
Software Component Technology Group

Master Thesis

Verifying Spec# delegates

Samuele Gantner

31-03-2008

Supervisors: Prof. Peter Müller, Joseph N. Ruskiewicz

Introduction The Spec# programming language is an extension of the .NET programming
language C#, consisting of speci�cation constructs like pre- and postconditions, non-null types
and some facilities for higher-level data abstractions [1]. Function objects are used to express
higher-order features in object-oriented programs [3]; the C# delegate construct simpli�es the
implementation of such objects. A delegate instance represents a method together with a possible
target object or a list of methods and possible target objects in case of multicast delegates. In
[7] P. Müller and J. Ruskiewicz propose a veri�cation methodology for C# delegates which allows
sound static reasoning about precondition, postcondition and frame-condition of the underlying
method associated with a delegate instance. The methodology is restricted to single cast delegates
with exactly one underlying method and target.

Goal of the project This proposed thesis will extend the veri�cation methodology described
in [7] in order to handle the speci�c Spec# needs; speci�cally the methodology will be extended
to delegates instantiated with static methods, multicast delegates and events.

Once these extensions have been shown sound, the results will be implemented in the Spec#
programming system. In order to show the usefulness of the idea and the practicality of the
proposed solution, some case studies will be performed on common delegate usage scenarios and
on design patterns based on delegates.

Main parts and Timeline In the �rst part of the thesis the methodology will be extended
and modi�ed to �t speci�c programming needs. In the second part the methodology will be
implemented in the Spec# programming system.

2 weeks Get to know Spec#
7 weeks Extension of the methodology
10 weeks Implementation
2 weeks Case studies
3 weeks Write the report



Possible extensions Possible extensions to this thesis include:

• Extension of the methodology and the implementation to include the concepts of im-
mutability and purity [4].

• Extension of the methodology to handle static �elds in delegate invariants. This ex-
tension is subject to the progress of the implementation of static class invariants [5] in
Spec#.

• Extension of the methodology for using history invariants with delegates [6].

• Extension of the methodology to the anonymous delegates of .NET 3.0 [2].

References

[1] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An overview. In LNCS,
volume 3362, 2004.

[2] ECMA International. Ecma-334: C# language speci�cation, 2006.

[3] G. T. Leavens, K. R. M. Leino, and P. Müller. Speci�cation and veri�cation challenges for sequential object-oriented
programs. Formal Aspects of Computing, 19(2):159�189, 2007.

[4] K. R. M. Leino. Spec sharp object primer. http://channel9.msdn.com/wiki/default.aspx/SpecSharp.SpecSharpObjectPrimer.

[5] K. R. M. Leino and P. Müller. Modular veri�cation of static class invariants. In J. Fitzgerald, I. Hayes, and
A. Tarlecki, editors, Formal Methods (FM), volume 3582 of Lecture Notes in Computer Science, pages 26�42.
Springer-Verlag, 2005.

[6] K. Rustan M. Leino and Wolfram Schulte. Using history invariants to verify observers. In ESOP, pages 80�94, 2007.

[7] P. Müller and J. N. Ruskiewicz. A modular veri�cation methodology for C# delegates. In U. Glässer and J.-R.
Abrial, editors, Rigorous Methods for Software Construction and Analysis, 2007. To appear.

Software Component Technology Group


