
Verifying Spec# Delegates

Samuele Gantner

Master’s Thesis

Chair of Programming Methodology
Department of Computer Science

ETH Zurich

pm.inf.ethz.ch

March 2008 - September 2008

Supervised by:
Joseph N. Ruskiewicz
Prof. Dr. Peter Müller

pm.inf.ethz.ch

2

Abstract

Function objects allow to encode references to methods in invocable objects. In C#, the
delegate construct provides type safe function objects. A delegate instance encapsulates
a reference to one or more methods. Showing the correctness of a delegate invocation is
equivalent to showing that the pre-condition of the method pointed to by the delegate is
satisfied before the invocation of the delegate.

Delegates are commonly used in C# programs for encapsulating and composing methods
and implementing eventing patterns. However no verification framework for Spec# dele-
gates has been implemented yet.

In this thesis we implement a verification methodology for singlecast delegates based on
refinement of specification and delegates invariants. We then extend the methodology to
multicast delegates: delegates pointing to multiple target methods. To ensure correctness,
the pre-conditions of all targets must hold throughout the invocation of the multicast dele-
gate; moreover the post-condition of the delegate must hold after the invocation of its last
target. We formulate heap and parameters stability conditions, sufficient to ensure the cor-
rectness of a multicast delegate invocation. In tightly coupled scenarios - where the contract
of a target method depends on both the arguments and the target type - delegate invariants
are insufficient to show refinement of specification. To solve this problem we introduce a
new construct that allows to fix the type of the target.

We implemented the methodology in the Spec# programming system by extending the
Spec# programming language to include pre-, post-, frame conditions, and invariants for
delegates. Our extension allows to statically verify singlecast delegates, multicast delegates,
and events. We further extended the language to verify delegates where the type of the target
can be fixed during declaration. Where applicable, we also introduced runtime checks.

3

4

Acknowledgments

I would like to thank my supervisor, Joseph N. Ruskiewicz, for his support and feedback
throughout this whole work; Prof. Peter Müller for the useful suggestions about various
topics of this thesis, and especially frame conditions; Jürg Billeter for the fruitful discussions,
especially about tightly and loosely coupled delegates and all other PhD. student of the
Programming Methodology group for their useful suggestions and feedback.

Particular thanks to Hans Dubach and Denise Spicher for their patience in solving all
administrative issues during my master.

Thanks to Dario Poggiali for helping me finding a correct balance and finally special thanks
to my family for their continuous support during my studies.

5

6

Contents

1 Introduction 11

1.1 Overview . 12

1.2 Notation Conventions . 13

2 Background 15

2.1 C# Delegates . 15

2.1.1 Delegates in .NET . 16

2.1.2 Multicast Delegates . 17

2.1.3 Immutability of Delegates . 19

2.1.4 Events . 19

2.2 The Spec# Programming System . 20

2.2.1 The Spec# Programming Language . 20

2.2.2 The Spec# Compiler . 22

2.2.3 Boogie . 22

2.2.4 BoogiePL . 22

2.3 Previous Work on Static Verification of Delegates . 26

2.3.1 Contracts For Delegates . 26

2.3.2 Delegates Invariants . 27

2.3.3 Delegate Subtyping . 29

2.3.4 Disabling Delegates . 29

3 Implementation of Static Verification for Singlecast Delegates 31

7

8 CONTENTS

3.1 Contracts and Subtyping . 31

3.1.1 Encoding and Definition of Contract Elements 31

3.1.2 Delegate Instantiation in BoogiePL . 33

3.1.3 Delegate Invocation in BoogiePL . 36

3.1.4 Exposing an Object in BoogiePL . 37

3.1.5 Delegate Subtyping in BoogiePL . 39

3.2 Disabling Delegates . 39

3.2.1 Ownership Based Disabling . 39

3.2.2 Disabling Delegates with the Enabled Field 40

3.2.3 Disabling Delegates in BoogiePL . 41

3.3 Frame Conditions . 43

3.3.1 Encapsulation . 43

3.3.2 The Type of the Target . 44

3.3.3 Subtyping . 45

3.3.4 Frame Conditions in BoogiePL . 46

4 Extensions 51

4.1 Delegates with Static Methods . 51

4.1.1 Instantiation of Delegates with Static Methods in BoogiePL 52

4.2 Multicast Delegates . 53

4.2.1 Stability requirements . 53

4.2.2 Encoding Multicast Delegates . 54

4.2.3 Combining Delegates in BoogiePL . 58

4.2.4 Subtyping and Multicast Delegates . 60

4.3 Events . 61

4.3.1 Ownership and Events . 62

4.4 Closed Target Type Delegates . 63

4.4.1 Pre-, Post-Conditions and Invariants . 63

4.4.2 Tightly Coupled Delegates . 65

4.4.3 CTT Delegates and Subtyping . 65

4.4.4 CTT Delegates in BoogiePL . 65

5 Implementation and Runtime Checks 67

5.1 From SSC to CIL . 67

CONTENTS 9

5.1.1 Delegate Instantiation . 67

5.1.2 Contracts for delegates . 67

5.1.3 Delegate Subtyping . 68

5.1.4 Disabling Delegates . 70

5.1.5 Frame Conditions . 70

5.1.6 CTT Delegates . 71

5.1.7 Compiler Architecture . 71

5.2 Boogie . 72

5.3 Runtime Checks . 73

5.3.1 Building Blocks . 73

5.3.2 Implementing Runtime Checks . 74

6 Conclusions 79

6.1 State of the Implementation . 79

6.2 Conclusions . 81

6.3 Future Work . 81

A Short User’s Manual 85

B Examples 89

B.1 Complete USBStick Example . 89

B.2 Events . 91

C SSC Syntactic Grammar 93

D Compiler Generated Methods 95

D.1 Compiler-Generated Delegate Classes . 95

D.2 Compiler-Generated Events Methods . 98

E Found Bugs 101

E.1 Generics . 101

E.2 Constructors in Contracts . 102

E.3 Array Initialization . 103

E.4 Structural Type Rules for Delegates . 104

E.5 Out of Band Contracts and Axioms Contradiction 104

E.6 Specification of Array Concatenation . 105

10 CONTENTS

CHAPTER 1

Introduction

Function objects allow to encode references to methods, in objects that can be invoked.
Function objects are present in many programming languages; they are represented in Eif-
fel with agents, in Scala with function objects and in C# with delegates: object-oriented
type safe function pointers. Function objects pose important challenges on current static
verification frameworks. The verification methodology for Spec# delegates described in [15]
allows to verify a subset of Spec# delegates and is implemented and extended in this work.

The Spec# programming system allows to statically verify programs with respect to their
specification and the semantics of the language. The system is composed by the Spec#
programming language, a superset of C#, the Spec# compiler and a static program verifier
based on weakest preconditions and first order logic named Boogie. Boogie translates a
Spec# program in the intermediate BoogiePL language and then uses a theorem prover to
verify it.

A C# delegate declaration includes the signature of possible target methods and is trans-
lated during compilation in a class which includes a public Invoke() method used to invoke
the delegate. Delegates are instantiated like normal objects by providing to the constructor
a target object and a target method. Delegates promote encapsulation: the client of a
delegate does not have to be aware of the underlying implementation.

Listings 1.1 shows a Spec# program that uses delegates. The Log() method of class Client
invokes a delegate passed as argument, but has no information about the target object and
method of logFile. In order to verify this program, we need to ensure that the pre-condition
of every possible method pointed to by logFile holds when the delegate is invoked. If the
delegate in the example points to method Store() of some object of type USBStick, then the
invocation might result in a pre-condition violation. This is because the IsLoaded condition
of the target object might not hold.

In this thesis we implement a modular verification methodology for Spec# delegates based
on refinement of specification and delegate invariants [15, 11]. The methodology is then
extended to consider object functions pointing to static methods, multiple targets (known
in C# as multicast delegates) and events. We further extend the Spec# language to include

11

12 1 Introduction

Listing 1.1: Introductory example, based on the example provided in [15]

class USBStick {
public bool IsLoaded;

public void Store(object p)
requires p != null;
requires this.IsLoaded;

{ /* Store p */ }
}

delegate void Archiver(object p);

class Client {
public static void Log(Archiver! logFile, string! s)
{ logFile(s); }

}

object functions where the target type is closed during the declaration of the delegate.

1.1 Overview

Chapter 1 introduces the problem this work addresses and the notation conventions
needed for reading this document.

Chapter 2 introduces the background information needed to understand this document.
The chapter is divided in three section. The first sections explains C# delegates and points
out the situations where it is suitable to use them. The second section presents the Spec#
programming system, composed by the Spec# programming language, the Spec# compiler
and Boogie. The subset of BoogiePL needed for this thesis is also introduced. The third
section explains the methodology described in [15]. Readers familiar with these topics can
skip this chapter as it does not introduce new concepts.

Chapter 3 presents how the verification methodology for Spec# delegates can be imple-
mented in the Spec# programming system. The first section explains how delegate contracts
are encoded and translated in BoogiePL. The second section extends the technique for dis-
abling delegates to make it implementable in Spec#. Finally the third sections explains
how frame conditions for delegates can be handled.

Chapter 4 explains the extensions to the approach described in Chapter 3 that we imple-
mented. The first section handles delegates instantiated with static methods. The second
section explains how multicast delegates can be verified; in the first part the four conditions
necessary for ensuring heap stability are described, while in the second part the problems of
disabling multicast delegates is addressed. The third section explains how the verification
of multicast delegates is extended to events. The fourth and last section introduces the new
concept of closed target type delegates: delegates where the type of possible target objects
is defined during the declaration of the delegate.

13

Chapter 5 covers the implementation in the Spec# compiler and Boogie. The first section
explains how the specification information of a source program is encoded in a CIL assembly
and also provides a high level overview of the changes done to the Spec# compiler. The
second section provides information on how Boogie must be extended in order to accept
and translate the new specification information. Finally, the last section introduces runtime
checks and explains how they are implemented.

Chapter 6 summarizes the implementation state and concludes the thesis.

1.2 Notation Conventions

Spec# programs Spec# or C# programs are enclosed in horizontal lines and typeset in
typewriter font, like in the following example:

public class Program {
public static void Main(string args[]) { }

}

Please note that, in general, the examples are not complete: members not strictly relevant
to the context are usually omitted.

Inline statements and expressions, such as Console.WriteLine("Hello, World"), are shown
in typewriter font.

BoogiePL code examples and translations BoogiePL examples and translations are
typeset in typewriter font with numbered lines, like in the following example:

1 % this is a comment
2 assert Heap[d, System.Delegate._target] != null;
3 havoc m;

Sometimes we need to express pseudo-code instruction inside BoogiePL. Such instructions
are typeset in italic font. The code example below means that Boogie will emit the assertion
for each U which is a subtype of T :

1 #foreach U s.t. U <: T
2 assert InvU (pi)

Discussing code Often code contained in examples is discussed in paragraphs. In this
case, code elements, such as Program.Main(), are typeset in italic font.

Formulas and concepts Formulas and concepts not directly expressed in Spec# or
BoogiePL format, such as T <: U or PreD(i0), follow mathematical notation.

Classes and diagrams Symbols in classes and diagrams have the following meaning:

14 1 Introduction

IFunction

1

Subtyping

Aggregation (including cardinality)

Interface Implementation
A owns B,
A and C are peers

A

B

C

Operators and functions We present here a short list of ambiguous or non-standard
operators.

Symbol Language / Context Description
= Spec# assignment operator
== Spec# equality operator
:= BoogiePL assignment operator
= BoogiePL equality operator
= Mathematical equality operator∧

i C(i) Mathematical conjunction of clause C(i) for all i
<: Spec#, BoogiePL, Math. reflexive subtyping operator: U <: T means

that U is equal or is a subtype of T
E[o/n] Spec#, BoogiePL, Math. substitution operator; every occurrence of o in

E is replaced by n.

CHAPTER 2

Background

In this chapter we provide the background information needed to understand this work.
Starting with an explanation of C# delegates, we introduce the Spec# programming system
including the Spec# programming language, the Spec# compiler and Boogie. Finally we
present the verification methodology for Spec# delegates [15] on which this thesis is based.

2.1 C# Delegates

C# delegates are object-oriented type safe function pointers [9]. A delegate declaration
defines a class derived from System.MulticastDelegate. Delegates allow to encapsulate a
reference to one or more methods, known as callable entities, inside a delegate object which
can then be invoked. There are three steps in defining and using delegates: declaration,
instantiation and invocation. The following example:

public delegate void MyDelegate(int i);

declares a delegate named MyDelegate with void return type and a single int argument.
Delegates can be instantiated using the compiler generated constructor which takes the
callable entity of the new delegate as argument. A callable entity is composed by a method
only, in case the method is static, or by an instance and a method of that instance otherwise.
We refer to the instance as target object and to the method as target method of a delegate.
When a delegate is instantiated, the compiler checks that the signature of the delegate is
the same as the method. A delegate can then be invoked like a normal method; arguments
and return types are type-checked in order to ensure type safety.

The simple ”Hello, World!” of delegates of Listings 2.1 shows how the delegate declared
above can be instantiated and used. MyDelegate can point to any method with void return
type and with one int argument. In method Main() a new instance of MyDelegate with
target method MyMethod() is created. The new delegate is then invoked: this leads to a
call of MyMethod.

15

16 2 Background

Listing 2.1: Hello, World!

public delegate void MyDelegate(int i);

class Program {
public static void MyMethod(int i) {

Console.WriteLine("Hello, World: " + i);
}

public static void Main() {
MyDelegate del = new MyDelegate(MyMethod);
del(1);

}
}

Use of Delegates

According to MSDN delegate should be used when:

1. An eventing design pattern is used.

2. It is desirable to encapsulate a static method.

3. The caller has no need access other properties, methods, or interfaces on the object
implementing the method.

4. Easy composition is desired.

5. A class may need more than one implementation of the method.

In general delegates promote encapsulation. The idea behind it is that the client of a
delegate has no need to know the identities of the target object and the target method.
As we will see in later chapters however, there are situations (like in scenario 5) where the
client wants, potentially, full knowledge of the target object and method.

In the next section we will explain how delegates are implemented on .NET.

2.1.1 Delegates in .NET

Delegates are implemented in .NET with a combination of syntactic sugar, compiler gener-
ated code and runtime handling. The general idea behind delegates is the following: for each
delegate declaration, the compiler generates a new class which extends System.MulticastDelegate.
The new class, whose is name is the same as the delegate, defines an Invoke() method
which has the same signature as the delegate. An invocation of a delegate is translated
to an invocation of its Invoke() method; Invoke() however does not define a body. It is
the responsibility of the common language runtime (CLR) to handle the invocation of the
target methods of the delegate. Listings 2.2 shows part of the compiler-generated code of
the previous example,

As shown in the example the actual implementation of the constructor and the Invoke()
method is completely handled at runtime. The instantiation of the delegate is analogous to

17

Listing 2.2: Disassembled version of a program using delegates

public class MyDelegate : System.MulticastDelegate {
[MethodImpl(0, MethodCodeType=MethodCodeType.Runtime)]
public MyDelegate(object @object, IntPtr method);

[MethodImpl(0, MethodCodeType=MethodCodeType.Runtime)]
public void Invoke(int i);

}

class Program {
...
public static void Main() {

MyDelegate del = new MyDelegate(null, (IntPtr)MyMethod);
del.Invoke(1);

}
}

the instantiation of an object (in fact it is an instantiation of an object), while the invocation
is de-sugared to a invocation to Invoke().

When the callable entity of a delegate is a static method the target object is not specified,
e.g. it is set to null.

Finally delegate calls obey dynamic dispatch. This means that if a delegate d has a virtual
method m for some object o of type T as callable entity, the invocation of the delegate
results in a call to the most derived override of m defined in a type U such that U <: T,
where U is the dynamic type of o.

2.1.2 Multicast Delegates

After instantiation, a delegate has a single callable entity, namely the one specified in the
constructor. We refer to delegates having a single callable entity as singlecast delegates.
Delegates of the same type however can be combined to form a new delegate having multiple
callable entities. We refer to delegates having more than one callable entity as multicast
delegates. The distinction however is only conceptual; in practice all delegate is a subtype
of MulticastDelegate and singlecast and multicast delegates are used in the same way.

In the program of Listings 2.3, m is obtained by combining the singlecast delegate s with a
new singlecast delegate; s and m are both of type MyDelegate. An invocation of s results
in an invocation of Target(); an invocation of m however will first invoke Target() and then
invoke AnotherTarget(). A multicast delegate is defined by its invocation list: an array
of singlecast delegates which are invoked by the multicast delegate. This list is obtained
through to the GetInvocationList() method defined in System.Delegate. Let us see how this
works in more detail.

In the following we will only consider the invocation list returned by the public GetInvoca-
tionListMethod(). Delegates also maintain a private invocation list which is different from
the one returned by the method and that we will ignore as it is only part of the specific
implementation. The invocation list of a singlecast delegate only contains the delegate it-
self. Method Delegate Delegate.Combine(Delegate, Delegate) returns a new delegate of the
same type of the delegates passed as argument and with an invocation list obtained by con-

18 2 Background

Listing 2.3: Combining delegates

public delegate void MyDelegate();

class Program {
static void Target() { }
static void AnotherTarget() { }

public static void Main() {
MyDelegate s = new MyDelegate(Target);
MyDelegate m = Delegate.Combine(

singlecast, new MyDelegate(AnotherTarget));
}

}

catenating the invocation lists of the two arguments1. It is also important to mention the
possibility of removing delegates from delegates. As for the case with combining delegates,
the .NET library offers methods like Delegate Delegate.Remove(Delegate, Delegate) which
effect is similar to Degate.Combine but with the difference that the invocation lists are
subtracted instead of concatenated. C# offers some useful syntactic sugar for combining
and removing delegates: the plus (+) operator is replaced by Delegate.Combine(Delegate,
Delegate) while the minus (-) operator is replaced by Delegate.Remove(Delegate, Delegate).
Moreover the plus-equal (+=) and minus-equal (-=) operators are also defined: d1 += d2 is
equivalent to d1 = d1 + d2, while d1 -= d2 is equivalent to d1 = d1 - d2

It is important to note that even though the resulting delegate of Delegate.Combine is a new
instance, the invocation list contains references to the delegates present in the invocation
list of the two arguments; this means that Delegate.Combine creates at most one additional
delegate. The same also applies for Delegate.Remove. To make matters more complicated
the invocation lists are flattened and the same instance of a delegate can be contained more
than once in the invocation list. Consider the following example:

MyDelegate singlecast = new MyDelegate(Target);
MyDelegate multicast1 = Delegate.Combine(singlecast, singlecast);
MyDelegate multicast2 = Delegate.Combine(multicast1, singlecast);

After the execution of the code above we have:

1. singlecast is a singlecast delegate; its invocation list contains a reference to itself;

2. multicast1 is a multicast delegate; its invocation list contains two references to single-
cast ;

3. multicast2 is also a multicast delegate; its invocation list contains three references to
singlecast (not one reference to multicast1 and one reference to singlecast).

Flattening the invocation list and returning a new delegate while combining, ensures that
the effects of combining delegates are limited to the newly created delegate. When querying
a multicast delegate for its target object and method, the result is equivalent to the target
object and method of the last delegate in the invocation list.

1When one of the delegates is null, the other one is returned; this means that Delegate.Combine returns
null in case both arguments are null.

19

Listing 2.4: Observer pattern implemented with events

public delegate void UpdateEventHandler(Observable o);

public class Observable {
public event UpdateEventHandler Changed;
protected void Notify() { if (Changed != null) Changed(this); }

}

public class Observer {
public void Update(Observable o) { }

}

public class Program {
public static void Main() {

Observable target = new Observable();
Observer observer = new Observer();
target.Changed += new UpdateEventHandler(observer.Update);

}
}

2.1.3 Immutability of Delegates

From a client’s perspective a delegate is completely defined by its callable entities. This
means that a singlecast delegate is defined by its target object and method, while a multicast
delegate is defined by its invocation list.

Delegates override the equality operator. Two multicast delegates a and b are equal if their
invocation lists are equal, e.g. if all delegates in the invocation list are equal, the size of
the invocation lists is the same and the order is preserved. Two singlecast delegates in the
invocation list are equal if their target objects and target methods are the same [6]. Always
from a client’s perspective, given a delegate d, d.Target and d.Method cannot be changed.
If we add this information to the fact that every operation that could modify the invocation
list of a delegate, returns a new delegate, we can conclude that from the client’s point of
view delegates are immutable.

2.1.4 Events

An event is a member that enables an object or class to provide notifications [9].

Listings 2.4 shows an example of the Observer pattern implemented with events. The
Changed event declared in Observable, is translated by the compiler in a private field of
type UpdateEventHandler and public methods used to add and remove delegates from this
field. For an observer to register it is sufficient to instantiate a new delegate with an update
method as target, and add it to Changed event using the += operator which is translated
by the compiler to an invocation of the method used to add delegates to the event.

The disassembled version of the example above is shown in Listings 2.5.

20 2 Background

Listing 2.5: Decompiled version of the observer pattern implemented with events

public class Observable {
private UpdateEventHandler Changed;

[MethodImpl(MethodImplOptions.Synchronized)]
public void add_Changed(UpdateEventHandler modopt(NonNullType) value) {

this.Changed = (UpdateEventHandler) Delegate.Combine(this.Changed, value);
}

[MethodImpl(MethodImplOptions.Synchronized)]
public void remove_Changed(UpdateEventHandler value) {

this.Changed = (UpdateEventHandler) Delegate.Remove(this.Changed, value);
}

protected void Notify() {
if (this.Changed != null) {

this.Changed.Invoke(this);
}

}
}

2.2 The Spec# Programming System

The Spec# Programming System is composed by the Spec# programming language, the
Spec# compiler and Boogie. With Spec#, a programmer includes specification information
in the source code. The program correctness, with respect to its specification and the
semantics of the language, is then verified by Boogie.

2.2.1 The Spec# Programming Language

The Spec# [5] programming language is a superset of C#. It allows specifying method
contracts in the form of pre-, post- and frame conditions and type contracts in the form of
invariants. The type system of C# is extended with non-null types and checked exceptions
[5]. Specification information is expressed with a combination of additional syntax and
attributes. The language also includes assert and assume statements and quantifications.

With an object invariant it is possible to define the consistent state for that object. An object
is said to be consistent if its invariant is known to hold. Consistency is defined with respect
to a specific class frame. Consider an object o of type X, where X <: Y <: Object; every
class in the hierarchy can define some invariant. Object o is said to be valid (consistent)
for T if the invariants for all types U , such that T <: U , are satisfied; in the example o is
valid for Y if the invariants defined in Y and Object (trivially true) are satisfied. An object
is fully valid, if it is valid for its dynamic type. In Spec# every object is given an addition
field inv, which stores the most derived class frame for which the object is known to be valid
[3]. The invariant for a class frame T can be temporarily violated if ¬o.inv <: T . Spec#
provides a special block statement that allows to modify the inv field of an object: expose
(o) { S }. Before entering the block, the inv field of o is set to the superclass of T , the
type of o: the object is exposed. Inside the block the invariant defined in T can be violated,
while at the end of the block T ’s invariant is checked and o.inv is set to T . The inv field of
an object can only be modified through an expose statement; this ensures that outside of

21

any expose block, an object is always fully valid. The following program invariant is then
defined:

Program Invariant 1. Object invariants

P1 : (∀o, T · o.inv <: T ⇒ InvT (o))

where InvT is the invariant declared in class T . In order to handle invariants for aggregate
objects, Spec# employs the concept of ownership. An object is allowed to express invariants
for all objects it owns. Ownership requires two additional fields2 given to every object;
o.ownerRef is a reference to the owner of o, while o.ownerFrame is the type of the owner
[13]. The validity of an object is now conditional to the validity of all the objects it owns.
This lead to the following programming invariant:

Program Invariant 2. Ownership

P2 :(∀o, T · o.inv <: T ⇒
(∀p · p.ownerRef = o ∧ p.ownerFrame = T ⇒ p.inv = typeof(p))

Program invariant P2 states that if an object is valid, then all object it owns must also be
valid. With respect to invariants and ownership, we can define the following properties for
objects:

Definition 2.1 (Validity). An object o is valid for class frame T iff o.inv <: T .

Definition 2.2 (Full Validity). An object o is fully valid iff o.inv = typeof(o).

Definition 2.3 (Consistency). An object o is consistent iff o is valid and either it has no
owner or its owner is exposed, e.g. if o.inv = typeof(o) and

o.ownerFrame = PeerGroupP laceholder ∨ ¬o.ownerRef.inv <: o.ownerFrame

PeerGroupP laceholder is used on the ownerFrame field to indicate that the object has
no owner.

Definition 2.4 (Peer-Validity). An object o is peer-valid iff o and all its peers are valid,
e.g. if

o.inv = typeof(o) ∧ (o.ownerFrame = PeerGroupP laceHolder ∨
(∀p · p.owner.Ref = o.ownerRef ∧ p.ownerFrame = o.ownerFrame

⇒ p.inv = typeof(p)))

Definition 2.5 (Peer-Consistency). An object o is peer-consistent if it is peer-valid and
either it has no owner or its owner is exposed, e.g. if

o.inv = typeof(o) ∧ (o.ownerFrame = PeerGroupP laceholder ∨
(¬ o.ownerRef.inv <: o.ownerFrame ∧ (∀p · p.owner.Ref = o.ownerRef∧
p.ownerFrame = o.ownerFrame⇒ p.inv = typeof(p))))

Peer-consistency is an important requirement for arguments of methods. A method, receiv-
ing an object o as argument, needs to know that o is valid; moreover the method could also
modify o. For this reason every non-pure methods has a default pre-condition requiring
peer-consistency of all parameters. If an object is peer-consistent then it is also valid and
its owner is known to be exposed, which allows the object to be changed.

2In the original publication an object is given a single additional owner field whose value is a pair
[object obj, type typ]. In our notation however we choose to remain closer to the actual BoogiePL encoding
of ownership by providing two distinct fields.

22 2 Background

2.2.2 The Spec# Compiler

The Spec# compiler compiles Spec# source files in .NET intermediate language (CIL) and
it is responsible for performing initial static checks including:

• Non-null analysis;

• Checked exceptions;

• Side effects-free specifications;

• Admissible specification.

The compiler’s type checker verifies the usage of non-null types and generates warnings in
case of violations.3 Checked exceptions are verified to ensure that they are actually caught.
Side effects-free specification means that all expressions used for specification are not allowed
to have side effects. This is accomplished by forbidding operators that can modify fields -
like for example the assignment operator - and requiring all methods used in the specification
to be pure. Moreover expressions used in specification must be admissible. As an example,
every target of field access or method calls in invariants must be (recursively) owned by the
object declaring the invariant. It is up to the compiler to check the admissibility of such
expressions.

Additionally the compiler instruments the code for runtime checks. The body of methods is
extended so that violations of pre- and post-conditions result in runtime exceptions. When
entering an expose block an exception is thrown if the object is not exposable and when
leaving it an exception is thrown if the invariant does not hold. Frame conditions are not
checked at runtime because of performance reasons.

2.2.3 Boogie

Boogie is a static program verifier that takes as input the abstract syntax tree (AST)
generated by the Spec# compiler or a compiled CIL library, translates the program in
Boogie [1] programming language (BoogiePL) and finally feeds the translated program to
a theorem prover. As a last step Boogie returns the list of failing conditions. Currently
Boogie uses the Z3 theorem prover [7], but optionally Simplify can be used as well. The
first step in the verification done by Boogie is to obtain the AST of the program to verify.
This is either directly fed to Boogie by the Spec# compiler or is reconstructed from CIL.

A BoogiePL program follows a certain number of transformations [4] which can be summa-
rized in three steps: (1) cutting back edges to obtain a loop-free program, (2) transformation
in passive form and finally (3) weakest-pre-condition computation to obtain the verification
condition that is finally fed to the theorem prover. In this report we focus on the steps
leading to the BoogiePL program and we take the later transformations as granted.

2.2.4 BoogiePL

BoogiePL [8] retains procedures, mutable variables and pre- and post-conditions. It intro-
duces constants, function symbols, axioms and non-deterministic control-flow. A BoogiePL

3Non-null analysis is unsound: there are situations where a variable of a non-null type can be null without
the compiler emitting a warning or error. Please note that is is a bug of the current implementation of
Spec#.

23

program consists of two parts. The first part is a theory used to encode the semantics of
the source language consisting of type declarations, symbol declarations and axioms. The
second is an imperative part used to encode the source program; it consists of global vari-
able declarations, procedure headers and procedure implementations. A procedure header
defines the signature of the procedure and its contract; it is used for verifying callers of
the corresponding Spec# method or to express general modifications of the heap. A proce-
dure implementation contains the translation in BoogiePL of the body of the corresponding
Spec# method; it is used to verify that the implementation of a method respects its speci-
fication.

Data Types BoogiePL has five built-in data types: integers (int), booleans (bool), refer-
ences (ref), type and field names (name) and any (any). Boogie also supports arrays and
user-defined data types. Arrays can be indexed by any type, not only by int.

Commands BoogiePL defines a number of commands; relevant to this report are: assert
and assume, indicating conditions to be checked or used; havoc, which assigns an arbitrary
value to a variable and finally call, used to simulate a procedure call and whose effect is
to assert the pre-condition of the procedure, havoc the heap and finally assume the post-
condition.

Procedures Procedures support in and out parameters, this also allows to encode ref
and out Spec# parameters. Frame conditions are encoded as post-conditions. In Spec#
frame conditions state what the method might change; in BoogiePL the opposite holds and
frame conditions state what the method does not change.

Heap The heap is encoded in BoogiePL as a global, two-dimensional array indexed by a
reference to an object and the name of a field of that object. The array is named Heap and
declared as: var Heap: [ref,<x>name]x. Instance fields access of the form o.f are translated
in Heap[o, T.f] where T is the class where f is declared and T.f is a constant of type name.
Object allocation is encoded using the additional allocated field.

Invariants The Spec# inv field is encoded in BoogiePL using two fields: inv is used for
additive expose, while localinv is used for normal expose.

Fields’ Axioms Properties of fields are encoded in BoogiePL using axioms. axiom In-
cludeInMainFrameConditions(f) indicates that the field is part of the frame condition, while
IncludedInModifiesStar(f) indicates that the field can be changed by a modifies o.* clause;
typeof(o) encodes the type of object o.

Functions Some properties are encoded in BoogiePL using functions. Relevant to this
work are BaseClass(T) which returns the base class of T ; IsHeap(h) indicating whether
array h is a well-formed heap and finally HeapSucc(oldHeap, newHeap) which indicates
whether newHeap is a valid successor of oldHeap.

Listings 2.7 shows the translation of the program of Listings 2.6 in BoogiePL. For simplicity
reason the background theory and other parts of the program are omitted.

24 2 Background

Listing 2.6: A simple class representing a point

public class Point {
[SpecPublic] private int x, y;

invariant x >= 0 && y <= 0;

public void Add(Point! other)
requires other.x > 10;

{
this.x += other.x; this.y += other.y;

}
}

As the example shows, the BoogiePL program starts by defining constants and emitting
axioms describing a theory for a Point. This part ends with Point ’s object invariant. In
the second part the procedure headers and implementations are emitted. Spec# includes
a large number of default pre- and post- conditions which are shown as comment in the
header of Point.Add. Finally comes the actual body of the method. The pre-condition
other$in != null ensures that the assertion other != null holds. Like in CIL, stack variables
are extensively used in the implementation of procedures.

25

Listing 2.7: BoogiePL translation of Listings 2.6

const unique Point.x: <int>name; const unique Point.y: <int>name;
const unique Point: name;
axiom Point <: Point;
axiom $BaseClass(Point) == System.Object &&

AsDirectSubClass(Point, $BaseClass(Point)) == Point;
axiom !$IsImmutable(Point) && $AsMutable(Point) == Point;
axiom (forall $oi: ref, $h: [ref,<x>name]x :: && $h[$oi, $inv] <: Point

==> $h[$oi, Point.x] >= 0 && $h[$oi, Point.y] <= 0);

procedure Point.Add$Point$notnull(this: ref, other$in: ref
where $IsNotNull(other$in, Point));

requires $Heap[other$in, Point.x] > 10;
// target object is peer consistent (omitted)
// other is peer consistent (omitted)
modifies $Heap, $ActivityIndicator;
// frame condition
ensures (forall $o: ref, $f: name :: { $Heap[$o, $f] }

IncludeInMainFrameCondition($f) && ... ==> old($Heap)[$o, $f] == $Heap[$o, $f]);
free ensures $HeapSucc(old($Heap), $Heap);
// inv/localinv change only in blocks (omitted)

implementation Point.Add$Point$notnull(this: ref, other$in: ref)
{

var other: ref, stack0i: int, stack1i: int, temp0: exposeVersionType,
temp1: exposeVersionType;

entry:
other := other$in;
goto block2499;

...
block2635:

assert this != null;
stack0i := $Heap[this, Point.x];
assert other != null;
stack1i := $Heap[other, Point.x];
stack0i := stack0i + stack1i;
assert this != null;
$Heap[this, Point.x] := stack0i;
assert this != null;
stack0i := $Heap[this, Point.y];
assert other != null;
stack1i := $Heap[other, Point.y];
stack0i := stack0i + stack1i;
assert this != null;
$Heap[this, Point.y] := stack0i;
assert !($Heap[this, $inv] <: Point && $Heap[this, $localinv] !=

$BaseClass(Point)) || $Heap[this, Point.x] >= 0;
assert !($Heap[this, $inv] <: Point && $Heap[this, $localinv] !=

$BaseClass(Point)) || $Heap[this, Point.y] <= 0;
assume IsHeap($Heap);
return;

}

26 2 Background

2.3 Previous Work on Static Verification of Delegates

In this section we describe the methodology [15] which is the foundation of this work. We
introduce one concept at the time, by first assuming a simplified situation and then gradually
building up a complete solution.

The issue in the verification of programs using delegates, as we saw in the introduction, is re-
lated to the specification of methods. Before invoking a method, the caller must ensure that
the pre-condition of the method holds, moreover the caller can assume the post-condition of
the callee to hold. It is up to the implementer of a method to make sure that the body of the
method is correct, e.g. that its execution satisfies its post-condition given the assumption
that the pre-condition holds. With delegates this is more difficult because, in principle, the
target method is unknown. In this perspective it is useful to see delegates as methods exe-
cuting a single operation, namely invoking their target. In order for a delegate invocation
to be correct, the pre-condition of the target method must hold before invocation and the
post-condition of the delegate must hold after invocation.

The idea for the verification of delegates is based on two steps: the first step consists in
providing delegates with a specification similar to the one for methods; in the second step
delegate instantiations are checked to verify that the delegate is a refinement of its target
method:

Definition 2.6 (Refinement). The specification of a method m is a refinement of the
specification of a method n (or in shorter form m is a refinement of n) if:

1. The pre-condition of m implies the pre-condition of n, for all possible parameters,
heaps and

2. The conjunction of the pre-condition of m with the post-condition of n implies the
post-condition of m for all possible parameters, return values and pre-state and post-
state heaps.

When the delegate is a refinement of its target method, we can be sure that if the pre-
condition of the delegate holds, so will the pre-condition of the target method, and conversely
if the post-condition of the target method holds after invocation, so will the post-condition
of the delegate.

2.3.1 Contracts For Delegates

Consider the example shown in Listings 2.8. We want to ensure that the delegate invocation
logFile() in the Log() method does not break the pre-condition of its target method. If this
can be proven, then we can assume the call to be correct.

For the time being we ignore the second pre-condition of Store; to prove this program we
can simply add a pre-condition requiring the parameter to be non null to the delegate:

delegate void Archiver(object p);
requires p != null;

This pre-condition can be seen as a usual method pre-condition; the caller must make sure
that the pre-condition of the delegate holds before invoking it and, since this pre-condition
is the same as the one defined in the target method (namely that the parameter is not null),

27

Listing 2.8: A simple USBStick

class USBStick {
public void Store(object p)

requires p != null;
requires IsPeerConsistent(this);

{ /* Store p */ }
}

delegate void Archiver(object p);

class Client {
public static void Log(Archiver! logFile, string! s)

requires IsPeerConsistent(logFile);
{ logFile(s); }

}

at this point we can assume the call to be correct4.

Delegates are provided with pre- and post-conditions as the ones defined for methods but
with the exception that delegate pre- and post-conditions are not allowed to refer to the
state of the target object. The limitation is due to the fact that the client of a delegate is
not concerned with the identity of the object defining the target method which could also
be statically unknown.

The Peer-Consistency Requirement

In the above example we ignored the second pre-condition of the Store method which
requires its target to be peer-consistent. Given the fact that peer-consistency is required
for all non-pure methods, delegates must provide a way to ensure peer-consistency of their
target upon invocation with as less overhead as possible. For this reason delegates and their
targets are set to be peers. The precondition for a delegate invocation requires the delegate
to be peer-consistent; this ensures peer-consistency of the target as well. In the example,
given program invariant P1 we know that logFile is a refinement of Store; moreover since
Log() already requires logFile to be peer-consistent and s is non-null, the pre-condition of
logFile is established. By refinement this implies the pre-condition of Store which allows us
to conclude that the program is correct.

The following program invariant can be stated:

Program Invariant 3. A valid delegate is peer with its target

P3 : (∀o, d • d.target = o ∧ d.inv <: typeof(d)⇒ d.owner = o.owner)

2.3.2 Delegates Invariants

Consider again our USBStick example shown in Listings 2.9, this time with the additional
pre-condition in the Store requiring the stick to be loaded.

This pre-condition clearly depends on the state of the target, yet the client of the delegate,
4As long as Store does not modify existing objects in the heap.

28 2 Background

Listing 2.9: USBStick with pre-condition on the target object

class USBStick {
public bool IsLoaded;

public void Store(object! p)
requires this.IsLoaded;

{ /* Store p */ }
}

delegate void Archiver(object p);

class Client {
public static void Log(Archiver! logFile, string! s)
{ logFile(s); }

}

Log(), does not have any information about the target. The burden of verifying whether
targets of logFile of type USBStick are loaded should not fall on the client of the delegate;
this prevents us from using a normal pre-condition5.

The solution lies in delegating the responsibility to check target-dependent pre-conditions to
the method instantiating the delegate who, in general, is completely aware of the target ob-
ject. The concept of invariant comes to mind. Delegates are allowed to define visibility based
invariants depending on the state of the target object. Delegate invariants can be expressed
with an invariant for T is E clause, where T is a type and E an expression. Invariants
for delegates are de-sugared in the form: invariant (target is T) ==> S[target/((T)Target).
The declaration of Archiver becomes:

delegate void Archiver(object! p);
invariant for USBStick is target.IsLoaded;

This invariant states that when the target of the delegate is of type USBStick, then the
target must be loaded. All delegate invariants are checked during the instantiation of the
delegate and as long as the delegate itself is valid, delegate invariants hold. Delegates in
fact, like every other object, are enhanced with an inv field representing the validity of the
object, hence program invariant P1 holds for delegates as well.

When an object declaring a field mentioned in some delegate invariant is exposed, the
invariant of the delegate could be violated. To ensures that program invariant P1 holds
even in such situations, all objects declaring a field mentioned in a delegate invariant for
some delegate D, are required to also declare a dependent clause on D. Thanks to this
clause, when these objects are exposed it is possible to automatically expose all delegates
they depend upon. This leads to the following program invariant

Program Invariant 4 (Dependency of classes).

P4 :(∀o, d, T,D · d.target = o ∧ d.inv <: D ∧D ∈ dependents(T) ∧
typeof(o) <: T ⇒ o.inv <: T)

5A possible pre-condition for the delegate would be of the form: requires this.target is USBStick

==> ((USBStick)this.taget).IsLoaded.

29

2.3.3 Delegate Subtyping

Consider a situation where a program uses a delegate defined in a library and the target
method has a pre-condition depending on the target object. It would be impossible to
verify the delegate without modifying the library; this would break modularity. To ensure
modularity in delegate invariants the definition of delegates is extended to allow sub-typing:
a delegate is allowed to extend another delegate, provided that the signatures are the same.
Delegate subtypes, like method overrides, are allowed to refine the specification of their base
type: a delegate subtype is allowed to declare additional delegate invariants, provided that
these are compatible with the contract of the base delegate. In the context of the above
example, instead of adding an invariant to Archiver, it is possible to subtype Archiver as
follows:

delegate void USBArchiver(object! p) : Archiver;
invariant for USBStick is target.IsLoaded;

The invariant for USBStick is now defined in the delegate subtype. The instantiation of the
delegate passed to the Log() method becomes:

USBStick stick = new USBStick();
Archiver logFile = new USBArchiver(stick.Store);
Client.Log(logFile, "Hello, World!");

Since at instantiation refinement checks are performed, we can be sure that only US-
BArchiver can be used with Store as target. The new delegate, being a subtype of Archiver
can easily be stored in a variable of the latter type and this allows for complete trans-
parency in the use of delegate subtype with the existing implementation. The new delegate
can in fact be used by the Log() method which is not concerned with the actual type of the
delegate.

Introducing additional invariants is possible because invariants are checked during instan-
tiation and are ensured to hold as long as the delegate object is valid. This shows the dual
role of delegate invariants. With respect to a delegate and its target objects, invariants
can be seen as part of the pre-condition of the delegate; this is necessary to show that the
delegate’s contract is a refinement of its target method contract. With respect to delegates
related by a sub-typing relationship however, delegate invariants are not considered to be
part of the pre-condition, for this reason new invariants can be added in subtypes without
breaking the refinement principle.

2.3.4 Disabling Delegates

The scope of delegate invariants has yet to be explained: can they be broken? And if yes,
how? To better understand the need for violating a delegate invariant, consider the scenario
presented in Listings 2.10. In this example USBStick provides a method for ejecting itself,
namely Eject(); this method violates the delegate invariant without reestablishing it at the
end of the expose block.

As it is the Eject() method cannot be verified, we show this with a counterexample. Suppose
a delegate d of type USBArchiver has been instantiated with an instance o of type USB-
Stick as target object and an instance method of USBStick as target method, for example
Store. Also suppose that o.Eject() is called. As we know the implicit pre-condition for the
invocation of Eject() is for its target object o to be peer-consistent; we also know that o
and d are peers. This means that just after entering the Eject() method o is valid, d is

30 2 Background

Listing 2.10: Breaking a delegate invariant.

class USBStick {
public void Eject()

requires this.IsLoaded;
ensures !this.IsLoaded;

{
expose (this) {

/* Eject the stick */
this.IsLoaded = false;

}
}

}

delegate void USBArchiver(object! p);
invariant when { USBStick; target.IsLoaded };

valid and o’s owner is exposed. In order to violate d ’s invariant we would have to expose it.
However all objects exposed in a method are un-exposed before leaving the method and this
requires their invariants to be satisfied. This implies that even if we exposed d, we would
not be able to satisfy its invariant before leaving Eject().

Ownership Based Disabling

The main problem related to breaking a delegate invariant by changing the value of a field
of an object o, is the existence of valid instances of delegates declaring that invariant and
having o has target. That said, breaking a delegate invariant is possible when we can ensure
that no such instance of a delegate exists. The problem is solved by adding the following
pre-condition to the Eject() method:

requires (∀d • d.target = this⇒ ¬d.inv <: USBArchiver);

This pre-condition states that the Eject() method can only be called when all instances
d of a delegate of type USBArchiver either have a target which is different from this, or
are exposed. In order to be able to satisfy this condition, the methodology introduces a
statement disable (D for o). This statement has the effect of disabling all delegates of
type D with target object o: all such instances are exposed and un-owned. In other words
the execution of the statement disables all delegates d such that d.target = o ∧ d.inv <: D
by setting their invariant to Object and by un-owning them.

When a delegate is disabled, its invariant is no longer ensured to hold. A call to a disabled
delegate could then violate a pre-condition of the target method. For this reason it must be
ensured that a disabled delegate cannot be invoked. The approach described above, directly
complies with this additional requirement. Given the fact that a disabled delegate is always
exposed (e.g. not valid) and that one of the pre-condition for invoking the delegate is for
the delegate to be peer-consistent (peer-consistency requires all objects in the peer-group
to be valid), it is clear that a disabled delegate cannot be invoked.

CHAPTER 3

Implementation of Static Verification for Singlecast Delegates

3.1 Contracts and Subtyping

As described in [15] we provide delegates with pre- and post-conditions allowed to depend
on the arguments of the delegate. By adding pre- and post-conditions to delegates, we are
able to verify target methods which specification does not depend on the state of the target
object. By introducing delegate invariants we are able to verify target methods having pre-
conditions depending on the state of the target and pre- and post-conditions depending on
the arguments.

3.1.1 Encoding and Definition of Contract Elements

In Chapter 2 we mentioned that a delegate invocation is de-sugared in an invocation of its
Invoke() method. For the Spec# implementation of delegates we generate an additional
method in the delegate class: SafeInvoke()1. This method as the same signature as Invoke(),
but additionally it includes specification information. The pre-, post- and frame conditions
of a delegate are in fact copied to its SafeInvoke() method. Given the fact that SafeInvoke()
behaves like any other normal method, Boogie will automatically check the validity of its
pre-condition before a call, and assume its post-condition after the call.

Delegate invariants are encoded as normal object invariant in the delegate class. In a way
similar to [15], we define an admissible delegate invariant as follows:

Definition 3.1 (Admissible Delegate Invariant). An invariant for T declared in or inherited
by a delegate type D is admissible if and only if: (i) its sub-expressions type-check under
the assumption that target is of type T ; (ii) each of the field-access expressions has the

1SafeInvoke() is introduced because Invoke() does not have a body in CIL (the invocation of the target
is performed by the CLR), but an actual executable body is needed for implementing runtime checks. At
runtime SafeInvoke() performs runtime checks and invokes the Invoke() method.

31

32 3 Implementation of Static Verification for Singlecast Delegates

form target.f, where f is a field transitively owned by T and f is not one of the pre-defined
fields inv, ownerRef, ownerFrame, etc.; (iii) D is mentioned in the dependent attribute of
all fields used in the invariant.

Syntax and Naming Conventions

In the original paper, each type having a field mentioned in an invariant of a delegate D
was required to declare a dependency to D. In our approach we follow the current Spec#
implementation by requiring to add a Dependent attribute on fields mentioned in delegate
invariants. The original dependency relationship can still be reconstructed: a type T is
dependent on a delegate D if T declares one or more fields with a Dependent attribute on
D.

We express pre-, post- and frame conditions using the same syntax as for methods. A
delegate invariant is expressed using a invariant when { T; E }, where T is a type and
E is an expression. The identifier target is used in E to refer to a target object of type T.
The following example shows a delegate declaration with an invariant:

delegate void USBArchiver(string! s);
invariant when { USBStick; target.IsLoaded };

In CIL, the internal field storing a reference to the target object of a delegate, is named
target ; in BoogiePL the field is named System.Delegate. target. System.Delegate provides

a public property Target for retrieving the target of a delegate. In CIL this is equivalent
to a call to the get Target method. When translating a program to BoogiePL, we sub-
stitute all occurrence of d.get Target with Heap[d, System.Delegate. target]. In the rest of
this document, when we do not need to explicitly consider the heap, we refer to Heap[d,
System.Delegate. target] as d. target.

So far, when discussing delegate contracts, we referred to pre-, post-, frame conditions
and invariants as single elements. We now need to point out the difference between the
theoretical and the practical approach. Consider the following example:

public void Divide(Point! p, Point! q)
requires q.x != 0;
requires q.y != 0;

The complete pre-condition of the method Divide() is q.x 6= 0 ∧ q.y 6= 0; this precondition
however is encoded in two separate requires clauses. In order to be able to reason about
concepts such as pre-condition, invariants, etc., we need to precisely define them.

Definition 3.2 (Partial Invariant of a Delegate). The partial invariant PartInvD of a
delegate of type D is the conjunction of all condition E for all invariant when { T; E }
clause defined in D.

Definition 3.3 (Invariant of a Delegate). The invariant InvD of a delegate of type D is the
conjunction of all condition E for all invariant when { T; E } clause defined or inherited
by D.

Definition 3.4 (Precondition of a Delegate). The precondition PreD of a delegate of type
D is the conjunction of all condition E for all requires E clause defined or inherited by D.

Definition 3.5 (Post-condition of a Delegate). The post-condition PostD of a delegate of
type D is the conjunction of all condition E for all ensures E clause defined or inherited
by D.

33

The last two definitions also apply to Prem and Postm, the pre- and post-condition of a
method m.

3.1.2 Delegate Instantiation in BoogiePL

We consider an instantiation of a delegate of the form:

d = new D(o.m), where

• d is a variable of type D ;

• o is a possibly null reference to an object of type T ;

• m is the name of an instance method defined in a class U such that T is a subtype
of U ;

• the signature of m is the same as the signature of D.

We first present the pseudo code given in [15], and then discuss how the statement is encoded
in BoogiePL.

1 assert o != null;
2 #foreach T s.t. D ∈ dependents(T)
3 assert o.inv <: T;
4 d := new D;
5 d.target := o; d.owner := o.owner;
6 #foreach E s.t. D <: E
7 assert InvE(d);
8 d.inv := D
9 assert (∀p, h · PreD(d, p, h)⇒ Prem(o, p, h));

10 assert (∀p, r, h, h′ · PreD(d, p, h) ∧ Postm(o, p, r, h, h′)⇒ PostD(d, p, r, h, h′));

Line 1 The first part of a delegate instantiation in BoogiePL is analogous to the instan-
tiation of any other object. In extended format, line 1 is generated as follows:

1 havoc m
2 havoc d;
3 assume !d.allocated && d != null && typeof(d) == D;
4 assume d.owner.ref = d && d.owner.frame = PeerGroupPlaceholder;
5 assert stack0o != null;

We havoc the target method of the delegate because, for the instantiation of the delegate,
its identity is not relevant. The refinement checks explained later in fact ensure that the
delegate is a refinement of the method.

Lines 2-3 At lines 2 and 3 we assert the invariant of all objects the delegate depends on.
In order to achieve this we keep track of a list of dependees for each delegate type; the list
contains all types which are dependent on the delegate. The translation is the following:

1 #foreach T s.t. D ∈ dependents(T)
2 assert typeof(o) <: T ==> o.inv <: T && o.localinv <: T;

34 3 Implementation of Static Verification for Singlecast Delegates

Line 4 The actual call to the constructor at line 4 is also translated like a normal con-
structor call, namely:

1 assert d != null;
2 call D..ctorSystem.ObjectSystem.IntPtr(d, o, m);

The assertion is necessary to ensure that the target object is indeed non-null. Note however
that the constructor call could be omitted; it is maintained in the translation for clarity
reasons only.

Line 5 At line 5 the target object and the owner are assigned. For the actual translation
the owner is modified using the SetOwner procedure, which is already defined in BoogiePL:

1 d.target := o;
2 SetOwner(d, o.owner.ref, o.owner.frame);

Lines 6-7 At lines 6 and 7, the invariant of the delegate is asserted for all its type frames:

1 #foreach E s.t. D <: E
2 assert PartInvE(d)[System.Delegate._target/o];

The assertion is obtained by replacing o to System.Delegate. target in PartInvD.

Line 8 At line 8 the new delegate is set to valid:

1 d.inv := D; d.localinv := typeof(d);

Line 9 The refinement check for the pre-condition must verify that PreD∧InvD ⇒ Prem.
In order to accomplish this we must match the names of all parameters in PreD and Prem.
Moreover the name of the target object in Prem must match the target of InvD. In
refinement checks we refer to pre-state parameters of delegate and method as p0

0, p
0
1, ..., p

0
n,

to the target object as t and to the pre-state heap as h0. We define the pre-, post- conditions
and the invariant used for refinement checks as:

PreDSubst and InvDSubst are obtained from PreD and InvD as follows:

1. Substitute all parameter name with p0
0, p

0
1, ..., p

0
n while maintaining the correct order

2. Substitute all occurrence of this. target in the invariants with t ;

3. Substitute all occurrence of the heap with h0.

PremSubst is obtained from Prem as follows:

1. Substitute all parameter name with p0
0, p

0
1, ..., p

0
n while maintaining the correct order;

2. Substitute all occurrence of this with t ;

3. Transform each clause C where t is mentioned, in an implication IsNotNull(t, T) ==>
C

4. Substitute all occurrence of the heap with h0.

35

The refinement check at line 9 can now be expressed as:

1 assert (forall p0
0, p

0
1, ..., p

0
n, t: ref, h0: [ref,<x>name]x ::

2 IsHeap(h0) &&
3 PreDSubst(t, p0

0, p
0
1, ..., p

0
n, h0) &&

4 InvDSubst(d)
5 ==> PremSubst(t, p00, ..., pn0, h

0));

Line 10 At line 10 post-condition refinement is checked. We must show that PreD ∧
InvD ∧ Postm ⇒ PostD. In addition to the renaming introduced for pre-conditions, we
refer to post-state parameters of delegate and method as p1

0, p
1
1, ..., p

1
n, to the result as r,

and to the post-state heap as h1. We define the post-conditions used for refinement checks
as follows:

PostDSubst is obtained from PostD as follows:

1. Substitute all parameter name with p1
0, p

1
1, ..., p

1
n while maintaining the correct order;

2. Substitute all old(...) such that:

• all occurrence of the heap is substituted with h0;

• all parameter name is substituted with p0
0, p

0
1, ..., p

0
n;

3. Substitute all occurrence of this with t ;

4. Substitute all occurrence of the heap with h1;

5. Substitute all occurrence of result with r.

PostmSubst is obtained from PostM as follows:

1. Substitute all parameter name with p1
0, p

1
1, ..., p

1
n while maintaining the correct order;

2. Substitute all old(...) such that:

• all occurrence of the heap is substituted with h0;

• all parameter name is substituted with p0
0, p

0
1, ..., p

0
n;

3. Substitute all occurrence of this with t ;

4. Transform each clause C where t is mentioned, in an implication IsNotNull(t, T) ==>
C ;

5. Substitute all occurrence of the heap with h1.

6. Substitute all occurrence of result with r.

The refinement check at line 10 is translated as:

1 assert (forall p0
0, p

0
1, ..., p

0
n, p1

0, p
1
1, ..., p

1
n, t: ref, result,

2 h0: [ref,<x>name]x, h1: [ref,<x>name]x ::
3 IsHeap(h0) && IsHeap(h1) &&
4 PreDSubst(t, p0

0, p
0
1, ..., p

0
n, h0) &&

5 InvDSubst(d) &&
6 PostmSubst(p0

0, p
0
1, ..., p

0
n, p1

0, p
1
1, ..., p

1
n, t, r, h0, h1)

7 ==> PostDSubst(p0
0, p

0
1, ..., p

0
n, p1

0, p
1
1, ..., p

1
n, t, r, h0, h1));

36 3 Implementation of Static Verification for Singlecast Delegates

Listing 3.1: Refinement checks

public delegate int IncHandler(int a, int b);
requires a > 0;
requires b < 0;
invariant when { T; !target.K };

public class T {
[Dependent(typeof(IncHandler))]
public bool K;

public int Inc(int aa, int bb)
requires aa >= 0;
requires bb <= 0;
requires !this.K;
ensures result > 0;

{ return 1; }
}

public class Program {
static void Main(string![]! args) {

T o = new T();
IncHandler d = new IncHandler(o.Inc);

}
}

The following example shows how refinement checks look like for the simple delegate in-
stantiation of Listings 3.1:

1 assert (forall p0
0: int, p0

1: int, t: ref, h0: [ref,<x>name]x ::
2 IsHeap(h0) && p0

0 > 0 && p0
1 < 0 && !h0[t, T.K]

3 ==> p0
0 >= 0 && p0

1 <= 0 && !h0[t, T.K]);
4

5 assert (forall p1
0: int, p1

1: int, p0
0: int, p0

1: int,
6 t: ref, h0: [ref,<x>name]x, h1: [ref,<x>name]x, r: int ::
7 IsHeap(h0) && IsHeap(h1) && HeapSucc(h0, h1) &&
8 p0

0 > 0 && p0
1 < 0 && !h0[t, T.K] && r > 0

9 ==> true);

3.1.3 Delegate Invocation in BoogiePL

The precondition of a delegate is directly checked by Boogie before the call to the SafeIn-
voke() method. We consider an invocation of the form:

r = d(p_0, p_1, ..., p_n), where

• d is a possibly null delegate of type D ;

• p 0, p 1, ..., p n is the list of arguments for the invocation, the list typechecks correctly
with respect to the signature of D ;

• the type of r typechecks for an assignment with the return type of D ;

37

T [r = d(p 0, p 1, ..., p n)] =

1 assert d != null;
2 s := call D.SafeInvoke(d, p_0, p_1, ..., p_n);

First we check that the delegate is not equal to null, then the delegate is invoked and
the return value is assigned to a stack variable s representing r. In case the return type
of the delegate is void, the assignment to s does not take place. While processing the
call statement, Boogie will, as for all other methods invocation, assert the precondition of
SafeInvoke(), save a copy of the pre-state heap, executing an havoc of the heap and then
assume the post-condition. In its extended form the invocation as the following format:

1 assert d != null;
2 assert PreD(d, p_0, p_1, ..., p_n, Heap);
3 h := Heap;
4 havoc Heap;
5 havoc s;
6 assume PostD(d, p_0, p_1, ... p_n, Heap);

In this case p 0, p 1, ..., p n represent the actual parameters, result represents the return
value and Heap the heap. Please note that in this case we are not performing substitu-
tions for parameters, return value and heap (while in case of refinement checks we need
substitutions to obtain a match between the specification of the delegate and the one of the
method).

3.1.4 Exposing an Object in BoogiePL

When exposing an object, we have to make sure that all delegates having an invariant on
the object are also exposed. We consider an expose of the form:

expose (o) { S }, where

• o is a reference to some object of type T and T is a direct subclass of U.

• S is a block.

T [expose (o) { S }] =

1 assert o != null;
2 assert o.owner == null || !(o.owner.inv <: o.ownerframe);
3 #foreach D s.t. D ∈ Dependents(T)
4 call UnpackDelegates(o, D);
5 o.localinv := U
6 S;
7 assert (forall p :: o.ownerRef == o && p.ownerFrame == T
8 ==> p.inv == typeof(p) && p.localinv == typeof(p);
9 assert InvT (o);

10 #foreach D s.t. D ∈ Dependents(T)
11 assert (forall d :: IsNotNull(d, D) && d.Target == o &&
12 d.inv == System.Object && d.localinv == typeof(d)
13 ==> InvD(d);
14 #foreach D s.t. D ∈ Dependents(T)
15 call PackDelegates(o, D);
16 o.localinv := typeof(o);

38 3 Implementation of Static Verification for Singlecast Delegates

In the translation the additional instructions, with respect to the normal Spec# expose, are
highlighted. Before exposing an object o, o is required to be non-null and either un-owned
or consistent. After this is verified, we unpack (expose) all delegates having o as target
and declaring an invariant for one or more fields of o. At this the normal expose continues
and the localinv of the object is set to its base class; the body is then executed. After the
execution it is asserted that all objects owned by o are valid, the invariant of o is asserted
and we assert the invariant of all delegates that we previously exposed and we pack them.
At this point the localinv field of the object is set to its type.

Note that even though the translation above refers to expose (o) { S }, the same prin-
ciples are applied for expose (o as T) { S } and the additive versions
additive expose (o) { S } and additive expose (o as T) { S }.

Unpacking and packing delegates was defined in [15] as:

1 #foreach D s.t. D ∈ Dependents(T)
2 let DepD := d | d.target = o ∧ d.inv = D;
3 foreach d ∈ DepD { d.inv := object; }
4 ...
5 #foreach D s.t. D ∈ Dependents(T)
6 foreach d ∈ DepD { d.inv := D }

While translating these pseudo-code in BoogiePL, we realized that creating the set of line
2 and iterating over all its elements as done in lines 3 and 6 is not directly feasible. For
this reason, we took a different approach and used two procedures. The advantage of using
procedures is that we do not need to specify their body - the actual iteration - if we can
specify a sufficiently meaningful post-condition. The idea for the first one, UnpackDelegates,
is to specify in the post-condition that all enabled delegates having o as target are exposed:

1 procedure PackDelegates(o: ref, D: name);
2 modifies Heap;
3 ensures (forall d: ref, F: name :: F != inv || !old(IsNotNull(d, D)) ||
4 !old(Heap[d, System.Delegate._enabled]) ||
5 old(Heap[d, System.Delegate._target] != o) ||
6 !old(Heap[d, inv] == System.Object && Heap[d, localinv] == typeof(d))
7 ==> old(Heap[d, F]) == Heap[d, F]);
8 ensures (forall d: ref :: old(IsNotNull(d, D)) &&
9 old(Heap[d, System.Delegate._enabled]) &&

10 old(Heap[d, System.Delegate._target] == o) &&
11 old(Heap[d, inv] == System.Object &&
12 Heap[d, localinv] == typeof(d)) ==> Heap[d, inv] == typeof(d));
13 free ensures HeapSucc(old(Heap), Heap);

At line 2 we specify that the procedure will modify the heap. We then ensure (3-7) that all
delegates having a target object different from o are not modified. We then ensure (8-12)
that all delegates having o as target are indeed exposed. Finally we ensure that the resulting
heap is a well formed successor of the pre-state heap. The procedure used to pack back the
delegates we previously unpacked, is defined as follows:

1 procedure UnpackDelegates(o: ref, D: name);
2 modifies Heap;
3 ensures (forall d: ref, F: name :: F != inv || !old(IsNotNull(d, D)) ||
4 !old(Heap[d, System.Delegate._enabled]) ||
5 old(Heap[d, System.Delegate._target] != o) ||
6 !old(Heap[d, inv] == typeof(d) && Heap[d, localinv] == typeof(d))
7 ==> old(Heap[d, F]) == Heap[d, F]);

39

8 ensures (forall d: ref :: old(IsNotNull(d, D)) &&
9 old(Heap[d, System.Delegate._enabled]) &&

10 old(Heap[d, System.Delegate._target] == o) &&
11 old(Heap[d, inv] == typeof(d) && Heap[d, localinv] == typeof(d))
12 ==> Heap[d, inv] == System.Object);
13 free ensures HeapSucc(old(Heap), Heap);

This ensures that whenever we potentially have delegates with o as target object and declar-
ing an invariant on o, program invariant P1 is not violated.

3.1.5 Delegate Subtyping in BoogiePL

In BoogiePL we are free to encode delegate sub-typing2 as real class sub-typing. The type
definition axioms in case of sub-typing are obtained as follows:

T [delegate void BaseDel(); delegate void SubDel() : BaseDel;] =

1 axiom BaseClass(BaseDel) == System.MulticastDelegate &&
2 AsDirectSubClass(BaseDel, BaseClass(BaseDel)) == BaseDel;
3 axiom BaseClass(SubDel) == BaseDel &&
4 AsDirectSubClass(SubDel, BaseClass(SubDel)) == SubDel;
5 axiom (forall U: name :: { U <: SubDel } U <: SubDel ==> U == SubDel);

The first axiom expresses the fact that BaseDel is a subclass of MulticastDelegate. The
second axiom expresses the subtype relationship between BaseDel and SubDel. Finally the
last axiom says that there is no class that extends SubDel.

3.2 Disabling Delegates

3.2.1 Ownership Based Disabling

The technique for disabling delegates described in [15] relies on two facts. First a delegate
can only be invoked if it is peer-consistent: its inv field must be set to the type of the
delegate. Second delegates are disabled by setting their inv field to Object and un-owning
them. When translating this approach to a working implementation however, we realized
that the solution is not applicable to Spec# for two main reasons. The first one is a
conceptual issue related to ownership specification and non-nullable types. The second issue
due to the lack of ownership transfer for already owned objects in the current implementation
of Spec#. Even if we could find a solution for implementing ownership transfer, the program
of Listing 3.2 shows that ownership based disabling is not applicable.

Listing 3.2: non null delegate]Disabling a [Rep] non null delegate

public delegate void MyDelegate();
invariant when { A; target.IsEnabled; }

public class A {
[Dependent(typeof(MyDelegate))] public int IsEnabled;

2Note that in C# delegate subtyping is not allowed. In Chapter 5 we explain how we implemented
delegate subtyping in Spec#

40 3 Implementation of Static Verification for Singlecast Delegates

}

public class Ow {
[Rep] MyDelegate! d;
[Rep] A! a;

public void Break() {
expose (this)

disable (a for Del);
}

}

Method Break disables all delegate having a as target. Let us suppose that d has indeed
a as target object. The disable statement would un-own the delegate pointed to by d.
Unfortunately field d must point (by its specification) to a non-null delegate owned by its
declaring object. The contradiction is in this case clear.

In conclusion, the original approach suffers from the fact the enabled state of a delegate is
encoded, together with the validity state, in the inv field of the object. In the next section
we present a solution for handling disabling of delegates which solves the issues described
above by separating the two states.

3.2.2 Disabling Delegates with the Enabled Field

Instead of using inv to express the fact that a delegate is enabled or not, we explicitly add
a new enabled field to the delegate; this effectively allows to separate the two concepts.
The idea is that only delegates with the enabled field set to true can be invoked. In order
to prevent the invocation of disabled delegates, we add a default pre-condition to delegate
contracts: requires this._enabled. This solves the invocation problem. We are left with
defining how a delegate can be disabled.

Let us start by redefining delegate invariants. Up to now the invariant of a delegate type
D was only composed by the user-defined invariant expressed in invariant when { ... }
clauses, and previously name InvD. In order to apply the new approach it is necessary to
extend the user-defined invariant with an additional expression; for this reason from now
on the user-defined part of the invariant will be explicitly referred to by InvUsr

D .

For every delegate type D, the delegate invariant InvD is redefined as

InvD := this. enabled⇒ InvUsr
D

In other words the new invariant states that the enabled field implies the user-defined part
of the invariant. With this new definition the following program invariant is obtained:

Program Invariant 5. The Enabled State

P5 : (∀d, T · d.inv <: T ∧ d. enabled⇒ InvUsr
D (d))

Thanks to the new definition of InvD, program invariant P1 is still valid. Disabling a
delegate is now possible by setting its enabled field to false. By P5 this implies that a
delegate invariant InvUsr

D does not have to hold if the enabled field is set to false; the
disable (o for D) statement sets the enabled field of every delegate of type D with

41

target object o to false. This ensures that (1) disabled delegates can no longer be invoked
and (2) the user-declared invariant InvUsr

D does not need to hold in order for the delegate,
its peers and its owner to be valid. This extension allows disabling delegates and ensures
that disabled delegates cannot be invoked.

Once a delegate has been disabled, it is impossible to enable it again. As explained in [15] it
is in fact still possible to create a new instance of the delegate with same target and method.
To ensure this behavior, the enabled field cannot be directly modified. The field is set to
true during the instantiation of the delegate; this is possible because before instantiation
all the user-declared invariants are checked. Moreover the field can only be set to false by
a call to disable (o for D).

Frame Conditions for Disabling Delegates

One last note about disabling delegates concerns frame conditions. Since System.Delegate. enabled
is not directly accessible by the user, the only way to express the frame condition of a method
that disables delegates would be to use modifies p.**, where p is a peer of the object o of
the disable(o for D) statement. We consider forcing the programmer to use such weak
frame condition for expressing disabling of delegate to be too restrictive. For this reason
System.Delegate. enabled is not included in modifies star and we provide a new modifies
clause: modifies p.***. This clause allows to modify the System.Delegate. enabled field
of all delegates which are peers of p.

3.2.3 Disabling Delegates in BoogiePL

The axiom expressing the invariant of a delegate, which was previously of the form:

1 axiom (forall oi: ref, h: [ref,<x>name]x :: { h[oi, inv] <: Del }
2 IsHeap(h) && h[oi, inv] <: Del &&
3 h[oi, localinv] != BaseClass(Del) ==> InvD(oi));

becomes:

1 axiom (forall oi: ref, h: [ref,<x>name]x :: { h[oi, inv] <: Del }
2 (IsHeap(h) && h[oi, inv] <: Del &&
3 h[oi, localinv] != BaseClass(Del)
4 ==> h[oi, System.Delegate._enabled])

5 ==> InvUsr
D (oi));

In order words when delegate is valid, e.g. d.inv = typeof(d), then either the delegate is
enabled and the user declared part of the invariant holds, or the delegate is disabled. This
said we add a new, default precondition to the SafeInvoke() method as follows:

requires Heap[this, System.Delegate._enabled];

The consequences of the new definition of the invariant axiom and the additional precondi-
tion is that we now that when a delegate can be invoked (the precondition of SafeInvoke()
holds) only if it is enabled. Moreover we also know, thanks to the peer-consistency precon-
dition, that the delegate must also be valid. This implies by program invariant P5 that
user-declared invariant InvDUsr holds.

We provide a disable(o for D) as in the original work. Moreover we also need to provide
a way to query a delegate for its enabled state: d.IsEnabled returns the boolean enabled

42 3 Implementation of Static Verification for Singlecast Delegates

state. Finally we need to provide a way for asserting that there exist no delegate of some
type having some object o as target. This is achieved by invoking
DelegateReferencesHolder.NoActiveDelegate(o, typeof(D)). The method returns a
boolean value, true if no enabled delegate of type D has o as target.

We now describe the translations of these three additional elements.

d.IsEnabled, where d is of type Delegate.

NoActiveDelegate(o, D), disable(o for D), where

• o is a non-null reference to an object

• D is a type

T [d.IsEnabled] =

1 Heap[d, System.Delegate._enabled]

This construct can be used in contracts and expressions. When used in an assertion for
example we obtain the following:

assert Heap[d, System.Delegate._enabled];

T [NoActiveDelegate(o, D)] =

1 (forall d: ref :: IsNotNull(d, D) && Heap[d, System.Delegate._target] == o
2 ==> !Heap[d, System.Delegate._enabled]);

NoActiveDelegate, as with the case for IsEnabled, can be used in contracts and expression.

T [disable(o for D)] =

1 call DisableDelegates(o, D);

where DisableDelegates is defined as:

1 procedure DisableDelegates(o: ref, D: name);
2 requires o != null;
3 requires Heap[o, ownerFrame] == PeerGroupPlaceholder ||
4 !(Heap[Heap[o, ownerRef], inv] <: Heap[o, ownerFrame]) ||
5 Heap[Heap[o, ownerRef], localinv] == BaseClass(Heap[o, ownerFrame]);
6 modifies Heap;
7 ensures (forall d: ref, F: name :: { Heap[d, F] }
8 F != System.Delegate._enabled || old(!IsNotNull(d, D)) ||
9 old(Heap[d, System.Delegate._target] != o)

10 ==> old(Heap[d, F]) == Heap[d, F]);
11 ensures (forall d: ref :: IsNotNull(d, D) &&
12 old(Heap[d, System.Delegate._target] == o)
13 ==> !Heap[d, System.Delegate._enabled]);
14 free ensures HeapSucc(old(Heap), Heap);

With respect to the definition in [15], we use a procedure for implementing the disable
statement. The precondition (2-5) for disabling delegates is for the target to be non-null and
its owner to be exposed. This remains unchanged with respect to the previous definition. At
lines 7-10 we ensure that all delegate with target object different from o are not disabled. At

43

Listing 3.3: A first approach towards frame conditions for delegates

public delegate void MyDelegate()
modifies this.Target.*;

public class A {
[Rep] public MyDelegate! del;
[Rep] public C! c;
[Rep] public D! d;

public void DoSome(D! otherD)
requires del.IsEnabled;
modifies otherD.j;

{
expose (this) {

d.j = 1;
otherD.j = 2;
del();
assert d.j == 1; // this assertion fails
assert otherD.j == 2; // this assertion holds

}
}

}

lines 11-13 we ensure that all delegate having o as target are indeed disabled. We conclude
by ensuring that the post-state heap is a successor of the pre-state heap.

3.3 Frame Conditions

In [15] it was stated that modifies clauses can be de-sugared into post-conditions. However,
given the guidelines for using delegates, this would break the encapsulation property for
delegates.

3.3.1 Encapsulation

Without the ability to provide additional information on the type of the target, the only
possible solution for modifies clauses in delegate is to allow all possible fields of the target
to change. This can be accomplished with a modifies this.Target.* clause. Consider
the following example:

Listing 3.3 shows a scenario where no information about the target of del is known; this
implies that the assertion after the invocation of del will fail even if the target of the delegate
is c. Also note that the assertion concerning otherD, still holds after the invocation. This is
because otherD has a different owner. As shown in Listings 3.4, the situation in the example
can be improved by providing additional information on the type of the target.

The additional requires clause, in combination with the modifies clause of the delegate, en-
sure that only fields of objects of type C are modified by a call to del. The example suggests
that delegates cannot always be loosely coupled if we want to prove useful information in a
program. Leaking some information about the target of the delegate can be considered an

44 3 Implementation of Static Verification for Singlecast Delegates

Listing 3.4: Frame conditions with additional information about the target

public void DoSome()
requires del.IsEnabled;
requires del.Target is C;

{
expose (this) {

d.j = 1;
del();
assert d.j == 1;

}
}

acceptable solution.

3.3.2 The Type of the Target

The question at this point is whether the situation depicted above can be improved. In this
example it would be useful to express a frame condition of the form:

public delegate void MyDelegate()
modifies Target.i;

As a first step in solving this problem, we need to provide additional information in the
modifies clause, so that the type of the target can be checked to ensure that it actually
defines the fields present in the condition. We extend the contract of delegates to include a
special modifies clause for their target objects. The new clause has the form:

modifies when { T; target.P }

where T is a type, and P is a field of T or one of the special placeholders **, * or 0. This
modifies clause is de-sugared into

modifies ((T)Target).P

The additional syntactical information allows us to perform type-checking and ensure that
the field specified in the clause is defined in T.

To solve the second part of the issue - targets limited to specific types - we define a modifies
when clause to be conditional to the type it specifies. In other words modifies when { T; target.P }
means that the target is only allowed to be modified when it is of type T. This allows to
define multiple modifies when clauses for different target types.

The question on what should happen when the type of the target is unknown remain however
open. The situation suggests a default frame condition for delegate targets. The are three
possible options here: we can define that the default behavior to be Target.**, Target.* or
Target.0. Since it is impossible to make this choice for the general case, we allow the user
to specify the default behavior the ModifiesDefault attribute. The attribute takes one of
the three following arguments:

1. [ModifiesDefault(Modifies.Peers)]

2. [ModifiesDefault(Modifies.Target)]

45

3. [ModifiesDefault(Modifies.None)]

The first condition expresses the fact that all fields of all peers of a delegate can change.
The second condition limits the changes to fields of the target object only. This condition
is equivalent to the first one when there is no knowledge about the target object. Finally
the third condition is useful in situations where the programmer requires a delegate to have
no side effects on its target object. When the attribute is omitted, the default value is
Modifies.Target.

With respect to the initial example, the delegate declaration becomes:

ModifiesDefault(Modifies.Target)]
delegate void MyDelegate()

modifies when { C; target.i };

The frame condition can be interpreted like shown below:

delegate void MyDelegate()
modifies (Target is C) ==> ((C)Target).i;
modifies !(Target is C) ==> Target.*;

Please note that in the actual implementation, we cannot de-sugar the default condition in
an additional modifies clause. For this reason we need to keep the ModifiesDefault attribute
and handle it in Boogie.

3.3.3 Subtyping

Spec# does not allow frame conditions to be refined in method overrides (or in interface
implementations). We follow the same convention for normal modifies clauses on the pa-
rameters. With respect to a delegate defined in a library however, the programmer usually
knows more information about possible target objects. Similarly to refinement of invari-
ants in [15], we allow modifies when clauses to be refined in delegate subtypes. The first
point to note is that the frame condition of a delegate must be stronger or equal to the
frame condition of its base delegate; modifies when are propagated to delegate subtypes.
All clauses for a type T can then be overridden by declaring modifies when clauses for T
in the subtype. Finally default frame conditions can be refined as well by declaring the
ModifiesDefault attribute in delegate subtypes.

Consider the following delegate declaration:

[ModifiesDefault(Modifies.None)]
delegate void BaseDel();

modifies when { C; target.* };
modifies when { D; target.j };

When a delegate extending BaseDel has no modifies when clause, the frame condition is
entirely propagated. If the extending delegate however declares additional modifies when
clauses for a type already defined in the base delegate, then the clauses of the base delegate
for that type are not propagated.

delegate void SubDel() : BaseDel;
modifies when { C; target.i };

46 3 Implementation of Static Verification for Singlecast Delegates

In the example above, the complete frame condition of SubDel is:

[ModifiesDefault(Modifies.None)]
delegate void SubDel() : BaseDel;

modifies when { C; target.i };
modifies when { D; target.j };

Finally, as given by the refinement principle, frame conditions cannot be weakened. The
following example is indeed incorrect:

[ModifiesDefault(Modifies.Target)]
delegate void InvalidDel(): BaseDel;

modifies when { D; target.* };

3.3.4 Frame Conditions in BoogiePL

The encoding of frame conditions for modifies clauses on the arguments of delegates follows
the normal encoding for methods. For modifies when clauses however, the translations are
slightly different and need to be defined.

Consider the following example:

public void Foo()
modifies this.i;

The frame condition of Foo is translate in BoogiePL as:

1 ensures (forall o: ref, f: name :: { Heap[o, f] }

2 IncludeInMainFrameCondition(f) && o != null && old(Heap)[o, allocated] &&

3 (old(Heap)[o, ownerFrame] == PeerGroupPlaceholder ||

4 !(old(Heap)[old(Heap)[o, ownerRef], inv] <: old(Heap)[o, ownerFrame]) ||

5 old(Heap)[old(Heap)[o, ownerRef], localinv] == BaseClass(old(Heap)[o, ownerFrame]))

6 && old(o != this || f != C.i)

7 && old(o != this || f != exposeVersion)

8 ==> old(Heap)[o, f] == Heap[o, f]);

Lines 1-5 are standard for all frame conditions and they limit the objects in the quantification
to object whose owner is expose (or are un-owned) and the fields to fields included in modifies
star and in main frame conditions. Lines 7, also standard, allows the expose version of the
object to change while line 8 states that all fields non included in modifies clauses remain
unchanged. The most interesting part for us is given in line 6, where field i of objects of
type C is allowed to be modified. We refer to the condition at line 6 as the modifiesContrib,
that is, the modifies contribution, of modifies this.i for the frame condition of Foo. The
translations defined below are in fact expressed with respect to the normal modifiedContrib
for modifies clauses.

We consider a modifies when clause of the form modifies when { T; target.P } as de-
fined in the previous section.

T [modifies when { T; target.P }] =

1 typeof(Heap[this, System.Delegate._target]) <: T ==> T [modifies target.P]

47

This is valid for single fields, * and **. In case of target.0 no condition is emitted because
that is the default behavior in the BoogiePL frame condition. As an example consider the
following declaration:

[ModifiesDefault(Modifies.None)]
delegate void MyDelegate()

modifies when { C; target.i };

The frame condition of MyDelegate is translated in:

1 ensures (forall o: ref, f: name :: { Heap[o, f] }

2 IncludeInMainFrameCondition(f) && o != null && old(Heap)[o, allocated] &&

3 (old(Heap)[o, ownerFrame] == PeerGroupPlaceholder ||

4 !(old(Heap)[old(Heap)[o, ownerRef], inv] <: old(Heap)[o, ownerFrame]) ||

5 old(Heap)[old(Heap)[o, ownerRef], localinv] == BaseClass(old(Heap)[o, ownerFrame])) &&

6 old(o != Heap[this, System.Delegate._target] ||

7 !(typeof(Heap[this, System.Delegate._target]) <: C) || f != C.i) &&

8 old(o != Heap[this, System.Delegate._target] || f != exposeVersion)

9 ==> old(Heap)[o, f] == Heap[o, f]);

The modifies contribution of lines 6 and 7 is indeed the translation of a normal modifies
clause with the addition of the implication for the target type. In fact:

1 old(o != Heap[this, System.Delegate._target] ||
2 !(typeof(Heap[this, System.Delegate._target]) <: C) || f != C.i)

is equivalent to:

1 old(typeof(Heap[this, System.Delegate._target]) <: C ==>
2 o != Heap[this, System.Delegate._target] || f != C.i)

Default Frame Conditions

Default clauses also behave in a similar manner:

T [ModifiesDefault.Q] =

1 #forall Ti s.t. Ti is the type of at least one modifies when clause
2 (!(typeof(Heap[this, System.Delegate._target]) <: T0) &&
3 !(typeof(Heap[this, System.Delegate._target]) <: T1) && · · ·
4 !(typeof(Heap[this, System.Delegate._target]) <: Tn))
5 ==> T [modifies target.P]

Where Q is Modifies.Peers or Modifies.Target and P is the corresponding modifies
contribution of respectively Target.** or Target.*.

Refinement of Frame Conditions

We implemented refinement checks for frame conditions during the instantiation of new del-
egates. With respect to the translation of d = new D(o.m) we add the following assertions:

1 assert (forall p0
0, p

0
1, ..., p

0
n, o: ref, f: name, t: ref , h: [ref,<x>name]x, ::

2 IsHeap(h)
3 ==> ModifiesContrib_D(p0

0, p
0
1, ..., p

0
n, o, f, t, h)

48 3 Implementation of Static Verification for Singlecast Delegates

4 ==> ModifiesContrib_m(p0
0, p

0
1, ..., p

0
n, o, f, t, h));

5 #foreach E s.t. E <: D
6 assert (forall p0

0, p
0
1, ..., p

0
n, o: ref, f: name, t: ref , h: [ref,<x>name]x, ::

7 IsHeap(h)
8 ==> ModifiesContrib_E(p0

0, p
0
1, ..., p

0
n, o, f, t, h)

9 ==> ModifiesContrib_D(p0
0, p

0
1, ..., p

0
n, o, f, t, h));

where p0
0, p

0
1, ..., p

0
n are the parameters, o and f iterate over all possible objects and fields, t

represents the target object and h the heap.

These assertions are obtained by removing the redundant parts in the frame conditions of
delegates and target methods; this allows to have a simplified (but still sufficient) proof
obligation. At lines 1-4 we verify that the set of all fields possibly modified according to the
frame condition of the delegate, includes the set of all fields possibly modified by the frame
condition of the target method. At lines 5-9 we perform refinement checks to verify if the
frame condition of a delegate, is indeed a subset of the frame condition of its base delegate.

ModifesContribD is obtained from the modifies contribution of the frame condition of the
delegate as follows:

1. Substitute all parameter name with p0
0, p

0
1, ..., p

0
n while maintaining the correct order;

2. Substitute all occurrence of Heap[this, System.Delegate. target] with t ;

3. Substitute all occurrence of Heap with h.

ModifiesContribm is obtained from the modifies contribution of the frame condition of the
target method as follows:

1. Substitute all parameter name with p0
0, p

0
1, ..., p

0
n while maintaining the correct order;

2. Substitute all occurrence of this with t ;

3. Substitute all occurrence of Heap with h.

4. Add !(typeof(t) <: T) where necessary in order to match the modifies contribution of
the delegate.

For the example in Listing 3.5 the following refinement checks are generated:

1 assert (forall o: ref, f: name, i: int, h: [ref,<x>name]x, t: ref ::
2 IsHeap(h)
3 ==> old(o != t || !(typeof(t) <: A) || f != A.i)
4 ==> old(o != t || !(typeof(t) <: A) || f != A.i));
5 assert (forall o: ref, f: name, i: int, h: [ref,<x>name]x, t: ref ::
6 IsHeap(h)
7 ==> old(o != t || !(typeof(t) <: DeclType(f)) || !(typeof(t) <: A)
8 || !IncludedInModifiesStar(f))
9 ==> old(o != t || !(typeof(t) <: A) || f != A.i));

49

Listing 3.5: Refinement checks for frame conditions

[ModifiesDefault(Modifies.None)]
delegate void BaseDel();

modifies when { A; target.* };

delegate void SubDel() : BaseDel;
modifies when { A; target.i };

public class A {
public int i;
public void Foo(B! b)

modifies this.i;
{ }

}

50 3 Implementation of Static Verification for Singlecast Delegates

CHAPTER 4

Extensions

In Chapter 3 we analyzed the implementation of the verification methodology for singlecast
delegates with a target object. Delegates however are not limited to this and our approach
needs to consider delegates instantiated with static methods, multicast delegates and events
as well.

4.1 Delegates with Static Methods

The verification of delegates instantiated with static methods requires less overhead than
the verification of normal delegates: delegate invariants are omitted as there is no target
object.

We examine the situation where a static method has a pre-condition on the (static) state of
a class. In Listings 4.1 a delegate is used in combination with the factory pattern. The idea
is that an instance of ProductCreator allows creating new products. This delegate points to
one of the creation methods of Factory and the pre-condition for these methods is for the
factory to be able to create products in the first place: Factory.CanCreateProducts. As the
example shows, it is possible to directly express the pre-condition of the target method in
the pre-condition of the delegate. With instance target methods, such pre-condition could
not be stated because, in order to characterize an object, both the type of the object and
a reference to the object itself are needed. With delegates the reference is available but
the type information is missing. In case of static methods however the type information
is implicit and no reference is needed. This allows us to express pre-conditions on static
members.

One last question remains open in terms of modularity. By stating the requirement on the
static target directly in the delegate, it becomes impossible to reuse a delegate defined in a
library in other situations. For this reason a possible extension to the current methodology
consists in allowing delegates (and delegate subtypes) to declare static invariants [14]. The
definition of the delegate in the example above would become:

51

52 4 Extensions

Listing 4.1: Static pre-conditions

delegate IProduct ProductCreator(ProductInfo info);
requires Factory.CanCreateProducts;

class Factory {
public static bool CanCreateProducts;
private static FactoryState state;

public static IProduct CreateConsumableProduct(ProductInfo info)
requires Factory.CanCreateProducts;

{
IProduct product;
/* create a product based on state and info */
return product;

}
}

delegate IProduct FactoryProductCreator(ProductInfo info)
: ProductCreator;
invariant when { Factory; Factory.CanCreateProducts };

Note that in the current implementation is it already possible to declare static delegate
invariants. However, due to the current state of implementation of static invariants in
Spec#, using static delegate invariants is not sound.

4.1.1 Instantiation of Delegates with Static Methods in BoogiePL

We consider an instantiation of a delegate of the form:

d = new D(m), where

• d is a variable of type D;

• o is a possibly null reference to an object of type T ;

• m is the name of a static method.

T [d = new D(m)] =

1 havoc m;
2 havoc d;
3 assume !d.allocated && d != null && typeof(d) == D;
4 assume d.owner.ref = d && d.owner.frame = PeerGroupPlaceholder;
5 assert d != null;
6 call D..ctorSystem.ObjectSystem.IntPtr(d, null, m);
7 d.inv := D; d.localinv := typeof(d);
8 assert (forall p0

0, p
0
1, ..., p

0
n, h0, : [ref,<x>name]x ::

9 IsHeap(h0) &&
10 PreDSubst(p0

0, p
0
1, ..., p

0
n, h0)

11 ==> PreMSubst(p00, ..., pn0, h));

53

12 assert (forall p0
0, p

0
1, ..., p

0
n, p1

0, p
1
1, ..., p

1
n, result,

13 h: [ref,<x>name]x, h^1: [ref,<x>name]x ::
14 IsHeap(h0) && IsHeap(h1) &&
15 PreDSubst(p0

0, p
0
1, ..., p

0
n, h0) &&

16 PostMSubst(p0
0, p

0
1, ..., p

0
n, p1

0, p
1
1, ..., p

1
n, r, h0, h1)

17 ==> PostDSubst(p0
0, p

0
1, ..., p

0
n, p1

0, p
1
1, ..., p

1
n, r, h0, h1));

The instantiation of a delegate with a static method is a subset of the instantiation of a
normal delegate. Statements and assertion concerning the target object are, in fact, omitted.
Refinement checks are also modified so that they do not consider the target object.

4.2 Multicast Delegates

Multicast delegates are more complex to handle with respect to singlecast delegates. Con-
sider that a single invocation of a multicast delegate (a call to the SafeInvoke() method)
results in the sequential invocation of all its targets. Given this behavior there are a number
of situations that could go wrong. We start the discussion by considering the conditions a
multicast delegate must always satisfy. Once this base concepts are clear, we discuss how a
multicast delegate is encoded, how the enabled state of a multicast delegate is defined and
how a multicast delegate is disabled.

4.2.1 Stability requirements

A first, general, observation is that a post-condition must hold when the pre-condition is
valid; this must remain true even in case of multiple targets.

Listing 4.2: Post-conditions of multicast delegates

delegate void AddHandler(ref int i)
requires true;
ensures i == old(i) + 1;

public abstract void Add(ref int i);
requires true;
ensures i == old(i) + 1;

Consider the example in Listing 4.2; method Add() is used as target for delegate AddHandler.
Everything works fine when we have a singlecast delegate, but think about the situation
where an instance d of AddHanlder is a multicast delegate with method Add() twice in the
invocation list. We could start by invoking d as follows: int i = 0; d(ref i);

The first call to Add() increments i by one, we obtain i = 1 ; the second call in the invocation
list also increments i by 1 and we obtain i = 2 : from the perspective of the caller of d, the
invocation does not respect the contract: the pre-condition is respected but, given an initial
value of 0 we obtain 2, which does not respect the post-condition of the delegate. From this
example we can extrapolate the first necessary condition for multicast delegates:

Condition 4.1 (External Stability). The post-condition of a multicast delegate must remain
valid after any number of invocations of its target methods. This ensures that the post-
condition of the multicast delegate is satisfied.

The second concern with multicast delegates is to ensure that the pre-condition remains

54 4 Extensions

Listing 4.3: Pre-conditions of multicast delegates

delegate void DivisionHandler(ref int i);
requires i > 0;
ensures i <= old(i);

public abstract void Divide(ref int i);
requires i > 0;
ensures i <= old(i);

satisfied in between calls to the targets in the invocation list.

Consider the example in Listing 4.3. Let us say, for example, that Divide() returns the result
of the integer division by 2 of the argument; let us also imagine that, once again, a delegate
d of type DivisionHandler is a multicast delegate containing multiple times Divide(). We
start by invoking d with 2, after the first call i = 1, after the second call i = 0, the third
call fails because of a pre-condition violation. The second condition states the following:

Condition 4.2 (Internal Stability). The post-condition of a multicast delegate must imply
its pre-condition. This ensures that every call to a target method leaves the pre-condition
valid.

These two conditions are sufficient to ensure correctness with respect to pre- and post-
conditions, but what about delegate invariants? We already know that a delegate invariant
holds at invocation when the pre-condition of the delegate is satisfied. Similar to Condition
4.2, we must now also ensure that the invariant holds after the invocation of one or more
targets. This leads to the third necessary condition:

Condition 4.3 (Stability of Invariants). All methods in the invocation list of a multicast
delegate must be enabled before its invocation and its invariant cannot be violated by any of
the methods in its invocation list.

The last condition is related to peer-consistency. Remember that we still need the delegate
and its target to be peers so that when the target is invoked we know that its owner
is exposed. This remains valid for multicast delegates as well and leads to the following
condition:

Condition 4.4 (Stability of Ownership). The owner of any delegate (and target object)
present in the invocation list of a multicast delegate is not allowed to change during the
invocation of the multicast delegate.

We call these four conditions the stability requirements of a multicast delegate; the term
indicates that for a multicast invocation to be correct, heap and parameters must remain
stable with respect to pre- and post-conditions of the delegate. We claim that these condi-
tions are sufficient to ensure the correct execution of a multicast delegate.

4.2.2 Encoding Multicast Delegates

The conditions expressed above allow us to encode a multicast delegate in the same exact
way as a singlecast delegate, at least as long as disabling is ignored. Since the conditions
ensure that any number of invocations of possible target methods respect the specification of
the delegate, we can in fact ignore the invocation list. The situation however becomes more

55

complex when disabling in taken into consideration. We start by describing the approach
we implemented for multicast delegates; we then explain how this could be extended to
increase the information about a multicast delegate.

Current Approach

The current approach consists in reducing a multicast delegate to singlecast. For invoca-
tion, if the multicast delegate respects the four stability conditions described above, this
is not a problem; but what about disabling? Consider a multicast delegate m containing,
in its invocation list, two singlecast delegates pointing to a.Foo and b.Bar respectively.
When the two singlecast delegates are combined in m we require them to be both enabled.
This ensures that m is enabled as well. We specify the target object of m to be either
a or b: this is done with a postcondition for the Delegate.Combine method of the form:
ensures result.Target == a || result.Target == b.

The question is now what happens when a delegate, say a, is disabled by a disable (a for D)
statement, translated in BoogiePL in a call to DisableDelegates. Since the theorem prover
cannot show that the target of m is different from a, the enabled state of m becomes
unknown. This means that both of the following assertion will fail:

assert m.IsEnabled;
assert !m.IsEnabled;

Now let us consider this from the point of view of an invocation of m. Since m contains a
delegate which is not enabled, the result we need to achieve is for the pre-condition of m to
fail. Remember that m.SafeInvoke(), requires m to be enabled; since it is now impossible
to prove that m is enabled, the pre-condition of the method will fail. So even though we
cannot prove that m is, in fact, not enabled, we still have a sound system.

The specification of Delegate.Combine() is given below:

public static Delegate Combine (System.Delegate a, System.Delegate b);
requires ((object)a) != null && ((object)b) != null ==>

(Owner.None(a) && Owner.None(b)) || Owner.Same(a, b);
requires ((object)a) != null && ((object)b) != null ==>

((object)a.GetType()) == ((object)b.GetType());
requires ((object)a) != null ==> a.IsEnabled;
requires ((object)b) != null ==> b.IsEnabled;
ensures ((object)a) == null && ((object)b) == null ==>

((object)result) == null;
ensures ((object)a) == null && ((object)b) != null ==>

((object)result) == (object)b;
ensures ((object)a) != null && ((object)b) == null ==>

((object)result) == (object)a;
ensures ((object)a) != null && ((object)b) != null ==>

result != null &&
((object)result.GetType()) == ((object)a.GetType()) &&
((object)result.GetType()) == ((object)b.GetType()) &&
(Owner.None(a) && Owner.None(b)

==> Owner.None(result)) &&
(Owner.Same(a, b)

==> Owner.Same(result, a) && Owner.Same(result, b));

56 4 Extensions

The first two requires clauses state that the arguments must be peers (or have no owner)
and be of the same type. We then require both delegates to be enabled. The method
ensures that if one of the delegates is null, then the other is returned. In case they are both
non-null, then the resulting delegate is peer with the arguments and its type is the same.

The drawback of the current approach is that any disable (o for D) statement disables
all multicast delegates of type D which are peers of o, even if their invocation list does not
contain any singlecast delegate with target object o. The advantage, on the other side, is
that this approach requires a minimum amount of specification from the user and allows
multicast delegates to be handled like singlecast delegates.

In the next two sections we show how these limitations can be overcome. Please note that
the two approaches described below are currently not implemented.

Extension 1: Keeping Track of the Targets

The compromise between expressive power and compact specification might lead us to
require a more fine grained solution for multicast delegates. The first extension consists in
keeping track of all targets of a multicast delegate. This can be accomplished by extending
System.Delegate with the additional field object[]! Targets. In order to handle this additional
specification we extend the Construct() and Delegate.Combine() methods by adding the
following specification:

public Del! Construct(object @object, IntPtr method)
ensures object != null ==> result.Target == object &&

result.Targets.Length == 1 && result.Targets[0] == object;
ensures object == null ==> result.Target == null &&

result.Target.Length == 0;
...

public static Delegate Combine(Delegate a, Delegate b)
ensures ((object)a) != null && ((object)b) != null ==>

result.Targets.Length == a.Targets.Length + b.Targets.Length &&
forall { int i in (0:a.Targets.Length);

result.Targets[i] == a.Targets[i] } &&
forall { int j in (a.Targets.Length:b.Targets.Length);

result.Targets[j] == b.Targets[j-a.Targets.Length] };
...

The Construct() method ensures that the Targets array of the resulting delegate contains a
single object, namely the target of the delegate. Combine(), on the other side, ensures that
the Targets of the new delegate are the concatenation of the targets of the two arguments.

This approach is more fine grained with respect to what presented before but still its expres-
sive power is limited. It is insufficient in fact to specify the equality operator for multicast
delegates which requires to keep track of target objects and methods.

As additional pre-condition for the disable statement disable (o for D) we require all
multicast delegates not to have o in their Targets array. This allows us to keep the same
semantics for disabling delegates that we used in the previous chapter. In order to ensure
that no delegate contains o in their Targets, we add a new statement remove (o for D)
which, for each multicast delegate m, does the following: if the invocation list of m contains
at least one delegate with target object different from o, then all delegates with target object
o are removed from the invocation list. Otherwise m is disabled. The new pre-condition for

57

disable and the new remove statement ensure that program invariant P5 holds throughout
the execution of the program.

Extension 2: Keeping Track of the Invocation List

This last approach requires the largest amount of specification, but also makes it possible
to specify equality. The idea is to model the complete invocation list of a delegate as shown
the following specification:

public Delegate![]! GetInvocationList();

public static operator == (Delegate a, Delegate b)

ensures ((object)a) != null && ((object)b) != null &&

a.Target == b.Target && a._methodPtr == b._methodPtr <==> result;

public Del! Construct(object @object, IntPtr method)

ensures object != null ==> result.GetInvocationList().Length == 1 &&

result.GetInvocationList()[0] == result &&

((object)result.GetInvocationList()[0]) == ((object)result);

...

public static Delegate Combine(Delegate a, Delegate b)

ensures ((object)a) != null && ((object)b) != null ==>

result.GetInvocationList().Length == a.GetInvocationList().Length +

b.GetInvocationList().Length &&

forall { int i in (0:a.GetInvocationList().Length);

result.GetInvocationList()[i] == a.GetInvocationList()[i] } &&

forall { int j in (a.GetInvocationList().Length:b.GetInvocationList().Length);

result.GetInvocationList()[j] ==

b.GetInvocationList()[j-a.GetInvocationList().Length] } &&

forall { int i in (0:a.GetInvocationList().Length);

((object)result.GetInvocationList()[i]) ==

((object)a.GetInvocationList()[i]) } &&

forall { int j in (a.GetInvocationList().Length:b.GetInvocationList().Length);

((object)result.GetInvocationList()[j]) ==

((object)b.GetInvocationList()[j-a.GetInvocationList().Length]) };

...

public static operator == (MulticastDelegate a, MulticastDelegate b)

ensures ((object)a) != null && ((object)b) != null &&

a.GetInvocationList().Length == b.GetInvocationList().Length &&

forall { int i in (0:a.GetInvocationList().Length);

((Delegate)a.GetInvocationList()[i]) ==

((Delegate)b.GetInvocationList()[i]) } <==> result;

Equality for singlecast and multicast delegates is defined according to the semantics provided
in [6]. Construct() ensures that the only delegate in the invocation list of the resulting dele-
gate is the new delegate itself. Similarly to the previous approach, Combine() concatenates
the invocation lists of the two arguments.

Thanks to the additional information given by the invocation list, with this approach we can
also have a more fine grained solution for disabling delegates. We defined the enabled state
of a delegate as the conjunction of all enabled states of the delegates in its invocation list.
The disable (o for D) statement remains unchanged from the definition in Chapter 3.
Thanks to the new definition of the enabled state for multicast delegates, program invariant
P5 is ensured to hold throughout the execution of the program.

58 4 Extensions

Implementation Issues

The are a certain number of issues preventing us from specifying multicast delegate using
the second and third approach.

No Reference Comparison Newly allocated objects cannot be compared by reference
in specification or pure methods. This limitation prevents us from specifying Construct()
and Combine() in the third approach. For Construct(), the solution is to inject the post-
condition as an assume statement after the construction of the delegate. For Combine()
the problem is different. In the quantifications we are not comparing newly allocated ob-
jects: the array itself returned by result.GetInvocationList() is a new object indeed, but the
elements of the array we are actually comparing are not. The admissibility checker of the
Spec# compiler should be extended in order to allow such comparisons.

Array Concatenation Regarding the specification of targets and invocation lists as ar-
rays, the theorem prover seems unable to verify the properties needed for disabling delegates.
The details regarding this issue are explained in a bug report (see Appendix E.6, page 105).

4.2.3 Combining Delegates in BoogiePL

Previously in this chapter we analyzed the four requirements necessary for a safe invocation
of multicast delegates. In order to satisfy stability Conditions 4.1 and 4.2, we add two
new assertions before any call to Delegate.Combine1. The assertions verify that the post-
condition implies the pre-condition and that the post-condition remains valid after any
number of invocations of target methods. We consider a call of the form:

r = Delegate.Combine(a, b), where a and b are of type D.

T [r = Delegate.Combine(a, b)] =

1 r := call Delegate.Combine(a, b);
2 assert PreD(p0

0, p
0
1, ..., p

0
n, h0) && PostD(p0

0, p
0
1, ..., p

0
n, p1

0, p
1
1, ..., p

1
n, h0, h1)

3 ==> PreD(p1
0, p

1
1, ..., p

1
n, h1)

4 assert PreD(p0
0, p

0
1, ..., p

0
n, h0) && PostD(p0

0, p
0
1, ..., p

0
n, p1

0, p
1
1, ..., p

1
n, r1, h0, h1) &&

5 PostD(p1
0, p

1
1, ..., p

1
n, p2

0, p
2
1, ..., p

2
n, r2, h1, h2)

6 ==> PostD(p0
0, p

0
1, ..., p

0
n, p2

0, p
2
1, ..., p

2
n, r2, h0, h2)

In the first assertion p0
i represent a parameter in the pre-state, p1

i a parameter in the post-
state, h0 the pre-state heap and h1 the post-state heap. This verifies that the pre-condition
of the delegate still holds after a call. By induction it can be shown that when this condition
is true, the pre-condition holds after any number of calls.

The second assertion verifies that the post-condition remains valid after any number of
invocations. In this case p0

i represent a parameter before the invocation, p1
i after a first

invocation, p2
i after a second invocation and the same for r1, r2, h0, h1, h2. On the left hand

side, the formula starts by verifying that the pre-condition holds before the first invocation
and that the post-condition holds afterwards. At this point, by the previous assertion,
we know that the pre-condition for the second invocation also holds and we require the

1As a simplification in fact we consider Delegate.Combine(Delegate, Delegate) to be the only method
able to create new multicast delegates. In reality there are also other methods which can achieve this; our
methodology can be extended to such methods as well.

59

post-condition after the second invocation to hold as well. We then require the left hand
side to imply that the post-condition is valid across two invocations; this is accomplished
by verifying the post-condition using parameters and heap before the first invocation as
pre-state, and parameters and heap after the second invocation as post-state. In this it
is possible to show that if the assertion holds, then the post-condition remains valid, with
respect to the initial pre-condition, after any number of calls.

To better understand these requirements, let us consider, once again the two examples
shown previously:

delegate void AddHandler(ref int i)
ensures i == old(i) + 1;

We have:

(true ∧ i1 = i0 + 1 ∧ i2 = i1 + 1⇒ i2 = i0 + 1)⇒ ⊥

Which, in fact, does not hold. The second example was:

delegate void DivisionHandler(ref int i);
requires i > 0;
ensures i <= old(i);

We have:

(i0 > 0 ∧ i1 6 i0 ⇒ i1 > 0)⇒ ⊥

In this case as well the implication does not hold. We now consider an example with return
value:

delegate int IncrementOneHandler(int i)
ensures result == old(i) + 1;

We have:

(true ∧ r1 = i0 + 1 ∧ r2 = i1 + 1⇒ r2 = i0 + 1)⇒ ⊥

Finally we consider a correct example:

delegate void IncrementHandler(ref int i)
requires i > 0;
ensures i > old(i);

We have:

i0 > 0 ∧ i1 > i0 ⇒ i1 > 0
i0 > 0 ∧ i1 > i0 ∧ i2 > i1 ⇒ i2 > i0

In this case both implication can be proven, we deduce that with respect to the first two
requirements, the example is indeed correct.

Condition 4.3 states that the enabled state of a delegate possibly included in the invocation
list, cannot be changed. In order to ensure this condition we prevent methods used as
targets for delegates from defining frame conditions of the form modifies o.***. As seen
in Chapter 3, this particular frame condition is the only possibility for expressing the fact
that a method disables delegates. By preventing its use in targets of delegates, we can
ensure that a delegate can never disable any other delegate.

60 4 Extensions

Listing 4.4: Disabling delegates in a target of a delegate

public class C {
[Dependent(typeof(Del))] public bool Var;

public void Foo()
modifies this.Var;

{ disable (this for Del); }
}

Listing 4.5: Subtyping and generics

public static void Foo(List<A> l) {
l.Add(new A());

}

public static void Bar() {
List l = new List();
Foo(l);
foreach (B b in l) { ... }

}

Consider the example shown in Listing 4.4, where method Foo is target for some delegate
of type Del. As it is defined in the example, Foo would fail the frame condition checks. In
fact the disable statement in its body, modifies the enabled field of all delegates which are
peers with this. On the other side, if we were to add a modifies this.*** to Foo, then
any instantiation of a delegate having Foo as target would fail.

Finally Condition 4.4 is ensured by the fact that in Spec# ownership transfer for already
owned objects is not allowed.

4.2.4 Subtyping and Multicast Delegates

To conclude the section about multicast delegates, it is useful to point out the idea behind
the new subtyping relations and type rules in general. In principle the type rules for dele-
gates subtypes are the same as for normal subtypes: nominal type rules. Using structural
type rules for delegates in Spec# is an alternative that has been considered but discarded
as it does not follow the C# standard.

The most important situation to consider is related to multicast delegates. Multicast del-
egates define an invocation list of delegates of a specific type. With generics, upcasting
some type T<U> to T<V> can lead to problems. Consider the C# example in Listing 4.5,
where B extends A.

This situation is clearly wrong because in the list of generic type B, an element of type A
could be inserted. For this reason upcasting some type T<U> to T<V> is never allowed,
not even when U extends V. A similar scenario would in principle also be possible with
delegates, it suffices to take the previous example and consider the invocation list; an
example is shown in Listing 4.6.

Delegates, however are immutable from the client’s perspective. When method Foo() com-

61

Listing 4.6: Delegate subtyping with multicast delegates

public static void Foo(BaseDel! d) {
d += new Del(...);

}

public static void Bar() {
SubDel d = new SubFel(...);
Foo(d);
d();

}

bines delegates, it is in fact creating a new multicast delegate and it is not modifying its
argument. If we do not consider reflection, which is not part of the verification anyway, in
Spec# is it impossible for a client to extend the invocation list of a delegate. This allows
us to define delegate upcasting as a valid operation.

4.3 Events

In the background chapter we saw that an event is nothing else than syntactic sugar trans-
lated in one private delegate and two public methods for adding and removing delegates.
In order to extend the methodology to events, is suffices to apply the same principles to the
delegate generated by the event. In reality there is a small additional element that we need
to consider. In order to be able to verify events, we must have some information about the
owner of the event, that is, the owner of the underlying delegate. Finally the pre-condition
for adding delegates to events must imply the pre-condition of Delegate.Combine. The
specification of the compiler-generated methods for a rep event MyEvent of type MyEven-
tHandler in class MyClass is as follows:

public void add_MyEvent(MyEventHandler! value)
requires Owner.Is(value, this, typeof(MyClass);
requires value.IsEnabled;

public void remove_MyEvent(MyEventHandler! value)
requires Owner.Is(value, this, typeof(MyClass);

For peer events Owner.Is is replaced with Owner.Same.

Finally, in order to meet the following pre-condition of Delegate.Combine():

requires ((object)a) != null && ((object)b) != null ==>
((object)a.GetType()) == ((object)b.GetType());

The following assume statement is injected before combining the event with the argument
in the add method:

1 assume Heap[this, MyClass.MyEvent] != null && value != null
2 ==> TypeObject(typeof(Heap[this, MyClass.MyEvent])) ==
3 TypeObject(typeof(value));

62 4 Extensions

Listing 4.7: GUI programming with Events

public delegate void Click

public class Gui : Form
{

private Button button1;
private Button button2;

public Gui() : base() {
button1 = new Button();
button1.MouseDown += new MouseEventHandler(this.Button1_click);
button2 = new Button();
button2.MouseDown += new MouseEventHandler(this.Button2_click);
/* init the form by placing the buttons */

}

private void Button1_Click(object sender, MouseEventArgs e) { /* ... */ }

private void Button2_Click(object sender, MouseEventArgs e) { /* ... */ }
}

4.3.1 Ownership and Events

Even though the extension of the methodology to events does not require additional con-
cepts, events expose the current limitations of the ownership approach of Spec#.

In Listings 4.7 we have a simple form called Gui with two buttons: button1 and button2.
When one of these buttons is clicked, the corresponding handler method is called through
the MouseDown event of class Button. Let us analyze how this example can be verified.
We know that a delegate and its target must be peers; in the example, considering button1
only, this means that an instance g of Gui and g.button1.MouseDown must be peers. There
are three possibilities for the corresponding ownership tree.

g button1 mouseDowna)

g

button1

b) mouseDown

g

button1c) mouseDown

Figure 4.1: Owneship trees for a GUI with events

The first approach, Figure 4.1 a, is straightforward but has a big disadvantage: Gui cannot
express invariants on the state of the button. A possible invariant would be for the button to

63

be enabled only in specific circumstances. In practice this first topology forces all elements
of a user interface to be peers 2 which makes expressing invariants in general impossible. The
second approach, Figure 4.1 b, allows Gui to express invariants on button1. Unfortunately
this design is not applicable. Remember, in fact, that in principle we expect the class
declaring an event to be responsible for its invocation as with the example of the observer
pattern. If the class is owned by the event, then it becomes impossible for any of its non
pure methods 3 to invoke it. With respect to the example above let us suppose that we
have a method m of an instance button1 of class Button who is responsible for invoking
MouseDown. In m we know that the owner of button1, MouseDown, is exposed. Now
the pre-condition for the invocation of MouseDown is for the owner of MouseDown to be
exposed and for MouseDown itself to be valid. Since this condition cannot be met, the
invocation becomes impossible. In the third approach, Figure 4.1 c), the button owns the
Gui. This solves the problem of consistency at invocation but it is easy to see that this
scenario becomes impossible with two buttons.

Excluding scenarios two and three we are left with only the first scenario: the flattening of
the ownership tree. In this scenario there is an additional problem that we need to consider.
As seen in the previous paragraph, the owner of button1 must be exposed before button1
can invoke the event. The question now is: who is responsible for this operation? This is a
general issue that has yet to be solved for ownership and external input. The same problem
in fact reappears whenever we have actions which originate outside our program; user’s
input, networking, and timers. As this topic outside the context of this thesis, we leave the
problem of verifying events in combination with external input open. The conclusion about
verification of events is that it is an adaptation of the verification of multicast delegates and
at the current state of Spec# it is not possible to verify events connected to external input.

4.4 Closed Target Type Delegates

Closed target type (CTT) delegates are a new form of delegate we introduced in this work.
The idea of CTT delegates is to close the type T of the target object during the declaration
of a delegate. This implies that only methods of instances of T can be used as targets for
that delegate. Before going into details on how CTT delegates are implemented and used,
we argue why CTT delegates are useful.

4.4.1 Pre-, Post-Conditions and Invariants

The methodology introduced so far, composed by delegate pre- and post-conditions, delegate
invariants and delegate subtyping, allows verifying a broad variety of delegate uses. In
general the client of a delegate is not concerned about the target of the delegate; we refer
to these scenarios as loosely coupled. There are situations however where some information
must be known about the target, an example is for a method to have a pre-condition
depending on the state of its target object. Delegate invariants allow coping with such
situations. There are however tightly coupled cases where a pre-condition depends on both
the state of the target and the arguments, or a post-condition depends on the return value,
the argument, and the target’s state. In such situations delegate invariants are insufficient.
We might argue that when the relationship between a delegate and its target is so strong,
then the delegate approach is wrong and interfaces should be used instead. Consider however
a scenario where a class offers multiple implementations for the same function and the

2All elements with a registered event.
3The situation might work with pure methods only, but this is not realistic.

64 4 Extensions

Listing 4.8: Vector operations with CTT delegates

public delegate Vector! VectorOperation (Vector! other);

class Vector {
[Rep] private float[]! elements;
[Peer] public VectorOperation Operation;
public int Length;

invariant this.Length == elements.Count;

public Vector! Sum(Vector! that)
requires this.Length == that.Length;
ensures result.Length == this.Length;

{
/* return the componentwise sum */

}

public Vector! CrossProduct(Vector! that)
requires this.Length == that.Length;
ensures result.Length == this.Length;

{
/* return the crossproduct */

}
}

implementation to be used depends on the state of the target; a delegate can be used to
point to the implementation that is used at a specific moment. This is a tightly coupled
scenario which our methodology should allow to handle.

We propose and implement an extension to normal delegates allowing to close the type of
the target. Closing the target’s type permits to express more information and allows to
verify scenarios that could not be handled before. Let us present this extension with an
example.

The example of Listings 4.8 shows a partial implementation of a vector (as we could find
in a mathematical library). The idea behind this particular implementation is that a client
of a Vector v, performs some operation using v and some other vector in order to obtain a
new one, but it is not responsible for deciding which exact operation must be performed.
An example for such situation is a class responsible for drawing on screen the result of the
operation; while drawing we are not interested in whether the operation is a sum or cross
product. The requirement for all such operation is for both vectors to be of the same length.
Moreover all operations ensure that the length of the resulting vector is also the same. How
can this simple scenario be verified? We need to express a pre-condition and a post-condition
both depending on the state of the target object and the state of the argument. A requires
clause is not sufficient because in principle a delegate does not know about the identity of
the target object while an invariant is also not enough, in fact it cannot use the arguments.

Finally, delegate invariants allow to express pre-conditions on the state of the target object.
However invariants are a much stronger construct than pre-conditions. A pre-condition must
be showed to hold only before an invocation of the method which is declaring it; an invariant
on the other side, must hold whenever the object is valid. By expressing pre-conditions of
a method as delegate invariants, we actually force those pre-conditions to hold whenever

65

there are enabled delegates with the corresponding object as target: a requirement which
is stronger than the pre-condition itself. Even though this approach ensures modularity, we
believe that in certain situations a less demanding solution would be useful.

4.4.2 Tightly Coupled Delegates

The idea is for the delegate declaration to specify the type of the target object. Once
the type of the target is known, it becomes possible to express the information that was
previously contained in invariants directly in the pre-condition of the delegate. Moreover
with closed target types we can also express pre- and post-conditions depending on both
the state of the target object and the arguments. The previous example can be rewritten
as:

public delegate<Vector> Vector! VectorOperation (Vector! other);
requires this.Target.Length == other.Length;
ensures result.Length == this.Target.Length;

Note the additional <Vector> after the delegate keyword. We can close the target type T
at declaration by specifying the class or interface for which the delegate is closed by adding
<T> after the delegate keyword.

In the previous sections we explained that with normal delegates, a pre-condition could not
depend on the state of the target because of the lack of information about its type. CTT
delegates solve this problem by providing full knowledge about the target.

In CTT delegates we do not allow delegate invariants. Moreover CTT delegates do not
accept static methods as those methods do not have a target object. Target type dependent
frame conditions are also forbidden because they can be replaced by normal modifies clauses.

4.4.3 CTT Delegates and Subtyping

Even though it would be possible to allow subtyping for CTT delegates, we decided not
to allow this feature. Subtyping could be allowed for modularity reasons, but the idea of
CTT delegate is to allow handling tightly coupled situations and not having a generalized
and modular system. For this reason it is our belief that subtyping in CTT delegates
would introduce additional complexity for the programmer which would be, in practice,
seldom practical. It is still possible to extend the methodology to allow subtyping in CTT
delegates4. In this case the type of the target can be further restricted, e.g. a CTT delegate
subtype with a base delegate for type T is allowed to close the target for a type U which is
a subtype of T. Moreover it would also be possible for a CTT delegate to extend a normal
delegate.

4.4.4 CTT Delegates in BoogiePL

At the BoogiePL level, CTT delegates are handled like normal delegates but with the only
difference that the SafeInvoke() method does not require the delegate to be enabled (as there
are no invariants declared in the delegate). The enabled field is still part of the delegate

4Like in the case of normal delegates, subtyping and upcasting CTT delegates would be sound: the
invocation list of a particular instance of a multicast delegate cannot be changed. For this reason the
upcasting issues that are present with generics do not apply in case of CTT delegates.

66 4 Extensions

since it is defined in System.Delegate, but remains ignored. Concerning the specification of
a delegate, since invariants are missing but the target type is known, the contract is handled
as in normal pre-, post- and frame conditions.

CHAPTER 5

Implementation and Runtime Checks

In this chapter we explain how the methodology described in Chapters 3 and 4, is imple-
mented in the Spec# programming system. There are three levels where this implementa-
tion happens. First, the compiler has be changed in order to accept new syntax and typing
rules. Second, the specification information is translated in CIL while preserving its full
meaning and keeping CIL valid. Third, Boogie has been adapted so that the specification
of CIL can be translated to BoogiePL.

5.1 From SSC to CIL

5.1.1 Delegate Instantiation

During compilation, every call to a constructor of a delegate is replaced with a call to
the static Construct() method generated by the compiler. As we will see later in this
chapter, this is necessary for performing runtime checks. An instantiation of the form
Del d = new Del(a.Foo) is translated in Del d = Del.Construct(a, (IntPtr)a.Foo).

5.1.2 Contracts for delegates

Contracts for delegates are encoded, during compilation, in DelegateContract, part of the
DelegateNode class in the compiler. A DelegateContract specifies a list of pre-conditions,
post-conditions, frame conditions and invariants. It is a merging of a method contract
(pre-, post-, frame conditions) and a type contract (invariants). The method contract
part of the delegate contract is copied to the contract of the SafeInvoke() method and
discarded during the compilation process. This allows us to handle specification information
for delegates in the same way as for methods and classes. Specifically pre-, post- and
frame conditions are serialized in the Requires, Ensures, and respectively Modifies attributes

67

68 5 Implementation and Runtime Checks

of method SafeInvoke(), while invariants are serialized in the Invariant attribute of the
corresponding delegate class.

During compilation delegate invariants of the form invariant when { T, E }, where T
is a type and E is a boolean expression, are stored in the DelegateInvariant class and the
expression E is modified to obtain E’ such that E’ = E[target/((T)this.get Target)]. In
other words all instances of the special identifier target are replaced with an expression
which typecasts a call to the get Target method of System.Delegate to type T. For each
delegate invariant, E’ is obtained and copied to a new class invariant for the corresponding
delegate class. These new invariants are then serialized like normal invariants.

The definition of an admissible delegate invariant (see Definition 3.1, page 31) is verified
by the compiler. The correctness of (i) is ensured by setting the type of target to T and
using a restricted scope. In fact the special identifier target in an invariant is set during
compilation to T. Conditions (ii) and (iii) are also verified during compilation by checker
and admissibility checker.

5.1.3 Delegate Subtyping

Delegate subtyping is a new concept which was not previously known in neither C# nor
Spec#. In [15] it was stated that delegates subtypes are only a specification construct and
that they do not affect program execution; even though this is true for static verification, in
order be able to implement runtime checks we need to provide a notion of delegate subtypes
for execution. The first idea with delegate subtyping would be to directly encode the subtype
relation in the class generated for a delegate by the compiler. Unfortunately these classes
are sealed: unsealing them should allow to extend them. Even though this is possible from
a compilation perspective, the .NET common language runtime (CLR) requires all delegate
classes to be sealed. This requires us to find a different approach for handling delegate
subtypes.

Instead of encoding delegate subtyping as normal class subtyping, we extend DelegateNode
with an additional BaseDelegate field. This field keeps a reference to the type of the delegate
we are extending. We then continue to treat the delegate as before, with the addition that
we perform checks to verify that the signature of a delegate is identical to the signature
of its base delegate. The problem arises when we want to upcast a delegate d of type T
to U, where T is a delegate subtype of U. We achieve this by wrapping the delegate d to
be upcasted in a new instance of a delegate of type U, which has d as target object and
d.SafeInvoke() as target method.

Delegate upcasting follows the format described in the example below:

delegate void BaseDel();
delegate void SubDel() : BaseDel;

public static void Main() {
SubDel s = new SubDel(...);
BaseDel d = s;

}

The example is translated during compilation as follows:

public static void Main() {
SubDel s = new SubDel(...);
BaseDel d = new BaseDel(s.Invoke);

69

}

or, considering the replacement of constructors with the Construct() method:

public static void Main() {
SubDel s = SubDel.Construct(...)
BaseDel d = BaseDel.Construct(s, (IntPtr)s.Invoke);

}

There is still the open question of the opposite operation: downcasting. Given the fact that
we expect downcasting operations to be less frequent than upcasting, we do not allow for a
direct cast. The programmer however is still free to extract the subtype delegate:

public static void Main() {
SubDel s = new SubDel(...);
BaseDel d = new BaseDel(s.Invoke);
s = d.Target as SubDel;

}

In order to implement delegate subtyping as normal class subtyping we would have to
either modify the .NET CLR or largely modify the typesystem and typechecking of the
compiler. Neither option is feasible in the context of this thesis; however we believe the
pseudo-subtyping as described above to be sufficient for effectively using delegates in verified
programs.

Delegate subtype information is finally encoded in a BaseDelegate attribute of the corre-
sponding delegate class. The following example shows how this is achieved:

[BaseDelegate(typeof(BaseDel))]
public sealed class SubDel {

...
}

Inheritance of Specification

For subtyping, the compiler performs the following checks:

1. A delegate subtype is not allowed to define additional requires clauses because of the
refinement principle. This means that all requires clauses are completely inherited
from its base delegate;

2. A delegate subtype can define additional ensures clauses;

3. A delegate subtype can define additional modifies when clauses, but its is not allowed
to define additional modifies clauses;

4. A delegate subtype can define additional delegate invariants;

With respect to the first rule, following the refinement principle it should be possible for a
delegate to weaken the pre-condition of its base delegate. However in our implementation
we decided to follow the current Spec# overriding rules for methods by directly inheriting
the precondition. The same reasoning also applies for forbidding the strengthening of the
normal frame condition.

70 5 Implementation and Runtime Checks

5.1.4 Disabling Delegates

In order to implement the disabling of delegates as described in Chapter 3, we need the
ability to:

1. Maintain information about the enabled state of a delegate;

2. Disable delegates of a certain type and with a specific target object;

3. Query delegates with regard to their enabled state;

4. Assert that no delegate of a certain type and with a specific target object is enabled.

In order to accomplish this, we add to the Microsoft.Contracts namespace a static class
named DelegateReferencesHolder. This class is responsible for providing the four require-
ments described above and also for performing some of the runtime checks explained later
in this chapter.

Class DelegateReferencesHolder provides the following private member:

private static Dictionary<object, List<WeakReference>> references

and the following public methods:

public static void Disable(object! o, Type! t);
public static bool IsEnabled(Delegate d);
public static bool NoActiveDelegate(object! o, Type! t);

The dictionary references is responsible for internally maintaining the enabled state of a
delegate; Disable() allows to disable a delegate; IsEnabled() uses the information contained
in references to return the enabled state of a delegate, NoActiveDelegate() returns whether
there are enabled delegates of type t with o as target. The information regarding disabling
delegates is completely encoded in calls to the three methods described above. To make it
easier for the programmer to use this information we also provide the following syntactic
sugar.

Disabling a delegate disable (o for T), where o is a non null object and T is a type
expression is translated into DelegateReferencesHolder.Disable(o, T).

Getting the enabled state of a delegate d.IsEnabled where d is a delegate is trans-
lated into DelegateReferenceHolder.IsEnabled(d).

5.1.5 Frame Conditions

For target type dependent frame conditions, modifies when clauses are translated back to
normal modifies clauses. During compilation when parsing a modifies when clause, we
create a new ModifiesWhen object that we add to the delegate contract. As with the case
of delegate invariants, later in the compilation the expression E of a ModifiesWhen clause
is transformed in E’ such that E’ = E[target/((T)this.get Target)] ; E’ is then added as
normal modifies clause to the SafeInvoke() method. When the clause is serialized in the

71

Modifies attribute, we add the type of the target as additional parameters to the attribute.
This allows us to easily distinguish modifies when clauses from normal modifies clauses.

All modifies clauses are serialized in the Modifies attribute. Spec# already handles this as
follow: if the clause is of the form o.f, where o is a reference and f is a field, then the corre-
sponding expression E’ will be of the form ref o.f. If the clause is of the form o.**, o.* or o.0,
then E’ is a method call to respectively Guard.ModifiesPeers(o), Guard.ModifiesObject(o)
or Guard.ModifiesNone(o). We extend this approach by allowing clauses of the form o.***
which are encoded as Guard.ModifiesEnabled(o).

5.1.6 CTT Delegates

Concerning closed target type delegates, the target type is kept is a field of DelegateNode.
The idea with CTT delegates is that we only need to worry about pre-, post- and frame
conditions by continuing to use the SafeInvoke() and Construct() methods. With respect
to normal delegates however, we do not have invariants and modifies when clauses; besides
this, handling CTT delegates is similar to normal delegates.

Since the type of the target is know, the Target property, or more specifically the get Target()
method, is hidden by a new definition where the return type is non-null and equal to the
target type. Moreover the Construct() method takes a non-null reference to a target object
of a type equal to the target type instead of a possibly null reference to a target of type
object.

5.1.7 Compiler Architecture

As introduced above, new classes are defined in order to maintain the additional information
during compilation. Figure 5.1 shows an extract of the class diagram for the nodes of the
compiler.

TypeNode TypeContract

DelegateNode

TypeBasedModi�esClause

DelegateContract

DelegateInvariant

Method

IFunction

IFunction *

*

1

Figure 5.1: Modifications of the class diagram of the ssc compiler.

DelegateContract is used to handle the contract before it is copied to the contract of SafeIn-
voke(), TypeBasedModifiesClause and DelegateInvariant represent respectively a modifies
when clause and an invariant when clause. Moreover, in order to reduce code duplication,
DelegateNode and Method now implement the common interface IFunction. This allows

72 5 Implementation and Runtime Checks

handling the compilation of parts which are common between methods and delegates with
less overhead.

The compiler pipeline is structured as shown in Figure 5.2. In general terms, our extension
of the compiler includes the following parts: Parser is modified in order to accept the new
syntax for delegates and delegate specification; in Looker the additional members of the
compiler-generated class for a delegate are defined and added. Checker is then responsible
for verifying delegate subtyping and for serializing parts of the contract, while the Nor-
malizer executes the remaining serialization tasks. Finally, we extend Analyzer in order to
perform non-null analysis in delegate contracts.

Parser Looker Resolver Checker

NormalizerInstrumenterAnalyzerOptimizer

ssc

IL

contracts
serialization

additional members
in delegates

new
syntax

subtyping checks,
contracts serialization

non-null analysis
in contracts

Figure 5.2: Compilation pipeline of ssc.

5.2 Boogie

In this brief section we point out the important topics regarding the deserialization of the
contracts encoded in CIL and attributes in Boogie. An extract of the Boogie pipeline is
shown is Figure 5.3.

PreTranslator TranslatorIL Theorem Prover OK/
Fail

BPL

Figure 5.3: Boogie pipeline.

The CIL is first deserialized back to an AST, then the PreTranslator prepares the AST
for the actual translation phase where the AST is translated in BoogiePL. Finally the
theorem prover verifies the program and, if it finds problems, outputs the list of failing
conditions. During pre-translation we go through the AST and remove all wrappings
of delegates inserted for subtyping and we replace all calls to the Construct() method
with the original constructor. This means that after pre-translation, statements such as
Del d = new Subdel(a.Foo) are possible.

73

Listing 5.1: Public interface of DelegateReferencesHolder

public static class DelegateReferencesHolder {
public static bool IsEnabled(Delegate);
public static void Disable(object, Type);
public static void NoActiveDelegate(object, Type);
public static void Add(Delegate);
public static void Remove(Delegate);
public static void CheckEnabled(Delegate);
public static void CleanDeadReferences(Delegate);
public static void StartWriting([Delayed] object);
public static void EndWriting([Delayed] object);

}

This modified version would fail the typechecking phase of the compilation but fortunately
with Boogie we do not have to worry about this and we can safely treat delegate subtypes
as actual class subtype. Moreover, as the example shows, while removing the wrapping we
also re-introduce the normal constructor by removing the call to the Construct() method
which is only used for runtime checks. Note that Construct() is also replaced when the
constructor is not wrapped.

Since the actual behavior of the bodies of delegate methods is defined at runtime and is not
relevant for the static verification, all bodies of delegates classes are not emitted. In fact we
trust the actual implementation to be correct.

In order to be able to correctly emit target type dependent frame conditions, we analyze
all expressions of the frame conditions of SafeInvoke() methods. We a type cast is found
in one of the expressions, then we know that the condition corresponds to a modifies when
clause. This allows us to emit the correct BoogiePL expressions.

5.3 Runtime Checks

The Spec# programming system implements both static and runtime checks. The same
is also valid for the verification of delegates. There are some limitations however that one
must consider for runtime checks; first performance must be considered; second some checks
are impossible because of the lack of a theorem prover. Because of this limitations, runtime
checks are usually a subset of static checks.

5.3.1 Building Blocks

In the previous chapters we already introduced the helper class DelegateReferencesHolder
and some of the new methods generated by the compiler for delegate classes. In this section
we re-examine these additional elements in the perspective of runtime checks. Listings 5.1
shows the public interface of DelegateReferencesHolder.

DelegateReferencesHolder is responsible for handling all information regarding the enabled
state of delegates. In order to do this, it keeps a dictionary which associates objects with
delegates having that object as target. The values of the dictionary are lists of weak ref-
erences to delegates. It is necessary to use weak references because otherwise the garbage
collector would never free the memory used by non reachable delegates. Add(Delegate)

74 5 Implementation and Runtime Checks

Listing 5.2: Partial interface of a compiler generated class for delegate LogFunction

delegate int LogFunction(string s);
requires s != null;
ensures result < s.Length
invariant when { Console; target.IsVisible };

public sealed class LogFunction : System.MulticastDelegate {
~LogFunction();
static LogFunction();
public LogFunction! Construct(Object, IntPtr);
public void SafeInvoke(String);
public bool SpecSharp::CheckInvariant(Boolean);
private static Guard SpecSharp::GetFrameGuard(object o);
public Guard! SpecSharp::FrameGuard { get; }
private void SpecSharp::InitGuardSet();

}

and Remove(Delegate) are used to add and remove delegated from the dictionary. Check-
Enabled(Delegate) is used to throw an exception in case the delegate passed as argument
is not enabled; d.IsEnabled is translated in a call to IsEnabled(d); disable (o for D)
is translated in a call to Disable(o, typeof(D)); NoActiveDelegate checks that no delegate
with specified target and type is enabled; CleanDeadReferences(Delegate) is used when a
delegate is garbage collected. The class also provides two helpers for implementing checks
when objects are exposed: the last two methods are used when exposing objects to pack
and unpack delegates.

Listings 5.2 shows the class diagram of a delegate class of the console example of Chapter
3. SafeInvoke() and Construct() were already introduced in previous chapters. For runtime
checks SafeInvoke() replaces Invoke() and checks that the delegate contract is respected,
Construct() is used instead of the normal constructor. Finally the destructor is used in
combination with DelegateReferencesHolder. The last four methods are also present in
other classes. Their purpose is to maintain runtime information equivalent to the validity
of objects in Boogie. A Guard is used to prevent race conditions, and enforce ownership
and invariants. SpecSharp::CheckInvariant() contains runtime checks for checking delegate
invariants; GetFrameGuard() and FrameGuard return the Guard of the delegate and finally
InitGuardSet() is used for initialization.

5.3.2 Implementing Runtime Checks

Instantiation

All calls to a delegate constructor are replaced with calls to the static Construct() method.
The body of Construct() has the format shown in Listings 5.3.

The method first instantiates a new delegate of the corresponding type using the normal
delegate constructor. The second instruction is used to force the Guard of the delegate
to be instantiated. This also forces the delegate invariant to be checked. The delegate
is then added to DelegateReferencesHolder and finally the post-condition stating that the
new delegate is enabled is checked. The post-condition check is wrapped in the standard

75

Listing 5.3: Construct() method.

[NoDefaultContract]
public static D modopt(NonNullType) Construct(object @object,

IntPtr method) {
D d = new D(object, method);
Guard g = d.SpecSharp::FrameGuard;
DelegateReferencesHolder.Add(d);
try {

if (!DelegateReferencesHolder.IsEnabled(d)) {
throw new EnsuresException("Postcondition violated from

method D.Construct(System.Object,System.IntPtr)’");
}

}
catch (ContractMarkerException) { throw; }
return d;

}

try-catch (ContractMarkerException) which indicates to Boogie that the content of the try
block has to be ignored for static checks.

Invocation

The Spec# compiler already de-sugares statements of the form d(p0, p1, ..., pn), where d
is a delegate, in d.Invoke(p0, p1, ..., pn); for our static and runtime checks, we desugar
it in d.SafeInvoke(p0, p1, ..., pn). The specification of SafeInvoke() contains all requires,
modifies and ensures clauses of the original delegate. Moreover the body of SafeInvoke()
also executes runtime checks, as shown in Figure 5.4

The body of SafeInvoke() is composed by three parts. The first part checks the enabled
state of the delegate and the other user-defined pre-conditions. The second part invokes
the delegate. The last part checks the user-defined post-condition and returns the result (if
any). The implementation of the SafeInvoke() method for LogFunction is shown in Figure
5.5

Exposing an object

When exposing an object, runtime checks are performed first to check whether the object
is exposable, and then to check the object’s invariant at the end of the block. As seen in
Chapter 3, delegates having the exposee as target must also be exposed. In the following
example object c, which is target for l is exposed:

Console c = new Console();
c.IsVisible = true;
LogFunction l = new LogFunction(c.WriteLine);
expose (c)
{
}

The example is transformed during compilation as shown in Listings 5.6.

76 5 Implementation and Runtime Checks

Listing 5.4: SafeInvoke() method.

[Requires("[System.Compiler.Runtime]Microsoft.Contracts.
DelegateReferencesHolder::IsEnabled([mscorlib]System.Delegate){this}"),
/* other pre- and post-conditions */]

public R SafeInvoke(P0 p0, ..., PN pn) {
try {

if (!DelegateReferencesHolder.IsEnabled(this))
{

throw new RequiresException("Precondition violated from
method ’D.SafeInvoke(P0, ..., PN)’");

}
/* other pre-condition checks */
}
catch (ContractMarkerException) { throw; }
int return value = this(p0, ... pn);
try { /* post-condition checks */ }
catch (ContractMarkerException) { throw; }
return return value;

}

Listing 5.5: SafeInvoke() method for the example of LogFunction example.

[Requires("[System.Compiler.Runtime]Microsoft.Contracts.
DelegateReferencesHolder::IsEnabled([mscorlib]System.Delegate){this}"),
Requires("::!=(string,string){\$1,null}"),
Ensures("::<(i32,i32){\${i32,\"return value\"},\$1@string::

get_Length(){}}"]
public int SafeInvoke(string s) {

try {
if (!DelegateReferencesHolder.IsEnabled(this)) {

throw new RequiresException("Precondition violated from method
’LogFunction.SafeInvoke(System.String)’");

}
if (s == null) {

throw new RequiresException("Precondition ’s != null’ violated
from method ’LogFunction.SafeInvoke(System.String)’");

}
}
catch (ContractMarkerException) { throw; }
int return value = this(s);
try {

if (return value >= s.Length) {
throw new EnsuresException("Postcondition ’result < s.Length’

violated from method ’LogFunction.SafeInvoke(System.String)’");
}

}
catch (ContractMarkerException) { throw; }
int SS$Display Return Local = return value;
return return value;

}

77

Listing 5.6: Exposing an object.

Console c = new Console();
LogFunction l = LogFunction.Construct(c, (IntPtr) this.WriteLine);
Guard.StartWritingAtNop(c, typeof(Console));
DelegateReferencesHolder.StartWriting(c);
try
{
}
finally
{

Guard.EndWritingAtNop(c, typeof(Console));
DelegateReferencesHolder.EndWriting(c);

}

The compiler insert a call to Guard.StartWritingAtNop() which throws an exception in
case the object is not exposable and exposes the object. We add an additional call to
DelegateReferencesHolder.StartWriting(), which has the effect of exposing all delegates with
the exposee as target. This call also throws an exception in case a delegate is not exposable.
At the end of the expose block, Guard.EndWritingAtNot() is called to pack the object; in
the same way DelegateReferencesHolder.EndWriting() checks the invariants of the objects
it previously exposed and them repacks them.

Disabling and The Enabled State

Disabling delegates is directly done with a call to DelegateReferencesHolder.Disable(Object, Type).
As explained above, DelegateReferencesHolder keeps a dictionary of the form
Dictionary<Object, List<WeakReference>>. In the BoogiePL encoding of Spec# dele-
gates, we added the additional enabled field for storing the enabled state of a delegate. For
runtime however it is not possible to directly add an enabled field to all delegates as this
would require us to modify System.Delegate defined in the .NET library. For this reason
the enabled state of a delegate is maintained in the dictionary of DelegateReferencesHolder ;
a singlecast delegate is considered enabled at runtime if one of the following conditions is
met:

1. It has no target object (e.g. its target method is static);

2. It is a CTT delegate;

3. It is present in the dictionary.

A multicast delegate is enabled if it is a CTT delegate or if all the delegates in its invo-
cation list are enabled with respect to the previous definition. This also ensures that only
singlecast delegates are kept in the dictionary. This is indeed the definition employed by
DelegateReferencesHolder.IsEnabled(). The asymptotic complexity of retrieving the enabled
state of a delegate is O(m · t · l) where m is the size of the invocation list, t is the average
number of delegates per target object and l is the complexity of a dictionary lookup.

We already know that all new, non-CTT delegates with a target object are inserted in the
dictionary during the construction of the delegate. Adding a delegate is done in O(l · t),
where l is the complexity of a dictionary lookup and t is the number of enabled delegate

78 5 Implementation and Runtime Checks

having the same target as the new one. When delegates for a specific target object are dis-
abled, DelegateReferencesHolder removes all such delegates from the lists in the dictionary.
Disabling all delegates for an object has is done in O(l · t · r), where t is the number of
delegates having the object as target and r is the complexity of removing one element from
a list.

Garbage Collector

The last question that still has to be answered, concerning disabling delegates, is what
happens when a delegate is garbage collected. The idea is to disable delegates before they
are garbage collected. In order to achieve this a destructor is added to delegate classes. The
destructor simply calls DelegateReferencesHolder.Remove(Delegate). This method simply
removes the delegate from the dictionary. The complexity in this case is the same as adding
a new delegate, namely O(l · t).

CHAPTER 6

Conclusions

In the first part of this last chapter we summarize the state of the implementation. We then
conclude the work by providing some general impressions and discussing possible improve-
ments and extensions.

6.1 State of the Implementation

In this section we summarize the state of the implementation of the verification of Spec#
delegates. Figure 6.1 shows a summary of the implementation.

Singlecast Delegates We implemented the methodology proposed in [15] for singlecast
delegates. When a delegate is instantiated, we perform refinement checks. When exposing
an object having fields involved in delegate invariants, we also expose all delegates the object
is dependent on. Delegate subtyping is implemented in BoogiePL as normal class subtyping.
We implemented the disable (o for D) statement by adding an additional enabled field
to every delegate; to improve the way frame conditions can be expressed, we included an
additional modifies o.*** which allows to disable all delegates which are peers of o. For
modifies clauses on the target object, we allow defining default frame conditions and target
type dependent frame conditions of the form modifies when { T; target.f }. Moreover
we allow a delegate subtype to refine the frame condition of its base type.

Additional Delegates We handle delegates with static methods as target as normal
delegates. Even though static delegate invariants are allowed, their verification is not com-
plete. This is due to the fact that static invariants are only partially implemented in Spec#.
We extended the methodology to multicast delegates. When delegates are combined, we
perform heap and parameter stability checks to verify that the specification of the multi-
cast delegate respects four heap stability conditions. Thanks to this checks we are able to
reduce a multicast delegate to a singlecast delegate. When disabling delegates for some

79

80 6 Conclusions

Instantiation of delegates

Exposing objects

Invoking delegates

Multicast delegates

Misc

Static analysis:
Compiler

Static veri�cation:
Boogie

Runtime checks:
Compiler

Validity of the target object

Delegate invariant

Exposing of delegates

Only enabled delegates can be invoked

Exposed delegates cannot be invoked

Disabling multicast delegates

Modi�cation of �elds of unexposed objects

Disabling singlecast delegates

Re�nement for pre-conditions
Re�nement for post-conditions

Implemented
Achieved by static analysis
Non-implementable

Re�nement for frame conditions

Non-null analysis in contracts

Typechecking

Typechecking

Admissible invariants

Stability checks

Figure 6.1: State of the implementation.

target object, multicast delegates not having that object as target might be disabled as
well. This is due to the fact that by reducing a multicast delegate to singlecast, we loose
all information about its invocation list. We proposed two possible approaches to improve
this situation; because of technical limitations and timing reasons, we could not implement
them. We handle events like normal multicast delegates. To reduce the overhead for the
programmer, we allow to declare rep and peer event fields and we automatically generate
the corresponding pre-conditions necessary for combining them.

Closed Target Type Delegates In order to allow handling tightly coupled situations,
where a delegate is instantiated with a method having pre- or post-conditions depending
on both the state of the target object and the arguments, we introduced a new construct
allowing to fix the type of the target object of a delegate during declaration. We handle
CTT delegates like normal delegates, with the exception that invariant and target type
dependent frame conditions are not necessary. For this reason a CTT delegate is always
enabled.

Runtime We perform runtime checks during instantiation of new delegates to verify that
the target object is not exposed and that the delegate invariant holds. We also check
pre- and post-conditions during invocation of delegates; this is especially useful in case of
multicast delegates. When exposing an object at runtime we also expose all delegates it

81

depends on; at the end of the expose block, we verify that the delegate invariants of all
delegates we exposed hold. As in Spec#, we do not perform runtime checks for frame
conditions or modification of fields involved in delegate invariants for performance reasons.

Delegate subtyping has been implemented using an additional attribute. In fact the CLR
does not allow us to inherit from delegate classes. By wrapping delegates in instantiations
of other delegates, we can provide upcasting operations without additional overhead for the
programmer.

Tools It is currently not possible to directly compile and verify a program with the /verify
option of the Spec# compiler. This is due to the transformations we perform on the AST,
which, for caching reasons, are not completely reversible. Compilation and verification must
be executed in two separate steps.

6.2 Conclusions

This thesis provides a functioning framework for the verification of function objects which
can be used in practical applications. The verification methodology implemented and ex-
tended in this work, allows to verify singlecast and multicast delegates. Thanks to delegate
invariants, pre-conditions on the target object can be expressed without the need for leak-
ing information about the target. Expressing frame conditions however, requires to either
reveal additional information about the type of the target object, or to have very weak
frame conditions, where all possible peers of the delegate are modified. Concerning tightly
coupled scenarios, CTT delegates allow us to express all possible specifications of a target
method. However this comes with a price: the type of the target object must be fixed
during declaration of the delegate.

These limitations lead us to believe that function objects need additional research in order to
be better understood and modeled. The current approach is based on dividing the problem
of verifying delegates in subproblems, and then finding independent solutions. This leads to
pre-, post-, frame-conditions, invariants, target type dependent frame conditions and CTT
delegates. We expect future research to be able to find a unified solution for the problem.

The hope is that by using the tools we implemented, it will be possible in the future to
devise a more sophisticated approach toward the verification of delegates.

6.3 Future Work

In future the priority should be given to completing the implementation of the methodology;
this include:

• Extending the Spec# programming system to handle static invariants and implement
the missing features necessary for allowing static invariants in delegates;

• Optionally: implementing one of the two extensions for disabling multicast delegates
(see 4.2.2, page 56 and 4.2.2, page 57).

Future research can be oriented in combining Spec# delegates with the concepts of data
groups [12] and dynamic frames, a special case of specification variables [10]. A new method-
ology based on dynamic frames could, in fact, improve the way frame conditions are cur-

82 6 Conclusions

rently handled. Dynamic frames have been implemented in a custom build of Spec# in
[16].

Another possible research topic would propose to solve the ownership issues with events. In
this direction the research of Friends [2] seems to be leading to some interesting scenarios
that should be explored further.

Bibliography

[1] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In FMCO, pages 364–387,
2005.

[2] Michael Barnett and David A. Naumann. Friends need a bit more: Maintaining invariants
over shared state. In Dexter Kozen and Carron Shankland, editors, MPC, volume 3125 of
Lecture Notes in Computer Science, pages 54–84. Springer, 2004.

[3] Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants, 2003.

[4] Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In
PASTE ’05: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 82–87, New York, NY, USA, 2005. ACM.

[5] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In LNCS, volume 3362, 2004.

[6] Egon Börger, Nicu G. Fruja, Vincenzo Gervasi, and Robert F. Stärk. A high-level modular
definition of the semantics of c#. Theor. Comput. Sci., 336(2-3):235–284, 2005.

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In TACAS,
pages 337–340, 2008.

[8] Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language for checking
object-oriented programs. Technical Report MSR-TR-2005-70. Microsoft Research, 2005.

[9] ECMA International. Ecma-334: C# language specification, 2006.

[10] Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without
restrictions. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM, volume 4085
of Lecture Notes in Computer Science, pages 268–283. Springer, 2006.

[11] Gary. T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verification chal-
lenges for sequential object-oriented programs. Formal Aspects of Computing, 19(2):159–189,
2007.

[12] K. Rustan M. Leino. Data groups: specifying the modification of extended state. SIGPLAN
Not., 33(10):144–153, 1998.

[13] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In M. Oder-
sky, editor, European Conference on Object-Oriented Programming (ECOOP), volume 3086 of
Lecture Notes in Computer Science, pages 491–516. Springer-Verlag, 2004.

[14] K. Rustan M. Leino and Peter Müller. Modular verification of static class invariants. In
J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, Formal Methods (FM), volume 3582 of Lecture
Notes in Computer Science, pages 26–42. Springer-Verlag, 2005.

83

84 BIBLIOGRAPHY

[15] Peter Müller and Joseph N. Ruskiewicz. A modular verification methodology for C# delegates.
In U. Glässer and J.-R. Abrial, editors, Rigorous Methods for Software Construction and
Analysis, 2007. To appear.

[16] Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An automatic verifier for java-
like programs based on dynamic frames. In José Luiz Fiadeiro and Paola Inverardi, editors,
FASE, volume 4961 of Lecture Notes in Computer Science, pages 261–275. Springer, 2008.

APPENDIX A

Short User’s Manual

This appendix contains a short user’s manual for delegate verification.

Declaring a delegate The syntax for delegate declaration remains the same as with
normal delegates. Moreover it is possible to specify the contract using requires, requires
otherwise, ensures, modifies, and throws clauses. Delegate invariants are declared as:

invariant when { T; E };

where T is the type of the target, and E is an expression. The special identifier target
represents an instance of type T. All fields mentioned in a delegate invariant, must declare
a [Dependent(typeof(Del))] attribute, where Del is the delegate declaring the invariant.

Modifies when clauses are declared as:

modifies when { T; F };

where T is defined as above and F is a field of target.

All non-CTT delegates have a default modifies clause for the target which is expressed with
the ModifiesDefault attribute. The attribute takes as argument an enumeration with the
following possible values:

1. Modifies.Peers

2. Modifies.Target

3. Modifies.None

The default modifies is inherited. Subtypes are not allowed to weaken the frame condition.
Checks for this are only done for the default frame condition at compiler level.

85

86 A Short User’s Manual

Instantiating a delegate Delegate instantiation works like usual. Boogie will generate
an error in case one of the conditions is not met.

Disabling a delegate Disabling delegates is accomplished by the

disable (o for T)

statement, where o is the target of delegates to be disabled and T is the type of the delegate.
The frame condition of a method using the disable statement, must include

modifies p.***;

where p is a peer of the object o in the disable statement.

In order to get the enabled state of a delegate, it is possible to call

d.IsEnabled

where d is a delegate. The call is valid in both expressions and specification.

A method that violates the invariant of a delegate usually needs a precondition stating that
no delegate with target equal to the object whose invariant is violated is enabled. This can
be accomplished in the specification by calling

DelegateReferencesHolder.NoActiveDelegate(o, T)

where o and T are defined like in the case of disable.

Multicast delegates Multicast delegates work like usual. Boogie will generate an error
in case one of the conditions for combining them is not met. Disabling a delegate always
results in disabling all multicast delegates peers of the object o in the disable statement,
unless Boogie can prove that the multicast delegate has a different target.

Closed Target Type Delegates While declaring a CTT delegate the user must provide
the type for which the delegate is closed. The declaration is similar to the usual one, with
the difference that the type in form <T> is specified after the keyword delegate:

delegate <T> void MyDelegate();

CTT delegates do not contain delegate invariants and modifies when clauses. To access the
target is it possible to use the Target property of the delegate itself, which is redefined in
the delegate class to return an object of type T!. The syntax is similar to generis but with
the following differences

• The type must be valid in the scope where the delegate is declared;

• No type constraints are allowed;

• The type is provided during declaration only.

Delegate Subtyping and Casting Delegate subtypes expressions can be downcasted
to any of the the delegate base types directly without using cast operators. Using any cast
operator results in an error. Consider the following example, where SubDel is a delegate
subtype of BaseDel :

87

SubDel s = ...
BaseDel d = s; // allowed
BaseDel d = s as BaseDel; // error
BaseDel d = (BaseDel) s ; // error

The opposite operation is however never allowed. Upcasting can be safely accomplished as
follows:

if (d != null && d.Target is Subdel) {
Subdel d = d.Target;

}

88 A Short User’s Manual

APPENDIX B

Examples

B.1 Complete USBStick Example

The following code shows the complete version of the USBStick example used throughout
this document.

using System;

using System.Text;

using Microsoft.Contracts;

[ModifiesDefault(Modifies.Target)]

public delegate void Archiver(object p);

requires p != null;

public delegate void USBArchiver(object p) : Archiver

invariant when { USBStick; target.IsLoaded };

modifies when { USBStick; target.buffer };

public class USBStick {

[Dependent(typeof(USBArchiver))]

public bool IsLoaded;

[SpecPublic][Rep] private StringBuilder! buffer;

public USBStick()

ensures this.IsLoaded;

{

this.IsLoaded = true;

buffer = new StringBuilder();

}

public void Store(object p)

requires p != null;

89

90 B Examples

requires this.IsLoaded;

modifies this.buffer;

{

string value = p.ToString();

expose (this) {

buffer.Append(value);

}

}

public void Eject()

requires this.IsLoaded;

requires DelegateReferencesHolder.NoActiveDelegate(this, typeof(USBArchiver));

{

expose (this) {

/* eject the stick */

this.IsLoaded = false;

}

}

}

public class Client {

public static void Log(Archiver! logFile, string! s)

requires logFile.IsEnabled;

modifies logFile.**;

{

logFile(s);

}

}

public class Program {

public static void Main() {

// create a new stick, a new USBArchiver and log a test

USBStick stick = new USBStick();

Archiver logFile = new USBArchiver(stick.Store);

Client.Log(logFile, "Hello, World!");

// eject the stick

assume stick.IsLoaded; // the call to Log could have modified stick

disable (stick for USBArchiver);

stick.Eject();

}

}

The example suffers from the fact that the type of the target of the delegate in method Log()
is unknown. This requires us to add a modifies logFile.** modifies clause. An alternative
version of the Main() method shows how knowledge about the target allows to improve
frame conditions:

public class Program {
public static void Main() {

// create a new stick, a new USBArchiver and log a test
USBStick stick = new USBStick();
USBArchiver logFile = new USBArchiver(stick.Store);
logFile("Hello, World");

// eject the stick
disable (stick for USBArchiver);

91

stick.Eject();
}

}

B.2 Events

The following program shows an implementation of the observer pattern using events.

using System;
using Microsoft.Contracts;

public delegate void UpdateHandler(string! status);
requires status.Length > 0;
ensures ((object)status) == ((object)old(status));

public class Observable {

[Rep] public event UpdateHandler Changed;
private string! status;

invariant status.Length > 0;

[NotDelayed]
public Observable()

ensures status.Length > 0;
{

status = "Initialized";
base();

}

protected void Notify() {
expose(this)
{

if (Changed != null && Changed.IsEnabled)
Changed(status);

}
}

public void DoSome() {
expose (this)

this.status = "Done something";

Notify();
}

}

public class Observer {
public void Update(string! status)

requires status.Length > 0;
ensures ((object)status) == ((object)old(status));

{
Console.WriteLine("Status: " + status);

92 B Examples

}
}

public class Program {
public static void Main() {

Observable target = new Observable();
Observer observer = new Observer();
Owner.Assign(observer, target, typeof(Observable));
target.Changed += new UpdateHandler(observer.Update);
target.DoSome();

}
}

As shown in the example, as long as the ownership can be expressed, it is possible to verify
events. The additional post-condition of the delegate is necessary for the stability checks;
without it Condition 4.2 cannot be verified. Stability checks could indeed be enhanced
to consider immutable object; after such extension the additional post-condition would no
longer be necessary because status cannot change.

APPENDIX C

SSC Syntactic Grammar

In this appendix we present the new syntax introduced by this work. The notation follows
the ECMA standard [9].

Keywords The keyword when is introduced in the context of delegate invariants.

Delegate declaration Delegate declaration is specified for normal and CTT delegates.

delegate− declaration :
attributesopt delegate−modifiersopt delegate return− type

identifier type− parameter − listopt (formal − parameter − listopt)
delegate− baseopt type− parameter − constraints− clausesopt

[; | ;opt delegate− contract]
attributesopt delegate−modifiersopt delegate <class− type> return− type

identifier type− parameter − listopt (formal − parameter − listopt)
type− parameter − constraints− clausesopt

[; | ;opt method− contract]

delegate−modifiers :
delegate−modifier
delegate−modifiers delegate−modifier

delegate−modifier :
new
public
protected
internal
private

delegate− base :
: class− type

93

94 C SSC Syntactic Grammar

delegate− contract :
method− contract
delegate− invariant
ttd−modifies− clause

delegate− invariant :
invariant when { class− type ; expression };

ttd−modifies− clause :
modifies when { class− type ; modifies− expression };

Statements The disable statement is added with the following syntax:

embedded− statement :
...
disable− statement

disable− statement :
disable (expression for class− type);

APPENDIX D

Compiler Generated Methods

In this appendix we present the full bodies of compiler generated methods.

D.1 Compiler-Generated Delegate Classes

The following methods refer to the delegate declaration below:

delegate int LogFunction(string s);
requires s != null;
invariant when { Console; target.IsVisible };
ensures result < s.Length;

Construct The Construct() method is used, instead of the normal constructor, to create
new instances of delegates.

[NoDefaultContract]

public static LogFunction modopt(NonNullType) Construct(object @object,

IntPtr method)

{

LogFunction d = new LogFunction(object, method);

Guard g = d.SpecSharp::FrameGuard;

DelegateReferencesHolder.Add(d);

LogFunction return value = d;

try

{

if (!DelegateReferencesHolder.IsEnabled(return value))

{

throw new EnsuresException("Postcondition ’<unknown condition>’

violated from method ’LogFunction.

Construct(System.Object,System.IntPtr)’");

}

95

96 D Compiler Generated Methods

}

catch (ContractMarkerException)

{

throw;

}

LogFunction SS$Display Return Local = return value;

return return value;

}

SafeInvoke The SafeInvoke() methods is used instead of the Invoke() method in a dele-
gate. It carries the contract of the delegate (with the exception of delegate invariants) and
performs runtime checks.

[Requires("[System.Compiler.Runtime]Microsoft.Contracts.

DelegateReferencesHolder::IsEnabled([mscorlib]System.Delegate){this}"),

Requires("::!=(string,string){$1,null}", Filename=@"...Simple.ssc",

StartLine=7, StartColumn=12, EndLine=7,

EndColumn=0x15, SourceText="s != null"),

Ensures("::<(i32,i32){${i32,\"return value\"},$1@string::get_Length(){}}",

Filename=@"...Simple.ssc", StartLine=8, StartColumn=11,

EndLine=8, EndColumn=0x1c, SourceText="result < s.Length")]

public int SafeInvoke(string s) {

try {

if (!DelegateReferencesHolder.IsEnabled(this)) {

throw new RequiresException("Precondition ’<unknown condition>’

violated from method ’LogFunction.SafeInvoke(System.String)’");

}

if (s == null) {

throw new RequiresException("Precondition ’s != null’ violated

from method ’LogFunction.SafeInvoke(System.String)’");

}

}

catch (ContractMarkerException) { throw;}

int return value = this(s);

try {

if (return value >= s.Length) {

throw new EnsuresException("Postcondition ’result < s.Length’

violated from method ’LogFunction.SafeInvoke(System.String)’");

}

}

catch (ContractMarkerException) { throw; }

int SS$Display Return Local = return value;

return return value;

}

CheckInvariant The CheckInvariant() method performs runtime checks for delegate in-
variants.

[NoDefaultContract,

Requires("[System.Compiler.Runtime]Microsoft.

Contracts.Guard::FrameIsPrevalid(optional([System.Compiler.Runtime]

Microsoft.Contracts.NonNullType,object),

optional([System.Compiler.Runtime]Microsoft.Contracts.NonNullType,

[mscorlib]System.Type)){this,$typeof(LogFunction)}")]

public bool SpecSharp::CheckInvariant(bool throwException) {

97

bool return value;

try {

if (!Guard.FrameIsPrevalid(this, typeof(LogFunction))) {

throw new RequiresException("Precondition ’<unknown condition>’ violated

from method ’LogFunction.SpecSharp::CheckInvariant(System.Boolean)’");

}

}

catch (ContractMarkerException) { throw; }

if ((base.Target is Console) && !((Console) base.Target).IsVisible) {

if (throwException) {

throw new ObjectInvariantException();

}

return value = false;

}

else {

return value = true;

}

bool SS$Display Return Local = return value;

return return value;

}

GetFrameGuard The GetFrameGuard() method returns the Guard of a delegate.

[CciMemberKind(CciMemberKind.Auxiliary)]

private static Guard SpecSharp::GetFrameGuard(object o)

{

if (o == null) {

throw new ArgumentNullException();

}

Guard guard2 = ((LogFunction) o).SpecSharp::frameGuard;

Guard SS$Display Return Local = guard2;

return guard2;

}

InitGuardSets The InitGuardSets method initializes the Guard of a delegate.

[NoDefaultContract, CciMemberKind(CciMemberKind.Auxiliary)]

private void SpecSharp::InitGuardSets() {

this.SpecSharp::FrameGuard.AddRepFrame(this, typeof(MulticastDelegate));

}

FrameGuard The FrameGuard property returns the Guard of a delegate.

public Guard modopt(NonNullType) SpecSharp::FrameGuard {

[NoDefaultContract, Delayed, Pure,

CciMemberKind(CciMemberKind.FrameGuardGetter)]

get {

try {

if (this.SpecSharp::frameGuard == null) {

this.SpecSharp::frameGuard = new Guard(

new InitGuardSetsDelegate(this.SpecSharp::InitGuardSets),

new CheckInvariantDelegate(this.SpecSharp::CheckInvariant));

this.SpecSharp::FrameGuard.EndWriting();

}

98 D Compiler Generated Methods

}

catch (ContractMarkerException) { throw;}

Guard return value = this.SpecSharp::frameGuard;

Guard SS$Display Return Local = return value;

return return value;

}

}

D.2 Compiler-Generated Events Methods

The following compiler-generated methods for events are generated with respect to the
following program:

public delegate void Del();

public class C {
[Rep] public event Del RepEvent;
[Peer] public event Del PeerEvent;

}

add RepEvent The add RepEvent method is used to combine the event with a new
delegate.

[MethodImpl(MethodImplOptions.Synchronized),

Requires("::==>(bool,bool){::!=(object,object){$coerce($1,object),null},

[System.Compiler.Runtime]Microsoft.Contracts.Owner::

Is(optional([System.Compiler.Runtime]Microsoft.Contracts.NonNullType,object),

optional([System.Compiler.Runtime]Microsoft.Contracts.NonNullType,object),

optional([System.Compiler.Runtime]Microsoft.Contracts.NonNullType,

[mscorlib]System.Type))

{$1,this,$typeof(C)}}")]

public void add_RepEvent(Del modopt(NonNullType) value)

{

try {

if ((value != null) && !Owner.Is(value, this, typeof(C))) {

throw new RequiresException("Precondition ’<unknown condition>’

violated from method ’C.add_RepEvent(optional(

Microsoft.Contracts.NonNullType) Del)’");

}

}

catch (ContractMarkerException) { throw;}

AssertHelpers.AssumeStatement("::==>(bool,bool){::&&(bool,bool)

{::!=(Del,Del){this@C::RepEvent,null},::!=(optional([System.Compiler.

Runtime]Microsoft.Contracts.NonNullType,Del),Del){$1,null}},

::==(optional([System.Compiler.Runtime]Microsoft.Contracts.

NonNullType,[mscorlib]System.Type),optional([System.Compiler.Runtime]

Microsoft.Contracts.NonNullType,[mscorlib]System.Type))

{this@C::RepEvent@object::GetType(){},$1@object::GetType(){}}}");

try {

if ((((this.RepEvent == null) || (value == null)) 1 :((this.RepEvent.GetType()
== value.GetType()) 1 : 0)) == 0) {

AssertHelpers.Assume(false);

}

}

99

catch (ContractMarkerException) { throw; }

C o = this;

Guard.StartWritingFrame(o, typeof(C));

DelegateReferencesHolder.StartWriting(this);

try {

this.RepEvent = (Del) Delegate.Combine(this.RepEvent, value);

}

finally {

Guard.EndWritingFrame(o, typeof(C));

DelegateReferencesHolder.EndWriting(this);

}

}

remove RepEvent The remove RepEvent method is used to remove a delegate from the
event.

[MethodImpl(MethodImplOptions.Synchronized),

Requires("::==>(bool,bool){::!=(object,object){$coerce($1,object),null},

[System.Compiler.Runtime]Microsoft.Contracts.Owner::

Is(optional([System.Compiler.Runtime]Microsoft.Contracts.NonNullType,object),

optional([System.Compiler.Runtime]Microsoft.Contracts.NonNullType,object),

optional([System.Compiler.Runtime]Microsoft.Contracts.NonNullType,

[mscorlib]System.Type))

{$1,this,$typeof(C)}}")]

public void remove_RepEvent(Del value) {

try {

if ((value != null) && !Owner.Is(value, this, typeof(C))) {

throw new RequiresException("Precondition ’<unknown condition>’

violated from method ’C.remove_RepEvent(Del)’");

}

}

catch (ContractMarkerException) { throw; }

C o = this;

Guard.StartWritingFrame(o, typeof(C));

DelegateReferencesHolder.StartWriting(this);

try {

this.RepEvent = (Del) Delegate.Remove(this.RepEvent, value);

}

finally {

Guard.EndWritingFrame(o, typeof(C));

DelegateReferencesHolder.EndWriting(this);

}

}

add PeerEvent and remove PeerEvent The add PeerEvent and remove PeerEvent
methods are similar to the methods shown above, but with the difference that the value is
checked for having the same owner as the declaring object.

100 D Compiler Generated Methods

APPENDIX E

Found Bugs

In this appendix we present the most important bugs of the Spec# programming system
found while implementing this work.

E.1 Generics

Boogie crashes when the program contains a modifies clause on a generic type.

using System;
using Microsoft.Contracts;

class C<T> {
public T t;

public C() { }

public void SetT()
modifies this.t;

{ }
}

Steps

$./ssc.exe Simple.ssc
$./Boogie.exe Simple.exe

Error

101

102 E Found Bugs

Spec# program verifier version 0.90, Copyright (c) 2003-2008, Microsoft.

Unhandled Exception: System.ApplicationException: Error in the application.

at Omni.Parser.ContractDeserializer.System.Compiler.IContractDeserializer.

ParseContract(MethodContract mc, String text, ErrorNodeList errs)

at System.Compiler.MethodContract.get_Modifies()

at System.Compiler.Method.get_Contract()

at Microsoft.Boogie.PreTranslationVisitor.VisitMethod(Method method)

at Microsoft.Boogie.PreTranslationVisitor.VisitTypeNode(TypeNode type)

at System.Compiler.StandardVisitor.VisitClass(Class Class)

at System.Compiler.StandardVisitor.Visit(Node node)

at System.Compiler.StandardVisitor.VisitTypeNodeList(TypeNodeList types)

at Microsoft.Boogie.PreTranslationVisitor.VisitModule(Module module)

at Microsoft.Boogie.PreTranslationVisitor.VisitAssembly(AssemblyNode assembly)

at System.Compiler.StandardVisitor.Visit(Node node)

at Microsoft.Boogie.CilTranslator.TranslateCilToBoogie(Module module, Boolean

needsDeserialization, Analyzer analyzer, ErrorHandler errorHandler)

at Microsoft.Boogie.CilTranslator.TranslateCilToBoogie(String filename, List‘1

contractAssemblies, ErrorHandler errorHandler)

at Microsoft.Boogie.BoogiePLMain.ProcessFileBasedOnType(FileType fileType,

List‘1 fileNames)

at Microsoft.Boogie.BoogiePLMain.Main(String[] args)

Status Notified to the Spec# team.

E.2 Constructors in Contracts

The compiler allows to call constructor in method contracts, even if there is no reason for
doing so. When trying to verify such programs Boogie crashes.

using System;
using Microsoft.Contracts;

class Target {
public int i;

public void Foo()
requires new Target().i > 0;

{}
}

Steps

$./ssc.exe /debug+ /target:library Simple.ssc
$./Boogie.exe /print:Simple.bpl Simple.dll

Error

Spec# program verifier version 0.90, Copyright (c) 2003-2008, Microsoft.

103

Unhandled Exception: Microsoft.Contracts.AssertException: Exception of type

’Microsoft.Contracts.AssertException’ was thrown.

at Microsoft.Contracts.AssertHelpers.Assert(Boolean b)

at Microsoft.Boogie.ExpressionTranslator.TranslateCall(MethodCall call,

String heapName) in ExpressionTranslator.ssc:line 1020

at Microsoft.Boogie.ExpressionTranslator.TranslateExpression(

Expression expression, String heapName) in ExpressionTranslator.ssc:line 542

at Microsoft.Boogie.GenerateModifiesContribution.VisitMemberBinding(

MemberBinding binding) in FrameConditions.ssc:line 418

at System.Compiler.StandardVisitor.Visit(Node node) in

StandardVisitor.cs:line 316

at System.Compiler.StandardVisitor.VisitExpression(Expression expression)

in StandardVisitor.cs:line 992

[...]

at Microsoft.Boogie.CilTranslator.TranslateCilToBoogie(Module module, Boolean

needsDeserialization, Analyzer analyzer, ErrorHandler errorHandler)

in CilTranslator.ssc:line 153

at Microsoft.Boogie.CilTranslator.TranslateCilToBoogie(String filename,

List‘1 contractAssemblies, ErrorHandler errorHandler) in

CilTranslator.ssc:line 231

at Microsoft.Boogie.BoogiePLMain.ProcessFileBasedOnType(

FileType fileType, List‘1 fileNames) in Main.ssc:line 263

at Microsoft.Boogie.BoogiePLMain.Main(String[] args) in Main.ssc:line 106

Status Notified to the Spec# team.

E.3 Array Initialization

When arrays are initialized during declaration, there is a local contradiction in the method
declaring the array. The contradiction only appears when the type of the elements of the
array is a reference type and the array is passed to a method. Value types work as expected.

using System;
using Microsoft.Contracts;

public class A {
public void Foo() {

A[] a = { new A(), new A() };
Bar(a);
assert false;

}

public void Bar(A[] i) { }
}

Steps

$./ssc.exe /debug+ /target:library Simple.ssc
$./Boogie.exe /print:Simple.bpl Simple.dll

Error

104 E Found Bugs

Spec# program verifier version 0.90, Copyright (c) 2003-2008, Microsoft.

Spec# program verifier finished with 3 verified, 0 errors

The assert false statement in method Foo() should have risen an error.

Status Notified to the Spec# team; issues with array initialization are a known problem.

E.4 Structural Type Rules for Delegates

The typing rules for Spec# delegates are different from C#. In C# normal (nominal) rules
are applied, while in Spec# delegates structural rules are used. The following code complies
in Spec# but not in C#:

using Microsoft.Contracts;
using System;

class A { }

delegate void Del1(A a);
delegate void Del2(A a);

class Program {
public static void Foo(A a) { }

public static void Main() {
Del1 d1 = new Del2(Foo);

}
}

The delegate instantiation is modified by the Spec# compiler in:
Del1 d1 = new Del1(new Del2(Program.Foo).Invoke).

Status Notified to the Spec# team. The problem is solved in our version of Spec#.

E.5 Out of Band Contracts and Axioms Contradiction

When using library classes inheriting from System.Reflection.MemberInfo, there is an axiom
violation in the generate BoogiePL code. The problem is caused by the fact that out of
band contracts for some classes are not included in the verification. This problem is made
clear by MethodInfo because of the fact that it extends MemberInfo which is an immutable
class. Since Boogie does not use the out of band contract for MethodInfo, it emits the latter
as mutable class; resulting in an axiom violation.

using System;
using Microsoft.Contracts;
using System.Reflection;

delegate void Del();

105

public class Program {
static void Main(string![]! args) {

MethodInfo m = typeof(Program).GetMethods()[0];
assert false;

}
}

1 axiom IsImmutable(System.Reflection.MemberInfo) &&
2 AsImmutable(System.Reflection.MemberInfo)
3 == System.Reflection.MemberInfo;
4 axiom !IsImmutable(System.Reflection.MethodBase) &&
5 AsMutable(System.Reflection.MethodBase)
6 == System.Reflection.MethodBase;

Status Notified to the Spec# team. The problem is patched in our version of Spec#.

E.6 Specification of Array Concatenation

Boogie in unable to prove useful properties after concatenation of arrays. More precisely,
give a method that concatenates two arrays which are fields of a class, Boogie is unable to
prove equivalence for the elements of the second array.

using System;

using Microsoft.Contracts;

public class Test {

public static int[]! Combine(int[]! a, int[]! b)

ensures result.Length == a.Length + b.Length;

ensures forall { int i in (0:a.Length);

result[i] == a[i] };

ensures forall { int i in (0:b.Length);

result[i+a.Length] == b[i] };

{ return null; }

static void Combining() {

int[] a = new int[1];

a[0] = 1;

int[] b = new int[1];

b[0] = 1;

int[] i = Combine(a, b);

assert i[0] == 1;

assert i[1] == 1;

}

}

In the example above, the last assertion should hold.

Error

106 E Found Bugs

$./ssc.exe /debug+ /t:library Simple.ssc
$./Boogie.exe /translate:Combining Simple.dll
Spec# program verifier version 0.90, Copyright (c) 2003-2008, Microsoft.
Simple.ssc(22,3): Error: Assertion might not hold: i[1] == 1

Spec# program verifier finished with 0 verified, 1 error

Status To be analyzed further.

Listings

1.1 Introductory example, based on the example provided in [15] 12

2.1 Hello, World! . 16

2.2 Disassembled version of a program using delegates 17

2.3 Combining delegates . 18

2.4 Observer pattern implemented with events . 19

2.5 Decompiled version of the observer pattern implemented with events 20

2.6 A simple class representing a point . 24

2.7 BoogiePL translation of Listings 2.6 . 25

2.8 A simple USBStick . 27

2.9 USBStick with pre-condition on the target object . 28

2.10 Breaking a delegate invariant. 30

3.1 Refinement checks . 36

3.2 Disabling a [Rep . 39

3.3 A first approach towards frame conditions for delegates 43

3.4 Frame conditions with additional information about the target 44

3.5 Refinement checks for frame conditions . 49

4.1 Static pre-conditions . 52

4.2 Post-conditions of multicast delegates . 53

4.3 Pre-conditions of multicast delegates . 54

4.4 Disabling delegates in a target of a delegate . 60

4.5 Subtyping and generics . 60

107

108 LISTINGS

4.6 Delegate subtyping with multicast delegates . 61

4.7 GUI programming with Events . 62

4.8 Vector operations with CTT delegates . 64

5.1 Public interface of DelegateReferencesHolder . 73

5.2 Partial interface of a compiler generated class for delegate LogFunction 74

5.3 Construct() method. 75

5.4 SafeInvoke() method. 76

5.5 SafeInvoke() method for the example of LogFunction example. 76

5.6 Exposing an object. 77

List of Figures

4.1 Owneship trees for a GUI with events . 62

5.1 Modifications of the class diagram of the ssc compiler. 71

5.2 Compilation pipeline of ssc. 72

5.3 Boogie pipeline. 72

6.1 State of the implementation. 80

109

	1 Introduction
	1.1 Overview
	1.2 Notation Conventions

	2 Background
	2.1 C# Delegates
	2.1.1 Delegates in .NET
	2.1.2 Multicast Delegates
	2.1.3 Immutability of Delegates
	2.1.4 Events

	2.2 The Spec# Programming System
	2.2.1 The Spec# Programming Language
	2.2.2 The Spec# Compiler
	2.2.3 Boogie
	2.2.4 BoogiePL

	2.3 Previous Work on Static Verification of Delegates
	2.3.1 Contracts For Delegates
	2.3.2 Delegates Invariants
	2.3.3 Delegate Subtyping
	2.3.4 Disabling Delegates

	3 Implementation of Static Verification for Singlecast Delegates
	3.1 Contracts and Subtyping
	3.1.1 Encoding and Definition of Contract Elements
	3.1.2 Delegate Instantiation in BoogiePL
	3.1.3 Delegate Invocation in BoogiePL
	3.1.4 Exposing an Object in BoogiePL
	3.1.5 Delegate Subtyping in BoogiePL

	3.2 Disabling Delegates
	3.2.1 Ownership Based Disabling
	3.2.2 Disabling Delegates with the Enabled Field
	3.2.3 Disabling Delegates in BoogiePL

	3.3 Frame Conditions
	3.3.1 Encapsulation
	3.3.2 The Type of the Target
	3.3.3 Subtyping
	3.3.4 Frame Conditions in BoogiePL

	4 Extensions
	4.1 Delegates with Static Methods
	4.1.1 Instantiation of Delegates with Static Methods in BoogiePL

	4.2 Multicast Delegates
	4.2.1 Stability requirements
	4.2.2 Encoding Multicast Delegates
	4.2.3 Combining Delegates in BoogiePL
	4.2.4 Subtyping and Multicast Delegates

	4.3 Events
	4.3.1 Ownership and Events

	4.4 Closed Target Type Delegates
	4.4.1 Pre-, Post-Conditions and Invariants
	4.4.2 Tightly Coupled Delegates
	4.4.3 CTT Delegates and Subtyping
	4.4.4 CTT Delegates in BoogiePL

	5 Implementation and Runtime Checks
	5.1 From SSC to CIL
	5.1.1 Delegate Instantiation
	5.1.2 Contracts for delegates
	5.1.3 Delegate Subtyping
	5.1.4 Disabling Delegates
	5.1.5 Frame Conditions
	5.1.6 CTT Delegates
	5.1.7 Compiler Architecture

	5.2 Boogie
	5.3 Runtime Checks
	5.3.1 Building Blocks
	5.3.2 Implementing Runtime Checks

	6 Conclusions
	6.1 State of the Implementation
	6.2 Conclusions
	6.3 Future Work

	A Short User's Manual
	B Examples
	B.1 Complete USBStick Example
	B.2 Events
	C SSC Syntactic Grammar
	D Compiler Generated Methods
	D.1 Compiler-Generated Delegate Classes
	D.2 Compiler-Generated Events Methods
	E Found Bugs
	E.1 Generics
	E.2 Constructors in Contracts
	E.3 Array Initialization
	E.4 Structural Type Rules for Delegates
	E.5 Out of Band Contracts and Axioms Contradiction

	E.6 Specification of Array Concatenation

