
Static Verification of the SCION Router Implementation

Bachelor’s Thesis Project Description

Sascha Forster
Supervised by Marco Eilers, Prof. Dr. Peter Müller

Department of Computer Science
ETH Zürich

Zürich, Switzerland

1 Background

1.1 SCION

In today’s Internet architecture there are many de-
sign flaws that cause problems. To name a few:

• DDoS attacks are very commonly used to make
a service or website unavailable

• The BGP protocol causes routing problems as it
can be unstable at times

• Security of TLS is questionable, as many certifi-
cate authorities (CAs) exist. Additionally, when
a CA is compromised, it can take a long time to
remove them from the list of trusted roots.

The SCION architecture [1] aims to improve on
most of these problems. Most relevant to this project
is that SCION does not use BGP, instead it allows
clients to choose the route of packets they send.
The SCION routers simply forward packets along
the route that is defined in the header. This allows
SCION routers to be stateless, because they do not
need to keep ever growing routing tables. That is
beneficial, because looking up the next hop in the
header is cheaper than searching for it in the routing
table using prefix matching. Furthermore, it prevents
hijacking of traffic, avoiding eavesdropping by third
parties with malicious intent.

1.2 VerifiedSCION

VerifiedSCION1 is a joint project of the Chair of
Programming Methodology, the Information Security
Group and the Network Security Group. It aims to
verify the routing protocol SCION, by first verifying
that the protocol has certain guarantees, assuming it
is implemented correctly, and then showing that the
router is implemented correctly. This project aims to
contribute to the verification of the implementation.

1.3 SCION Router

As in IP today, the SCION router receives a bit-
string, which it needs to parse to make it easier to
work with. If the received bit-string is a well-formed
SCION packet, it gets parsed successfully. Then, the
router will perform some additional processing on the
packet to check if it is valid. SCION packets include
the entire path from the source to the target address
as a hop list in the header. The router looks up the
next hop, increases the index for the hop list and then
forwards the packet.

2 Router Verification

The aim of this project is to statically verify a part of
the SCION router implementation. This means prov-
ing safety (no out of bounds errors, no data races),

1http://www.pm.inf.ethz.ch/research/verifiedscion.

html

1

http://www.pm.inf.ethz.ch/research/verifiedscion.html
http://www.pm.inf.ethz.ch/research/verifiedscion.html


liveness (no infinite loops) and functional correctness,
i.e., the implementation adheres to the specification
of SCION. In particular, functional correctness re-
quires proving correct behaviour if a SCION packet
is received by the router. Correct behaviour means
processing the packet according to the specification
and then forwarding it to the next hop. To limit the
scope of this project, we choose one path in the router
code. Namely, the case when processing a packet
whose path has a single up-segment.

2.1 Specification

During verification, it will be a challenge to find the
right specification and more specifically the right in-
variants that are established by the implementation.
Specification means annotating the code with con-
crete pre- and postconditions and loop invariants.

With the right specification using the permission
system of Viper one can show that all memory ac-
cesses are performed only when a method or func-
tion has sufficient permissions to the accessed mem-
ory locations. To prove termination, obligations as
described in [2] will be used. For showing correct
I/O behaviour, a specification according to a Petri
net will be used, shown in Figure 1.

In order to write the I/O specification, we define an
abstract data type (ADT), which represents a SCION
packet. The ADT will only include information that
is necessary to show correct I/O behaviour of the
router. Using an ADT allows us to get a simplified
view of the parsing process. More specifically, we de-
fine a function toADT that is equivalent to reversing
the parsing of a packet and abstracting the resulting
bit-string. We declare, but do not define, functions
abstract and concretise, to go from bit-strings to the
ADT and back.

In Figure 1, a bit-string is received and stored in
bs. Then, if bs is well-formed, the router processes bs
to create a bs′ which is then forwarded. Otherwise,
the packet gets dropped.

Now, assume we have a function ps = p(x) that ab-
stracts the bit-string into the ADT. Instead of wf(bs)
and bs′, we use wf(ps) and ps′.

bs = recv() split

drop

otherwise

send(bs′)

wf(bs)

Figure 1: Simple depiction of the Petri net used for I/O
specification where:
- bs is the bit-string that is received
- wf(x) says if x is a well-formed SCION packet
- bs′ is the bit-string after some processing

2.2 Nagini

Verification of the Python implementation will be
performed using the Nagini verifier2, which is a
Python front-end for the Viper [3] verification frame-
work. The tool-chain starts with Nagini, which trans-
lates Python code to the Viper language. Then there
is a choice between using two different verification
techniques, symbolic execution and verification con-
dition generation.

It is also a part of this project to evaluate the per-
formance and correctness of Nagini. If any issues with
Nagini arise, we will try to identify and reproduce the
bug. However, it is not part of this project to fix bugs
in Nagini.

As for library functions that are used in the code,
we assume that they are correct. Similarly, we ini-
tially assume the correctness of some parts of the
SCION code, e.g., the packet parsing code. This
means that we will use stubs to represent these func-
tions, as implementation details are not important.
Nonetheless, we must annotate them with appropri-
ate contracts such that verification can succeed.

3 Core Goals

1. Prove memory safety of the router by showing

2https://github.com/marcoeilers/nagini

2

https://github.com/marcoeilers/nagini


that no illegal memory accesses can happen. We
will attempt to patch any illegal memory ac-
cesses in the current implementation, unless the
work required exceeds the scope of this project.

2. Prove absence of unintended infinite loops. This
means using loop invariants with obligations to
show that progress is guaranteed for the router.
Due to the nature of a router, there is a loop that
repeats the receiving of packets indefinitely. The
idea is to show that within that main loop, there
are only loops that terminate.

3. Create an abstraction of the packet parsing
mechanism of the router and declare a function
that maps a SCION packet to the abstraction.
The ADT described in Section 2.1 will be used
to map the packet to.

4. Write an I/O specification [4] for the SCION
router and verify that the implementation com-
plies with it. The Petri net from Figure 1 and
the ADT from the previous task will be used for
this task.

4 Extension Goals

• Prove correctness of the parsing implementa-
tion of the SCION router Python code using the
Nagini verifier. Subsequently, we could replace
the stub for the parsing with the actual imple-
mentation.

• In the core goals, the focus lies on verifying cor-
rectness of a specific path in the router code. As
an additional step, we could try to generalise this
approach to verify other paths that the code can
take.

References

[1] A. Perrig, P. Szalachowski, R. M. Reischuk, and
L. Chuat, SCION: A Secure Internet Architec-
ture. Springer International Publishing AG, 2017.

[2] P. Boström and P. Müller, “Modular Verification
of Finite Blocking in Non-terminating Programs,”
in 29th European Conference on Object-Oriented
Programming (ECOOP 2015) (J. T. Boyland,
ed.), vol. 37 of Leibniz International Proceedings
in Informatics (LIPIcs), (Dagstuhl, Germany),
pp. 639–663, Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2015.

[3] P. Müller, M. Schwerhoff, and A. J. Sum-
mers, “Viper: A verification infrastructure for
permission-based reasoning,” in Proceedings of
the 17th International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation
- Volume 9583, VMCAI 2016, (New York, NY,
USA), pp. 41–62, Springer-Verlag New York, Inc.,
2016.

[4] V. Astrauskas, “Input-output verification in
viper,” Master’s thesis, Department of Computer
Science, ETH Zürich, 2016.

3


	Background
	SCION
	VerifiedSCION
	SCION Router

	Router Verification
	Specification
	Nagini

	Core Goals
	Extension Goals

