a new pair to our hashtable. In a second assignment (middle), another method argument param1
is assigned to a different stack variable stack1 r. Again, a new tuple is added to the hashtable. In the
third assignment, stack0 r is assigned to stack1 r. Because the latter has already been added to the table
as referencing param0, we append param0 to the existing entry of stack1 r. This means that whenever
stack1 r is updated, the object invariants of both param0 and param1 have to be checked.

Listing 3.4: Conditional heap update

1 reg0_r := param0; stack0_r := reg0_r;

2 reg1_r := param1; stack1_r := reg1_r;

3 goto if_condition_then, else;

4 if_condition_then:

5 stack2_r := stack0_r;

6 goto heap_update;

7 else:

8 stack2_r := stack1_r;

9 goto heap_update;

10 heap_update:

11 heap := update(heap, fieldLoc(stack2_r, $C.f), ival(stack1_i));

If conditional heap updates are involved, we cannot determine directly whether the heap update
was performed on param0 or param1. In order to avoid unnecessarily complex analyses and
resulting postconditions thereof, we check all possibly modified objects. In the example above, we
would include both parameters in the (postconditional) invariant check, i.e.

ensures inv(typ(rval(param0)), param0, heap) && inv(typ(rval(param1)), param1, heap);

3.7.2 Background Theory

During the implementation phase of the new features, we noticed that we needed to add several
new axioms to the background theory without which programs could not be verified. The most
essential additions to the existing theory are discussed in this section.

Maintain object invariants over heap updates and object allocations

If the value of a reference type field is changed on the heap, we cannot automatically guarantee
that the invariant of the owner object still holds. It will be the job of Boogie to verify that this
particular invariant is not broken when the method is left. However, we can guarantee that all
other invariants are not affected by the heap upate and thus remain intact.

// Heap updates do not affect invariants of other objects in the heap:

axiom (forall l: Location, o: ref, t: name, h: Store, v: Value ::

o != obj(l) ==> inv(t, o, update(h, l, v)) == inv(t, o, h));
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Heap updates are not only performed on field updates, but also during the allocation of a new
object. The newly allocated, but not yet instantiated object is added to the heap, and we need to
make sure that this process does not affect existing invariants. However, because the new object
is not yet instantiated, its invariant does not hold at this particular point of time.

1 // Object allocation preserves existing invariants,

2 // but makes sure that the invariant of the newly allocated object

3 // does not hold.

4 axiom (forall o: ref, t: name, pre_h: Store, new_h: Store ::

5 new(pre_h, objectAlloc(t)) == rval(o) &&

6 new_h == add(pre_h, objectAlloc(t)) ==>

7 !inv(t, o, new_h) && (forall o2: ref, t2: name ::

8 t2 != t || o2 != o ==> inv(t2, o2, new_h) == inv(t2, o2, pre_h)));

Annotated JRL classes

Every Java application uses predefined classes from the Java Runtime Library. Most of them are
simple, yet powerful classes like String or List, all of which expose individual interfaces with many
different methods, including one or several constructors. Our approach relies on the fact that all
of these methods implement invariant checking as well, i.e. they ensure that the invariants of all
modified objects hold after they terminate.

The most prominent method call is the constructor of $java.class.Object, which is called
explicitely from any other constructor in our translated BoogiePL programs. Let us look at an
arbitrary constructor A..init of class A:

1 init:

2 reg0_r := param0;

3 goto block_2;

4

5 block_2:

6 stack0_r := reg0_r;

7 call rs0, rv0_r, ex0 := java.lang.Object..init(stack0_r);

8 assume (forall o: ref, t: name :: true ==> inv(t, o, heap));

9 reg0_r := rv0_r;

10 goto block_2_Normal_0;

where java.lang.Object..init is the constructor name of the Object class in Java. It is assumed
that this constructor does not modify anything on the heap. Thus, its contract is implemented as
follows:

1 procedure java.lang.Object..init(param0: ref)

2 returns (retstate: ReturnState, result: ref, exception: ref);

3

4 requires (forall o: ref, t: name ::

5 alive(rval(o), heap) && t <: typ(rval(o)) ==> inv(t, o, heap));

6 ensures result == param0 && result != null && alive(rval(result), heap) &&

7 isInstanceOf(rval(result), $java.lang.Object) &&

8 (forall o: ref :: alive(rval(o), old(heap)) ==> alive(rval(o), heap));

9 ensures (forall o: ref, t: name :: o != param0 ==> inv(t, o, heap));

The last ensures clause is responsible for establishing the necessary invariants. As we discussed
previously, methods have to guarantee that invariants of modified objects must hold after their
execution. The constructor of the Object class however has no side-effects whatsoever (all it does
is initialize the current object) and therefore does not need to assert any invariants. Line 9 in
the source code above results from our algorithm which looks for possibly modified objects and
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uses the predicate o = param0 to indicate that the current object is correctly instantiated and its
invariant holds.

The caller of this particular constructor can then safely assume the invariants of all objects
(except for the current object) to hold after the call:

call rs0, rv0_r, ex0 := java.lang.Object..init(stack0_r);

assume (forall o: ref, t: name :: o != stack0_r ==> inv(t, o, heap));

Additional Axioms

During the implementation of our new features, we had to adapt the existing background theory
to our needs. In particular, we needed to add the following axioms:

// If a value is updated on the heap, it must be allocated on the same heap:

axiom (forall l: Location, h: Store, v: Value :: alive(v, update(h, l, v)));

and for every field C.f of type A:

// The type of a given field C.f is a subtype of class £A:

axiom (forall o: ref, h: Store ::

typ(get(h, fieldLoc(o, C.f))) <: $A);

3.7.3 Establishing invariant in constructors

At the end of a constructor, the invariants of the current object as well as all its fields are required
to hold. Due to the fact that all fields of an object are set in the constructor in Java Bytecode
anyway, its postcondition responsible for the invariant check takes all class field into account as
follows:

ensures (forall o: ref, t: name ::

(o == o_1 && t == t_1) || ... || (o == o_n && t == t_n)

==> inv(t, o, heap));

where o_i will be either param0, result, or in the form toref(get(heap, fieldLoc(param0, C.f)))

for all class fields C.f of the current object.

3.7.4 Maintaining an invariant over several methods

A normal method expects all invariants to hold, hence it implements the following precondition:

requires (forall o: ref, t: name :: inv(t, o, heap));

The postcondition which is responsible for checking all relevant invariants is similar to the one
described above, except that not all class fields have to be checked:

ensures (forall o: ref, t: name ::

(o == o_1 && t == t_1) || ... || (o == o_n && t == t_n)

==> inv(t, o, heap));

which we will simplify by eliminating the forall quantor as follows:

ensures inv(t_1, o_1, heap) && ... && inv(t_n, o_n, heap);

where o_i will be either param0 if it is a non-static method, result if there is a return value to
be checked, or it will be in the form toref(get(heap, fieldLoc(param0, C.f))) for all class fields
C.f of the current object that were modified.
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3.7.5 Checking invariant admissibility

As explained in Section 3.3, we allow invariants to only refer to fields which are declared in the
same class. References to fields of other classes (or superclasses) are not admissible. During the
static program analysis preceding the translation process, it is checked whether the invariants
obey this restriction. In case of an invalid invariant, and error message is displayed stating exactly
which invariant is not admissible.

3.8 Example

Let us again take a look at our example from Section 2.4.5. In order to demonstrate the coherences
between method calls and invariant checks, we added another class Bank to our example which
manipulates different object references. In the following example, the method swapBalanceA
modifies two fields of type Account declared in the current class. Note how the method handles
the invariants checks for both fields.

Listing 3.5: Class Bank (original Java code)

1 public class Bank {

2

3 Account accountA = new Account();

4 Account accountB = new Account();

5 Account accountC = new Account();

6

7 //@ requires accountA != null &&

8 // accountB != null &&

9 // accountC != null;

10 //@ modifies accountA, accountB, accountC;

11 //@ ensures accountA.balance == 0 &&

12 // accountB.balance == 0 &&

13 // accountC.balance == 0;

14 public void rob() {

15 accountA.balance = 0;

16 accountB.balance = 0;

17 accountC.balance = 0;

18 }

19

20 //@ requires accountA != null && accountB != null;

21 //@ modifies accountA, accountB;

22 //@ ensures accountA.balance == \old(accountB.balance) &&

23 // accountB.balance == \old(accountA.balance);

24 public void swapBalanceAB() {

25 int balanceA = accountA.clear();

26 int balanceB = accountB.clear();

27 accountA.deposit(balanceB);

28 accountB.deposit(balanceA);

29 }

30

31 }

Listing 3.6: Invariant of class Account

1 axiom (forall o: ref, h: Store, t: name ::

2 t <: $accounting.Account ==>

3 (inv(t, o, h) <==> isInstanceOf(rval(o), t) ==>

4 toint(get(h, fieldLoc(o, accounting.Account.balance))) >= 0 &&

5 toint(get(h, fieldLoc(o, accounting.Account.interest))) >= 1));
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Listing 3.7: Method swapBalanceAB of class Bank (in BoogiePL)

1 procedure Bank.swapBalanceAB(param0: ref)

2 returns (retstate: ReturnState, exception: ref);

3 requires alive(rval(param0), heap) && isInstanceOf(rval(param0), $Bank);

4 requires (forall o: ref, t: name ::

5 alive(rval(o), heap) && t <: typ(rval(o)) ==> inv(t, o, heap));

6 requires toref(get(heap, fieldLoc(param0, Bank.accountA))) != null &&

7 toref(get(heap, fieldLoc(param0, Bank.accountB))) != null && true;

8 modifies heap;

9 ensures toref(get(old(heap), fieldLoc(param0, Bank.accountA))) != null &&

10 toref(get(old(heap), fieldLoc(param0, Bank.accountB))) != null && true ==>

11 toint(get(heap, fieldLoc(toref(get(heap, fieldLoc(param0, Bank.accountA))),

12 Account.balance))) == toint(get(old(heap), fieldLoc(toref(get(old(heap),

13 fieldLoc(param0, Bank.accountB))), Account.balance))) &&

14 toint(get(heap, fieldLoc(toref(get(heap, fieldLoc(param0, Bank.accountB))),

15 Account.balance))) == toint(get(old(heap), fieldLoc(toref(get(old(heap),

16 fieldLoc(param0, Bank.accountA))), Account.balance)));

17 ensures true && inv(typ(rval(param0)), param0, heap) &&

18 inv(typ(get(heap, fieldLoc(param0, Bank.accountA))),

19 toref(get(heap, fieldLoc(param0, Bank.accountA))), heap) &&

20 inv(typ(get(heap, fieldLoc(param0, Bank.accountB))),

21 toref(get(heap, fieldLoc(param0, Bank.accountB))), heap);

22

23 implementation Bank.swapBalanceAB(param0: ref)

24 returns (retstate: ReturnState, exception: ref)

25 {

26 var reg0_r: ref;

27 var reg1_i: int;

28 var reg2_i: int;

29 var stack0_r: ref, stack0_i: int;

30 var stack1_i: int;

31 var rs0: ReturnState, rv0_i: int, ex0: ref;

32 var rs1: ReturnState, rv1_i: int, ex1: ref;

33

34 init:

35 reg0_r := param0;

36 retstate := $normal;

37 goto block_2;

38

39 block_2:

40 stack0_r := reg0_r;

41 assert stack0_r != null;

42 stack0_r := toref(get(heap, fieldLoc(stack0_r, Bank.accountA)));

43 call rs0, rv0_i, ex0 := Account.clear(stack0_r);

44 assume (forall o: ref, t: name ::

45 true && (o != param0 || t != typ(rval(param0))) ==> inv(t, o, heap));

46 assume isOfType(ival(rv0_i), $int);

47 assume isNormalReturnState(rs0);

48 stack0_i := rv0_i;

49 reg1_i := stack0_i;

50 stack0_r := reg0_r;

51 assert stack0_r != null;

52 stack0_r := toref(get(heap, fieldLoc(stack0_r, Bank.accountB)));

53 call rs1, rv1_i, ex1 := Account.clear(stack0_r);

54 assume (forall o: ref, t: name ::

55 true && (o != param0 || t != typ(rval(param0))) ==> inv(t, o, heap));

56 assume isOfType(ival(rv1_i), $int);

57 assume isNormalReturnState(rs1);
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58 stack0_i := rv1_i;

59 reg2_i := stack0_i;

60 stack0_r := reg0_r;

61 assert stack0_r != null;

62 stack0_r := toref(get(heap, fieldLoc(stack0_r, Bank.accountA)));

63 stack1_i := reg2_i;

64 assert stack0_r != null;

65 heap := update(heap, fieldLoc(stack0_r, Account.balance), ival(stack1_i));

66 stack0_r := reg0_r;

67 assert stack0_r != null;

68 stack0_r := toref(get(heap, fieldLoc(stack0_r, Bank.accountB)));

69 stack1_i := reg1_i;

70 assert stack0_r != null;

71 heap := update(heap, fieldLoc(stack0_r, Account.balance), ival(stack1_i));

72 goto exit;

73

74 exit:

75 return;

76 }

Especially note the invariant checks performed in the method specification at the beginning of
Listing 3.7:

Line 4: The object invariant of all allocated objects is checked in the precondition.

Line 17: The object invariants of the current object (referenced by param0) and both local fields
accountA and accountB are checked in the postcondition, because they have been potentially
altered by swapBalanceAB.

The method specification of method Account.clear (invoked on lines 43 and 53 respectively)
is shown in Listing 3.8.

Listing 3.8: Method specifications of Account.clear

1 procedure Account.clear(param0: ref)

2 returns (retstate: ReturnState, result: int, exception: ref);

3 requires alive(rval(param0), heap) && isInstanceOf(rval(param0), $Account);

4 requires (forall o: ref, t: name ::

5 alive(rval(o), heap) && t <: typ(rval(o)) ==> inv(t, o, heap));

6 modifies heap;

7 ensures (true ==>

8 toint(get(heap, fieldLoc(param0, Account.balance))) == 0 &&

9 result == toint(get(old(heap), fieldLoc(param0, Account.balance)))) &&

10 alive(ival(result), heap) && isOfType(ival(result), $int);

11 ensures true && inv(typ(rval(param0)), param0, heap);
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Chapter 4

Triggers

Triggers (also known as Matching Patterns) are a special feature recently added to BoogiePL
which allows to pass information to an underlying theorem prover as of how to instantiate uni-
versal quantifiers [1, 4, 13]. They represent a set of terms that together mention all the bound
variables, and none of which is just a bound variable by itself. Triggers in BoogiePL can appear
in quantification expressions. Some examples are:

Quantification Expression Trigger
∀x : f(x) ≥ 0 f(x)
∀x : f(x) ≥ f(g(x)) f(g(x))
∀x, y : f(x) ≥ g(x, y) g(x, y)
∀x, y : f(x) ≥ g(y) f(x), g(y)
∀x, y : x = y ⇒ g(x, y) g(x, y)

Table 4.1: Quantification expressions and their triggers

A typical axiom might for instance appear in the following form:

axiom (forall i: int :: toint(ival(i)) == i);

where we added the trigger toint(ival(i)), for i alone is already a bound variable by itself.
Unfortunately, the example above barely illustrates the issue that triggers actually try to solve.
Let us briefly explain the problem. The SMT Solver tries to derive triggers from the axioms
automatically. For this purpose, individual terms are added to the set of triggers, beginning from
the left hand side. The algorithm stops when all bound variables are contained in at least one of
the selected terms. Now consider the following axiom:

axiom (forall x :: x != null ==> f(x) == f(next(x)));

According to the procedure just described, f(x) will be selected as trigger. As explained in [14],
this trigger is not limiting enough though. If f(X) occurs in the e-graph1, then the quantifier in
the axiom above will be instantiated with X, next(X), next(next(X)), ... , causing a matching
loop. A more limiting trigger for this quantifier would be f(next(x)), which does not cause a
matching loop.

4.1 Modified Background Theory

In Appendix A, we will give you a list of all axioms in our background theory to which we have
added one or possibly several triggers. Function and constant declarations are omitted. The

1Equality Graph. For more information on e-graphs, please refer to corresponding literature like [20].
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reference in Appendix A gives you also an overview over the additional axioms added in the
course of this thesis.

4.2 Performance Gain

We wanted to measure to which degree our newly introduced triggers improved the performance of
the underlying theorem prover (Simplify in this particular case). For this purpose, we constructed
several test files in JML, compiled them into BML annotated Bytecode (with JACK2) and run
them through a benchmark program (see Appendix B).

The benchmark program created several processes consecutively, each of which started Boogie
with the given BoogiePL file. The runtime of each process was then measured. In Figure 4.2, we
have depicted the results of two different programs, both of which were verified fifty times without
triggers and fifty times with triggers. The diagrams depict the average runtime computed over all
individual test runs.

2803 ms

2576 ms

2758 ms

2135 ms

Figure 4.1: In order to analyze the impact of the newly added triggers, we verified sample programs with
Boogie and Simplify and measured the time it took the process to complete. We have performed fifty test
runs per program and then evaluated the average over all test runs. The first diagram depicts a small
program with a couple of object instantiations and method calls, where a slight improvement of 8% could
be determined (blue: average runtime without triggers, green: average runtime with triggers). The second
diagram shows the results of a basic QuickSort algorithm, where field and array operations are involved.
We could measure an impressive speed-up of 23%. The improvement might even increase if more axioms
(in terms of number and complexity) are involved in the verification process. However, we did not perform
any further in-depth tests to fortify these assumption.

2see Chapter 5



Chapter 5

IDE for Automatic Bytecode
Verification

Right from the beginning of this thesis, it was quite clear that we wanted to integrate the improved
B2BPL translator in the Eclipse IDE in order to facilitate the verification of Bytecode programs.
The idea was to provide a workflow that supports programmers during the development and
specifically the verification process of Java applications. Once a program has been written in Java
Bytecode, it should be possible to automatically translate it into BoogiePL and have it verified by
Boogie directly in Eclipse.

We decided to integrate the Umbra [25] plugin into this workflow (see Section 5.2), mainly
because Umbra provides Bytecode editing capabilities based on the Byte Code Engineering Li-
brary [15]. Unfortunately, the plugin was still under development when this chapter was written,
and it was not possible to edit Java Bytecode (and BML annotations) directly. Thus, we used an
alternative tool for generating BML annotated Bytecode instead (see Section 5.1).

5.1 Java Applet Correctness Kit

The Java Applet Correctness Kit (JACK) [9] is a JML-based verification tool for Java developers
designed at INRIA Sophia Antipolis. Existing JML annotations can be directly converted to BML
and are then embedded in Java class files. Currently, the plugin seems only to work on Unix,
but not on Windows. Hopefully, this issue is resolved in the future so that all components work
seemlessly together on the same machine.

Similar to other related projects such as ESC/Java2 [6], the developers of JACK made three
distinct design choices which had to be met:

Keep Java as the validation language: Programs should be validated directly from their Java
code. In order to achieve this, JML is used as base language.

Do not change the working environment: As Eclipse is one of the most popular integrated
development environments for Java programming, it was natural to base the verification tool
on Eclipse. No additional tools (apart from specific Eclipse plugins) are needed.

Provide different validation levels: The verification tool should provide automatic provers as
well as interactive provers.

Basically, developers write JML annotated Java code which is translated to formal lemmas. A
collection of different provers (both automatic and interactive) can be used to generate a correct-
ness proof based on these lemmas. An integrated lemma viewer hides the mathematical details
from the developer.
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Originally, JACK was developed in the software research labs of Gemplus (a French company
which offers security solutions, especially in conjunction with smart cards). In the course of a
major project transfer from Gemplus to INRIA in September 2003, more plugins were integrated,
such as automatic annotation generation and annotation propagation. Validation at Bytecode
level as well as a few alternative provers (such as Simplify, PVS and Coq) were added too.

JACK then became part of the EVEREST project, which aims at ensuring system security
for mobile and embedded applications, where space and computational capacity is limited (i.e.
on mobile phones or smart cards). The Eclipse plugin can be downloaded from the EVEREST
project website [9]. Currently, the licence is limited to educational and experimental purposes
only.

Figure 5.1: Class file annotations: JACK can generate BML annotated Bytecode from JML annotated
Java source code.

During this thesis, JACK was primarily used to convert existing JML annotated Java code
into BML annotated Bytecode, which proved to be very straightforward. As it is illustrated in
Figure 5.1, right-clicking the corresponding .java file and selecting Jack (Bytecode) > Class file
annotation from the context menu will automatically create a new class file containing BML
annotations. The generated class file (which is stored in a separate subdirectory) can immediately
be copied to the project’s output folder to replace the existing, unannotated Java class files.

5.2 Umbra

Umbra is a Bytecode editor plugin for Eclipse. It allows you to view and modify the Bytecode
of already compiled Java classes while working on other classe’s Java source code. The plugin
provides an additional Eclipse text editor component for Java Bytecode, which even supports
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syntax highlighting (see Figure 5.2).

Figure 5.2: Bytecode text editor in Eclipse

The Bytecode is displayed with common instruction labels such as getfield and invokevirtual

rather than cryptic byte values. Unfortunately, the plugin was not yet ready to be integrated into
an automatic verifier for BoogiePL because it underwent same heavy changes during this thesis
which would have made it quite difficult to adapt to. Nevertheless, Umbra has the potential to
become a central component of the aspired framework for automatic Bytecode verification. The
clean and concise presentation of the Java Bytecode makes modifications as easy as in Java source
code itself. Furthermore, Umbra provides commands to disassemble existing Bytecode back to
Java code.

5.3 B2BPL

At the beginning of this thesis, we wanted to implement a B2BPL component as part of the
Umbra plugin. However, we finally decided the create an independent Eclipse plugin to translate
and verify Java Bytecode for the reasons above. In this section, we want to quickly recapitulate
the essential classes of B2BPL (including the modifications accomplished during this thesis) before
we explain how the Eclipse plugin encapsulating the translator actually works.

5.3.1 Class Structure

Main

The Main class in package b2bpl is the main entry point of the translator. In order to parameterize
the translation process, Main can be initialized with either a list of command line arguments (see
Section 5.4.4), or with an object instance of type Project.

Project

The class Project in package b2bpl capsulates a set of properties which can be set to influence
the translation process. The translator can be initialized either with a fully instantiated object
of type Project, or it creates such an object implicitely via its command line arguments (see
Section 5.4.4). Its most important properties are the base directory, which is used to look for the
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given classes if they are not found in Java’s class path, the output file which contains the final
BoogiePL code, and of course a list of class names (including their full package path) which are
going to be translated.

Other properties contained in the Project class are either obsolete or experimental and are
therefore not used by the B2BPL plugin.

MethodTranslator

The class MethodTranslator located in package b2bpl.translation is the actual core of the trans-
lator. The class converts a single Bytecode method into BoogiePL by creating a sequence of
BoogiePL blocks, each of which is made up of consecutive BoogiePL commands.

Every block starts with a block label which has to be unique in the current method and ends
with a list of block labels. The former are used as jump labels, and the latter define undeterministic
branches to the corresponding jump labels.

We will not go into further detail here as we did not change the mechanisms behind block-
and command generation. Instead, we will focus on two new methods which are responsible for
compiling the method specifications: getRequiresClauses and getEnsuresClauses (see Section 5.4).

5.4 Pre- and Postcondition Generation

5.4.1 Prepare Requires Clauses

Method getRequiresClauses is responsible for gathering the predicates which are part of the
method’s precondition. As explained in Sections 2.3 and 3.6, the correct composition is gov-
erned by the signature of the translated method. If the generation of preconditions has to be
changed in the future, this is the place to make adjustments.

5.4.2 Prepare Ensures Clauses

Similarly to the method just described, getEnsuresClauses is responsible for gathering the predi-
cates for the method’s postcondition, with a special focus on exceptional postconditions.

5.4.3 Prepare Invariants

There are three different methods implemented in the MethodTranslator to prepare the predicates
for invariant checks; one method for every possible occurrence: both invariant checks which are
part of a method’s pre- or postcondition respectively, as well as the invariant which the caller of
a method can safely assume after a the call.

5.4.4 User Guide

B2BPL can be executed from the command line with the options shown below. As mentioned
above, the translator can also be invoked in Java directly by creating a new instance of the Main
class and invoking the method compile.

Listing 5.1: B2BPL command line options

1 Usage: java b2bpl.Main [<options>] [<files>]

2

3 <options>:

4 -h Print a help message.

5 -o <outfile> The output file which contains the resulting BoogiePL code.

6 -s Translate every class into a separate file.

7 -t Adds triggers to the axioms (where applicable).

8 -i Includes invariant checks.

9 -sl Remove redundancy from logical formulas during translation.
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10 -this Verify the object invariants of the this object only.

11 -l Perform a sound elimination of loops in the BoogiePL program.

12 -r Model runtime exceptions of Bytecode instructions

13 (instead of ruling them out)

14 -c <constant> The magnitude of the largest integer constant to

15 be represented explicitely.

16 -basedir <path> Base directory where classfiles are located

17 (if it differs from Java’s class path)

18

19 <files>

20 The class files or type names of the classes to verify.

21 They have to be either located in Java’s class path, or

22 the option -basedir has to be set.

Listing 5.2: Calling B2BPL on the command line

java b2bpl.Main -o "c:\output.bpl" -basedir "c:\workspace\car\bin" demo.Car demo.Wheel

Listing 5.3: Calling B2BPL in your own application

1 // Address translator with command line options...

2 String[] args = /* ... */

3 (new b2bpl.Main(args)).compile();

4

5 // ...or alternatively with an explicit Project object

6 Project project = new Project();

7 (new b2bpl.Main(project)).compile();

5.4.5 ASM Framework vs. BCEL

The ASM Framework [7] was chosen to create abstract syntax trees from the Java Bytecode at
hand because of its small size and good performance. Umbra however is based on the Byte Code
Engineering Library (BCEL) [15], a similar library developed by the Apache Software Foundation.
A better integration of Umbra and the B2BPL Eclipse plugin described in Section 5.5 might be
achieved by either migrating the latter from ASM to BCEL, or by implementing a translator for
converting abstract syntax trees from BCEL to ASM. This way, Java Bytecode would not have to
be parsed from Bytecode in order to be verified. Instead, the parsed tree could be directly adopted
from Umbra which would prevent the Bytecode from being parsed twice during the verification
process and might speed up said operation considerably (supposing that developers edit their
Bytecode in Umbra and subsequently invoke B2BPL to verify it).

5.5 B2BPL Eclipse plugin

Converting an existing Java Bytecode file into BoogiePL in Eclipse should be as easy as compiling
the original source code. Invoking a command line tool by hand every time you want to verify
your Bytecode seems not to be an appropriate solution. As part of an automated verifier for
Java Bytecode, we created a plugin which provides two basic options, conversion from Bytecode
into BoogiePL, and verification of Bytecode. The latter assumes that an adequate BoogiePL file
already exists in the current project directory. Otherwise, the translation is performed implicitely.
Both options are available as toolbar icons in the main toolbar of Eclipse as well as separate menu
items.
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Figure 5.3: B2BPL plugin (menu and toolbar commands) for translating Bytecode to BoogiePL and
verifying the generated BoogiePL code in Boogie. The third command is currently used to set the directory
where Boogie (and Simplify) are located.

5.5.1 ConversionHandler Class

The ConversionHandler converts a given Java project and all its classes into a BoogiePL program.
This options can be convenient if you want to further process your BoogiePL code without sending
it to Boogie directly.

At this point, it is necessary to include all classes of a Java project because of the obvious
dependency between individual classes (e.g. if a class A calls method m of class C, the declaration
of C.m has to be available). However, this could be improved in the future. Imagine a Java project
consisting of thousands of classes. If you just want to verify a single class C, it would be perfectly
fine to only translate this particular class into BoogiePL and use only the specifications of the
remaining methods to verify C, omitting their specific implementations altogether.

In fact, this optimization seems to be inevitable when we start including classes from the Java
Runtime Library, where the actual implementation is not required (or not even available) for the
translation. Only the specifications contained in the method declarations are vital.

However, classes from the Java Runtime Library are not yet incorporated in the translation
process. This is another issue which should be tackled in the future (see also Section 6.3).

5.5.2 VerificationHandler Class

The V erificationHandler uses the services provided by the ConversionHandler to translate
Bytecode into BoogiePL first if an appropriate BoogiePL file does not already exist. After the
translation process, the translated BoogiePL file is then passed to Boogie. We basically create a
new process and invoke Boogie with the previously created BoogiePL file as its only argument.

Because Boogie is primarily designed to run under Windows, we assume that the B2BPL plugin
is also used in a Windows environment. Therefore, we start Boogie from Eclipse via the Runtime
class:

Runtime.getRuntime().exec("cmd /c start /b boogie.exe <args>");

Because the path to the Boogie executable might not be contained in the system’s PATH
variable, we set the working directory explicitely. The Boogie directory can be customized via the
menu BytecodeV erification > SetBoogiePath.

5.6 The Mobius Workspace

Recently, a preconfigured development environment was introduced which is aimed at simplifying
the development on different components of the Mobius project. The new workspace contains all
Java projects which are part of Mobius, such as ESC/Java2, Umbra, and of course our B2BPL
translator. The workspace is easy to use because hardly any configuration is needed. A couple of
plugins are already set up, i.e. JUnit, JMLUnit, Checkstyle and SVN/CVS.
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All members of the Mobius project have been encouraged to use the Mobius workspace to
develop their projects and plugins. Apart from the inherently absence of setup overhead, this
will also greatly contribute to more homogeneous source code and targets at satisfying all Mobius
standards.
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Chapter 6

Conclusion

The achievements of this thesis can be divided into two parts. In Chapters 2 and 3 respectively, we
have worked out some unobtrusive improvements addressing method calls and invariant checks by
taking the current implementation of B2BPL, formalizing the solutions and extending the existing
code base according to those formalizations. In Chapter 5, we have been focusing more on the
general issue of an automatic Bytecode verifier and its integration into the development workflow
in Eclipse.

6.1 Challenges

Unfortunately, most of the time went into debugging the results from the translation in Boogie,
mainly for two reasons. First of all, Boogie lacks some decent debugging capabilities. Although
Boogie tells you that a given assumption might not be satisfied, it does not specify what subclause
exactly may be broken. Hence, it took a lot of time to track down all the errors and to find
their original source. However, we understand there is an ongoing Master Project addressing the
problem of insufficient error reporting in Boogie which might mitigate this issue in the future. On
the other hand, the heap model in the existing translation framework was quite different from the
one used by the native translation from Spec#. In particular, there were some intricate axioms
involved in the allocation of new objects on the heap which required extreme caution.

6.2 Achievements

Translating method calls from Java Bytecode to BoogiePL has become much clearer now by the use
of Boogie’s own call statement. Not only has the generated BoogiePL code become easier to read
for developers and machines alike (which also makes it easier for the latter to disassemble existing
BoogiePL code if required in the future), but it is also more likely that future improvements in
Boogie itself (in terms of method calls) can be exploited without further ado, because we let Boogie
do all the necessary transformations already.

Invariant checks have also been improved noticeably. Instead of checking only the invariant of
the current object (or all objects with the same type as the current object), all relevant invariants
are now considered. Invariant admissibility is restricted considerably though, but after all we are
dealing with a sound and modular approach, i.e. all invariants which potentially might be broken
are checked on any account, and methods can be checked independently (provided that at least
the specification of all involved methods are available).

Finally, we made the first move towards a fully automated program verifier for Java Bytecode
by integrating B2BPL into an easy-to-use plugin, obviating an unnecessarily complex process to
convert compiled Java code into BoogiePL and starting the verifyer manually. It will be exciting
to see the plugin being integrated even deeper in Umbra and the Mobius workspace, allowing
developers to verify JML annotated Java source code and BML annotated Java Bytecode alike.
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6.3 Future Work

Although B2BPL has been developed over a couple of Master Projects now, there is still room for
improvement. Some of the many possible (or necessary) extensions are briefly mentioned in this
section.

6.3.1 BML annotated Java Runtime Library

This issue has already been mentioned in Chapter 3. In order to be able to use classes from the
Java Runtime Library, they need to be BML annotated too. Otherwise, they interfere with the
existing theory, because they would not retain all information needed .

As there is already a JML annotated version of the Java Runtime Library available, it would be
possible to take this existing source code and convert it to BML annotated Bytecode with JACK
(according to Section 5.1).

6.3.2 Extend Object Invariants

Current objects invariants are constricted too much to verify really interesting programs. One
of the next steps might be to relax those restrictions and to allow fields of other objects to be
included in invariants as well, which, of course, requires substantial modifications on the existing
algorithms for invariant checking.
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Appendix A

Extended Background Theory

In this section, we will give you a list of all axioms in our background theory to which we have
added one or possibly several triggers. Function declarations are omitted. Triggers are given in
curly brackets directly after the corresponding quantifier declaration. Note that for the sake of
completeness, we added even those triggers which would be derived automatically.

1 axiom (forall i: int, j: int :: { ival(i), ival(j) } ival(i) == ival(j) <==> i == j);

2

3 axiom (forall v: Value :: { ival(toint(v)) } ival(toint(v)) == v);

4

5 axiom (forall i: int :: { toint(ival(i)) } toint(ival(i)) == i);

6

7 axiom (forall o1: ref, o2: ref :: { rval(o1), rval(o2) }

8 rval(o1) == rval(o2) <==> o1 == o2);

9

10 axiom (forall v: Value :: { rval(toref(v)) } rval(toref(v)) == v);

11

12 axiom (forall o: ref :: { toref(rval(o)) } toref(rval(o)) == o);

13

14 axiom (forall i: int, o: ref :: { ival(i), rval(o) } ival(i) != rval(o));

15

16 axiom (forall i: int :: { isValueType(typ(ival(i))) } isValueType(typ(ival(i))));

17

18 axiom (forall t: name :: { isValueType(t), init(t) }

19 isValueType(t) ==> init(t) == ival(0));

20

21 axiom (forall t: name :: { isClassType(t), init(t) }

22 isClassType(t) ==> init(t) == rval(null));

23

24 axiom (forall t: name :: { init(arrayType(elementType(t))) }

25 init(arrayType(elementType(t))) == rval(null));

26

27 axiom (forall v: Value :: { isValueType(typ(v)) }

28 static(v) <==> isValueType(typ(v)) || v == rval(null));

29

30 axiom (forall v: Value :: { arrayLength(v) } 0 <= arrayLength(v));

31

32 axiom (forall o1: ref, f1: name, o2: ref, f2: name ::

33 { fieldLoc(o1, f1), fieldLoc(o2, f2) }

34 fieldLoc(o1, f1) == fieldLoc(o2, f2) <==> o1 == o2 && f1 == f2);

35

36 axiom (forall o1: ref, i1: int, o2: ref, i2: int ::

37 { arrayLoc(o1, i1), arrayLoc(o2, i2) }
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38 arrayLoc(o1, i1) == arrayLoc(o2, i2) <==> o1 == o2 && i1 == i2);

39

40 axiom (forall o1: ref, f1: name, o2: ref, i2: int ::

41 { fieldLoc(o1, f1), arrayLoc(o2, i2) } fieldLoc(o1, f1) != arrayLoc(o2, i2));

42

43 axiom (forall o: ref, f: name :: { obj(fieldLoc(o, f)) } obj(fieldLoc(o, f)) == o);

44

45 axiom (forall o: ref, i: int :: { obj(arrayLoc(o, i)) } obj(arrayLoc(o, i)) == o);

46

47 axiom (forall o: ref, f: name :: { ltyp(fieldLoc(o, f)) }

48 ltyp(fieldLoc(o, f)) == fieldType(f));

49

50 axiom (forall o: ref, i: int :: { ltyp(arrayLoc(o, i)) }

51 ltyp(arrayLoc(o, i)) == elementType(typ(rval(o))));

52

53 axiom (forall t: name :: { typeObject(t) } typeObject(t) != null);

54

55 axiom (forall h: Store, t: name :: { alive(rval(typeObject(t)), h) }

56 alive(rval(typeObject(t)), h));

57

58 axiom (forall t: name :: { allocType(objectAlloc(t)) } allocType(objectAlloc(t)) == t);

59

60 axiom (forall t: name, i: int :: { allocType(arrayAlloc(t, i)) }

61 allocType(arrayAlloc(t, i)) == arrayType(t));

62

63 axiom (forall t: name, i: int, a: Allocation :: { allocType(multiArrayAlloc(t, i, a)) }

64 allocType(multiArrayAlloc(t, i, a)) == arrayType(t));

65

66 // [SW]: A value is alive if it is put onto the heap

67 axiom (forall l: Location, h: Store, v: Value :: { alive(v, update(h, l, v))) }

68 alive(v, update(h, l, v)));

69

70 // Field stores do not affect the values stored in other fields.

71 axiom (forall l1: Location, l2: Location, h: Store, v: Value ::

72 { get(update(h, l1, v), l2) }

73 l1 != l2 ==> get(update(h, l1, v), l2) == get(h, l2));

74

75 // Field stores are persistent.

76 axiom (forall l: Location, h: Store, v: Value :: { get(update(h, l, v), l) }

77 alive(rval(obj(l)), h) && alive(v, h) ==> get(update(h, l, v), l) == v);

78

79 // Object allocation does not affect the existing heap.

80 axiom (forall l: Location, h: Store, a: Allocation :: { get(add(h, a), l) }

81 get(add(h, a), l) == get(h, l));

82

83 // [SW]: Object allocation does not affect existing invariants.

84 axiom (forall o: ref, t: name, h: Store, a: Allocation :: { inv(t, o, add(h, a)) }

85 inv(t, o, add(h, a)) == inv(t, o, h));

86

87 // Field stores do not affect object liveness.

88 axiom (forall l: Location, h: Store, v1: Value, v2: Value ::

89 { alive(v1, update(h, l, v2)) } alive(v1, update(h, l, v2)) <==> alive(v1, h));

90

91 // [SW]: Field stores do not affect the invariants of other fields.

92 axiom (forall l: Location, h: Store, o: ref, t: name, v: Value ::

93 { inv(t, o, update(h, l, v)) }

94 o != obj(l) ==> inv(t, o, update(h, l, v)) == inv(t, o, h));

95
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96 // Alive objects remain alive when a newly allocated object is added to the heap.

97 axiom (forall h: Store, v: Value, a: Allocation :: { alive(v, add(h, a)) }

98 alive(v, h) ==> alive(v, add(h, a)));

99

100 // A newly allocated object becomes alive in the heap it is added to.

101 axiom (forall h: Store, a: Allocation :: { alive(new(h, a), add(h, a)) }

102 alive(new(h, a), add(h, a)));

103

104 // Values reachable from alive objects are themselves alive.

105 axiom (forall l: Location, h: Store :: { alive(get(h, l), h) }

106 alive(rval(obj(l)), h) ==> alive(get(h, l), h));

107

108 // Static values are always alive.

109 axiom (forall h: Store, v: Value :: { alive(v, h) } static(v) ==> alive(v, h));

110

111 // A newly allocated object is not alive in the heap it was created in.

112 axiom (forall h: Store, a: Allocation :: { alive(new(h, a), h) } !alive(new(h, a), h));

113

114 // Allocated objects retain their type.

115 axiom (forall h: Store, a: Allocation :: { typ(new(h, a)) }

116 typ(new(h, a)) == allocType(a));

117

118 // Creating an object of a given type in two heaps yields the same result if liveness

119 // of all objects of that type is identical in both heaps.

120 axiom (forall h1: Store, h2: Store, a: Allocation :: { new(h1, a), new(h2, a) }

121 new(h1, a) == new(h2, a) <==> (forall v: Value ::

122 { alive(v, h1), alive(v, h2), allocType(a) }

123 typ(v) == allocType(a) ==> (alive(v, h1) <==> alive(v, h2))));

124

125 // Two heaps are equal if they are indistinguishable by the alive and get functions.

126 axiom (forall h1: Store, h2: Store :: (forall v: Value :: { alive(v, h1), alive(v, h2) }

127 alive(v, h1) <==> alive(v, h2)) && (forall l: Location ::

128 { get(h1, l), get(h2, l) } get(h1, l) == get(h2, l)) ==> h1 == h2);

129

130 // [SW]: Object allocations preserve existing invariants

131 axiom (forall o: ref, t: name, pre_h: Store, new_h: Store ::

132 { new(pre_h, objectAlloc(t)), inv(t, o, new_h) }

133 new(pre_h, objectAlloc(t)) == rval(o) && new_h == add(pre_h, objectAlloc(t)) ==>

134 !inv(t, o, new_h) && (forall o2: ref, t2: name ::

135 { inv(t2, o2, new_h), inv(t2, o2, pre_h) }

136 t2 != t || o2 != o ==> inv(t2, o2, new_h) == inv(t2, o2, pre_h)));

137

138 // Get always returns either null or a value whose type is a subtype of the (static)

139 // location type.

140 axiom (forall h: Store, l: Location :: { isOfType(get(h, l), ltyp(l)) }

141 isOfType(get(h, l), ltyp(l)));

142

143 // New arrays have the allocated length.

144 axiom (forall h: Store, t: name, i: int :: { arrayLength(new(h, arrayAlloc(t, i))) }

145 arrayLength(new(h, arrayAlloc(t, i))) == i);

146

147 axiom (forall h: Store, t: name, i: int, a: Allocation ::

148 { arrayLength(new(h, multiArrayAlloc(t, i, a))) }

149 arrayLength(new(h, multiArrayAlloc(t, i, a))) == i);

150

151 axiom (forall h: Store, t: name, i: int, a: Allocation ::

152 { isNewMultiArray(new(h, multiArrayAlloc(t, i, a)), h, multiArrayAlloc(t, i, a)) }

153 isNewMultiArray(new(h, multiArrayAlloc(t, i, a)), h, multiArrayAlloc(t, i, a)));
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154

155 axiom (forall v: Value, h: Store, t: name, i: int ::

156 { isNewMultiArray(v, h, arrayAlloc(t, i)) }

157 isNewMultiArray(v, h, arrayAlloc(t, i)) <==> !alive(v, h) &&

158 typ(v) == arrayType(t) && arrayLength(v) == i);

159

160 axiom (forall v: Value, h: Store, t: name, i: int, a: Allocation ::

161 { isNewMultiArray(v, h, multiArrayAlloc(t, i, a)) }

162 isNewMultiArray(v, h, multiArrayAlloc(t, i, a)) <==> !alive(v, h) &&

163 typ(v) == arrayType(t) && arrayLength(v) == i &&

164 (forall e: int :: { isNewMultiArray(get(h, arrayLoc(toref(v), e)), h, a) }

165 isNewMultiArray(get(h, arrayLoc(toref(v), e)), h, a) &&

166 multiArrayParent(get(h, arrayLoc(toref(v), e))) == v &&

167 multiArrayPosition(get(h, arrayLoc(toref(v), e))) == e));

168

169 axiom (forall b: bool :: { bool2int(b) } bool2int(b) == 0 <==> b == false);

170

171 axiom (forall b: bool :: { bool2int(b) } bool2int(b) != 0 <==> b == true);

172

173 axiom (forall i: int :: { int2bool(i) } int2bool(i) == false <==> i == 0);

174

175 axiom (forall i: int :: { int2bool(i) } int2bool(i) == true <==> i != 0);

176

177 axiom (forall v: Value, t: name :: { isOfType(v, t), typ(v) <: t }

178 isOfType(v, t) <==> v == rval(null) || typ(v) <: t);

179

180 axiom (forall v: Value, t: name :: { isInstanceOf(v, t), typ(v) <: t }

181 isInstanceOf(v, t) <==> v != rval(null) && typ(v) <: t);

182

183 axiom (forall v: Value, t: name :: { isInstanceOf(v, t) }

184 isInstanceOf(v, t) ==> isOfType(v, t));

185

186 axiom (forall b: bool, x: any, y: any :: { ifThenElse(b, x, y) }

187 b ==> ifThenElse(b, x, y) == x);

188

189 axiom (forall b: bool, x: any, y: any :: { ifThenElse(b, x, y) }

190 !b ==> ifThenElse(b, x, y) == y);

191

192 // Defines the set of value types.

193 axiom (forall t: name :: { isValueType(t) }

194 isValueType(t) <==> t == $long || t == $int || ... || t == $char);

195

196 axiom (forall i: int :: { isInRange(i, $long) } isInRange(i, $long) <==>

197 $int#m9223372036854775808 <= i && i <= $int#9223372036854775807);

198

199 axiom (forall i: int :: { isInRange(i, $int) } isInRange(i, $int) <==>

200 $int#m2147483648 <= i && i <= $int#2147483647);

201

202 axiom (forall i: int :: { isInRange(i, $char) } isInRange(i, $char) <==>

203 0 <= i && i <= 65535);

204

205 // Associate the types of integer values to their corresponding value ranges.

206 axiom (forall i: int, t: name :: { isInRange(i, t) }

207 typ(ival(i)) <: t <==> isInRange(i, t));

208

209 // A cast value is in the value range of the target type.

210 axiom (forall i: int, t: name :: { isInRange(icast(i, t), t) }

211 isInRange(icast(i, t), t));
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212

213 // Values which already are in the target value range are not affected by a cast.

214 axiom (forall i: int, t: name :: { isInRange(i, t) }

215 isInRange(i, t) ==> icast(i, t) == i);

216

217 axiom (forall t: name :: { elementType(arrayType(t)) }

218 elementType(arrayType(t)) == t);

219

220 axiom (forall t: name :: { $java.lang.Object <: t }

221 $java.lang.Object <: t ==> t == $java.lang.Object);

222

223 axiom (forall o: ref, h: Store, t: name ::

224 t <: $java.lang.Object ==> (inv(t, o, h) <==>

225 isInstanceOf(rval(o), t) ==> true));

226

227 axiom (forall t: name :: { $java.lang.Cloneable <: t, $java.lang.Object <: t }

228 $java.lang.Cloneable <: t ==>

229 t == $java.lang.Cloneable || $java.lang.Object <: t);

230

231 axiom (forall o: ref, h: Store, t: name :: { inv(t, o, h) }

232 t <: $java.lang.Cloneable ==> (inv(t, o, h) <==>

233 isInstanceOf(rval(o), t) ==> true));

234

235 // ... the same for £java.io.Serializable, £java.lang.Throwable

236

237 axiom (forall t: name :: { arrayType(t) }

238 arrayType(t) <: $java.lang.Object && arrayType(t) <: $java.lang.Cloneable &&

239 arrayType(t) <: $java.io.Serializable && arrayType(t) <: $java.lang.Throwable);

240

241 axiom (forall t1: name, t2: name :: { t1 <: t2 }

242 t1 <: t2 ==> arrayType(t1) <: arrayType(t2));

243

244 axiom (forall t1: name, t2: name :: { t1 <: arrayType(t2) }

245 t1 <: arrayType(t2) ==> t1 == arrayType(elementType(t1)) &&

246 elementType(t1) <: t2);

247

248 axiom (forall s: ReturnState :: { isNormalReturnState(s)

249 s != $normal <==> !isNormalReturnState(s));

250

251 axiom (forall s: ReturnState :: { isExceptionalReturnState(s) }

252 s != $exceptional <==> !isExceptionalReturnState(s));

253

254 axiom (forall i: int, j: int :: { i % j, i / j } i % j == i - i / j * j);

255

256 axiom (forall i: int, j: int :: { i % j } 0 <= i && 0 < j ==> 0 <= i % j && i % j < j);

257

258 axiom (forall i: int, j: int :: { i % j } 0 <= i && j < 0 ==> 0 <= i % j && i % j < 0-j);

259

260 axiom (forall i: int, j: int :: { i % j } i <= 0 && 0 < j ==> 0-j < i % j && i % j <= 0);

261

262 axiom (forall i: int, j: int :: { i % j } i <= 0 && j < 0 ==> j < i % j && i % j <= 0);

263

264 axiom (forall i: int, j: int :: { (i+j) % j } 0 <= i && 0 < j ==> (i+j) % j == i % j);

265

266 axiom (forall i: int, j: int :: { (j+i) % j } 0 <= i && 0 < j ==> (j+i) % j == i % j);

267

268 axiom (forall i: int, j: int :: { (i-j) % j } 0 <= i-j && 0 < j ==> (i-j) % j == i % j);

269
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270 axiom (forall a: int, b: int, d: int :: { a % d, b % d }

271 2 <= d && a % d == b % d && a < b ==> a + d <= b);

272

273 axiom (forall i: int :: { shl(i, 0) } shl(i, 0) == i);

274

275 axiom (forall i: int, j: int :: { shl(i, j) } 0 < j ==> shl(i, j) == shl(i, j - 1) * 2);

276

277 axiom (forall i: int :: { shr(i, 0) } shr(i, 0) == i);

278

279 axiom (forall i: int, j: int :: { shr(i, j) } 0 < j ==> shr(i, j) == shr(i, j - 1) / 2);

280

281 axiom (forall i: int, j: int :: { ushr(i, j) } 0 <= i ==> ushr(i, j) == shr(i, j));

282

283 axiom (forall i: int, j: int :: { ushr(i, j) } 0 < j ==> 0 <= ushr(i, j));

284

285 axiom (forall i: int, j: int :: { and(i, j) } 0 <= i || 0 <= j <==> 0 <= and(i, j));

286

287 axiom (forall i: int, j: int :: { and(i, j) }

288 (0 <= i) == (0 <= j) ==> and(i, j) <= i && and(i, j) <= j);

289

290 axiom (forall i: int, j: int :: { or(i, j) } 0 <= i && 0 <= j <==> 0 <= or(i, j));

291

292 axiom (forall i: int, j: int :: { or(i, j) } 0 <= i && 0 <= j ==> or(i, j) <= i + j);

293

294 axiom (forall i: int, j: int :: { xor(i, j) } (0 <= i) == (0 <= j) <==> 0 <= xor(i, j));
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Benchmark Program

The benchmark program used in Section 4.2 was written in C#. The source code is listed below
(instructions for console output have been omitted).

Listing B.1: Benchmark source code

1 using System;

2 using System.Diagnostics;

3 using System.ComponentModel;

4

5 namespace BoogieBenchmark {

6

7 public class BoogieBenchmark {

8

9 public static void Main(string[] args) {

10

11 const int Repetitions = 10;

12

13 Process boogie = new Process();

14 boogie.StartInfo.FileName = "Boogie.exe";

15 boogie.StartInfo.Arguments = String.Join(" ", args);

16

17 try {

18 double overall_time = 0;

19

20 for (int i = 0; i < Repetitions; i++) {

21 boogie.Start();

22

23 while (!boogie.HasExited) System.Threading.Thread.Sleep(2000);

24

25 TimeSpan duration = boogie.ExitTime - boogie.StartTime;

26 overall_time += duration.TotalMilliseconds;

27 }

28

29 double average_runtime = (overall_time / Repetitions);

30 }

31 catch (Win32Exception) { /* error */ }

32 }

33 }

34 }
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Appendix C

Sample Programs

The following section contains sample programs that were used in Section 4.2 to conduct perfor-
mance tests. Note that the actual translation was performed directly from Java Bytecode. For
the sake of clarity, we will list the original JML annotated Java source code only, which was then
compiled with the standard Java SDK compiler (version 5.0) and annotated with JACK (according
to Section 5.1) to obtain BML annotated Java Bytecode.

C.1 Simple Demonstration Program

Listing C.1: Demonstration program performing some object instantiations, method calls and field assign-
ments.

1 public class C {

2

3 public C() {

4 for (int i = 0; i < 20; i++) {

5 (new A()).setValue(i);

6 }

7 }

8

9 }

10

11 public class A {

12

13 int value;

14

15 //@ modifies value;

16 //@ ensures value == v;

17 public void setValue(int v) {

18 value = v;

19 }

20

21 }
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C.2 QuickSort

Listing C.2: QuickSort algorithm

1 public class QuickSortDemo {

2

3 private static int[] a;

4

5 //@ requires a0 != null && a0.length > 0;

6 public static void sort(int[] a0) {

7 a = a0;

8 quicksort(0, a.length - 1);

9 }

10

11 //@ requires a != null && lo >= 0 && lo < a.length &&

12 //@ hi >= 0 && hi < a.length && lo <= hi;

13 private static void quicksort(int lo, int hi) {

14 int i = lo, j = hi;

15 int x = a[(lo + hi) / 2];

16

17 // Divide

18 while (i <= j) {

19 while (a[i] < x) i++;

20 while (a[j] > x) j--;

21 if (i <= j) {

22 swap(i, j);

23 i++;

24 j--;

25 }

26 }

27

28 // Conquer

29 if (lo < j) quicksort(lo, j);

30 if (i < hi) quicksort(i, hi);

31 }

32

33 //@ requires a != null && i >= 0 && i < a.length && j >= 0 && j < a.length;

34 private static void swap(int i, int j) {

35 int t = a[i];

36 a[i] = a[j];

37 a[j] = t;

38 }

39 }
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