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Abstract

In this paper we present a program slicer for Spec#. We use this tool to slice verification con-
dition failures found by Boogie, the static verifier built as part of the Spec# project. This is an
effort to facilitate resolution of such failures and should ultimately help to make contract based
programming more attractive.
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Chapter 1

Introduction

Spec# is a new programming system for specification and verification of object-oriented software.
The system consists of two components: the programming language Spec# with its compiler and
the static verifier Boogie. Boogie is designed to be a language independent verifier and therefore
operates on its own intermediate language BoogiePL. Thus in order to verify the program, the
Spec# compiler first translates its programs to BoogiePL.

Boogie then attempts to establish all verification conditions and returns a trace leading to the
error in the case where verification failed. This trace can be quite large and therefore it can be
rather difficult for the programmer to find the cause of this failure. In order to make it easier
for the programmer to resolve these verification errors we propose a method to make the trace
smaller by using program slicing. Because the programmer is only presented relevant information,
it should enable him to resolve those verification errors much more efficiently.

A program slicer for BoogiePL programs[5] has already been developed, but because Spec#
programmers shouldn’t necessarily be exposed to Boogie’s intermediate language, we propose a
method to make use of this existing BoogiePL slicer by transforming its results back to Spec#
code. Although the same results could be achieved by slicing directly on the Spec# level, our
method makes this technique available to all languages supporting verification using Boogie.

After some required background information, Chapter 3 will discuss how to achieve Spec#
slices from BoogiePL slices on a conceptual level. In Chapter 4 we will then discuss some aspects
important for an implementation.
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Chapter 2

Background

2.1 Spec#

The Spec# language[2] is a superset of the programming language C# extending it by non-null
types, method contracts, object invariants and an ownership type system. Our main focus in this
paper will be on the aspect of contracts. Asserts, assumes, invariants, pre- and postconditions are
the contracts present in the Spec# language. These programming constructs allow developers to
express semantics of a program. This additional information can then be used by the compiler to
ensure the program always retains a valid state.

Listing 2.1 presents a simple Spec# class A with a field i and a method f . In this simple
method, it is easy to see that independent of the outcome of the condition in the if statement,
the assert on line 11 fails if the method f is called with an argument smaller than 1.

1 public class A {
2 private int i ;
3 public int f ( int x )
4 {
5 int y ;
6 if ( x < i ) {
7 y = 1 ;
8 } else {
9 y = 0 ;

10 }
11 assert x > 0 ; /∗ This might f a i l ∗/
12 return y ;
13 }
14 }

Listing 2.1: The Spec# class A.

2.2 Boogie

The second part of the Spec# system is its static verifier Boogie[1]. Although developed as part
of the Spec# system, Boogie has been designed to be source language independent. This is the
reason why it operates on its own programming language BoogiePL[3]. As a result any language
that can be translated to BoogiePL can then also be statically checked using Boogie.

Listing 2.2 presents an example of a simple implementation declaration in BoogiePL. As
seen in this example, BoogiePL employs strictly unstructured control flow. This means that
all higher-level conditional statements are represented by blocks and goto statements connecting
these blocks. Because we are looking at the implementation part of this Boogie program, the only
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10 2 Background

contracts we can find here are asserts and assumes. Pre- and postconditions are declared outside
the implementation part and in a later phase inlined as assume and assert statements.

1 implementation A. f ( t h i s : ref , x : int ) returns ( $ r e s u l t : int )
2 {
3 var i : int , y : int ;
4 entry :
5 assert t h i s != nu l l ;
6 i := $Heap [ th i s , A. i ] ;
7 goto block1 , b lock2 ;
8 block1 :
9 assume x < i ;

10 y := 1 ;
11 goto block3 ;
12 block2 :
13 assume x >= i ;
14 y := 0 ;
15 goto block3 ;
16 block3 :
17 assert x > 0 ;
18 $ r e s u l t := y ;
19 return ;
20 }

Listing 2.2: The implementation of Boogie method A.f().

Note also that the statement on line 6 represents an array access. The special variable $Heap
represents the heap as a two-dimensional array with a tuple consisting of an object identifier and
the qualified field name as its index.

2.3 Translation Function

We now assume we have a translation function that will produce Boogie code from Spec# code. We
will represent this function as TrJSK which takes a Spec# statement S and produces a semantically
equivalent Boogie statement B. Additionally the function returns a mapping from S to B. This
mapping gives us the ability to track which Spec# statement a Boogie statement was generated
from.

We have already seen the results of such a translation when we presented the BoogiePL program
in Listing 2.2 which corresponds to the Spec# method A.f() presented in Listing 2.1. Note that
in order to make our elaborations clearer, we simplify the translations currently in Spec# to what
is needed for our example.

The most basic translations are straight forward. Assignments are handled by

TrJa = bK = TrJaK := TrJbK

where a is a variable and b an expression. Concatenation of statements looks like this:

TrJs1; s2K = TrJs1K; TrJs2K

As we have seen already, the heap is handled like an ordinary array in Boogie. Field references
are therefore translated into array accesses. For this case, our translation function looks as follows:

TrJv = o.fK = assert TrJoK ! = null;
TrJvK := $Heap[TrJoK, T.f ]

where o is a reference to an object of type T , f is one of its fields and v is the variable the value
is assigned to. Note that this Spec# statement translates into two Boogie statements because we
have to make sure the reference o is not null.
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Conditionals in Spec# have to be translated into unstructured control flow. To achieve this,
our translation function will create two new blocks containing assume statements that restrict the
program flow to only one outcome of the condition each. The translation of if statements for
example can be formalized as

TrJif (q) b1 else b2K = goto btrue, bfalse;
btrue :

assume TrJqK;
TrJb1K;
goto bend;

bfalse :
assume TrJ!qK;
TrJb2K;
goto bend;

end :
. . .

where b1 and b2 are blocks of statements and q is a Boolean expression. We can see the unstruc-
turedness of Boogie very well in the goto statement that declares two targets to jump to. On
occurrence of such a statement, the verifier will non-deterministically choose one of the targets.
The assumes in the target block then make sure the right block is chosen. This is because if
it reaches a block that contains an assume that evaluates to false, it will track back to the last
multi-target goto and choose a different target.

Finally, assert and similarly assume statements translate to their equivalent Boogie version

TrJassert qK = assert TrJqK
TrJassume qK = assume TrJqK

and return statements are translated as

TrJreturn vK = $result := TrJvK;
return

As mentioned before, we also assume that the translation function TrJK gives us back the
mapping (map(S) → B) from the source elements of Spec# to the Boogie elements. For simplicity
we assume that each unique statement is labeled with a unique label. We will use the natural
numbers denoting the lines in the code for these labels. In our example from above, the mapping
would look as follows:

map(A.f) = {6 → 5, 6 → 6, 6 → 7, 6 → 8, 6 → 9, 6 → 11, 6 → 12, 6 → 13,

6 → 15, 6 → 16, 7 → 10, 9 → 14, 11 → 17, 12 → 18, 12 → 19}

In conclusion, our translation function can be described by TrJSK = 〈B, map(S)〉, where S
denotes a Spec# statement and B a collection of Boogie statements. In the following it is assumed
that this translation is indeed sound. That is, if we verify the Boogie program translated from
Spec#, we know that the Spec# program is also verified.
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2.4 Slicing BoogiePL

Program slicing[6] is a technique to extract information out of a program that is relevant to a
certain criterion. We use this method to make it easier for a developer to resolve issues that the
verifier in Boogie detected by showing him a minimal set of statements that lead to a verification
error. To this end we are using the slicer for BoogiePL programs developed in [5]. Further on, we
will assume that the method described in the paper is indeed sound.

To incorporate this slicer, we have to provide it with a criterion to slice on. Because we want
to get a slice for a failed verification condition, this should be our slicing criterion. Also to make
the output even easier to understand, we do not want to slice on the whole program, but just one
possible run through it. Fortunately, the Boogie verifier provides us with a counterexample in the
form of a trace that leads to the failure. We will therefore slice on this trace and get a slice of a
program trace that leads to the failed verification condition.

Looking at our BoogiePL program from above, Listing 2.3 shows what our example would look
like after being sliced. The criterion used in this example is the assert on line 17 that we identified
earlier.

5 assert t h i s != nu l l ;
6 i := $Heap [ th i s , A. i ] ;
9 assume x < i ;

17 assert x > 0 ;

Listing 2.3: The slice of Boogie method A.f()



Chapter 3

Conceptual

In this chapter we explain how to achieve Spec# slices from sliced Boogie programs. We show how
this can be achieved by using slicing on the Boogie level. Also some problems and their solutions
are presented. We finally show how this is considered sound.

Spec#
TrJK // BoogiePL

slice()

��

sliced Spec# sliced BoogiePL
Tr−1JKks

Figure 3.1: Transformations in slicing Spec# programs.

The figure above shows an overview of how the steps described in the background chapter and
this one combined can achieve slicing Spec# programs. The Spec# program is translated into
BoogiePL using the translation function defined in Section 2.3 and then sliced as described in
Section 2.4. This chapter is devoted to the last step which maps back the slice to Spec# code.

3.1 Mapping back the translation function

In the background chapter, we presented the translation function TrJK that given a Spec# program
produces a Boogie program with a mapping map(S) from the Spec# to the Boogie statements.
Given this mapping, we will reverse the mapping such that for any Boogie statement we can
determine the Spec# statement it was derived from. The reverse mapping must also consider that
multiple statements in Boogie may map to the same statement in Spec#.

This reverse mapping we represent as the following equation map−1(B) = S which gives us a
mapping from a Boogie statement B back to the original statement S in Spec#. We will use this
mapping to produce a Spec# slice from a sliced BoogiePL program. It is straight forward to get
this reverse mapping from a mapping obtained by our translation function.

For example, the reverse mapping of the method in Listing 2.2 would look as follows:

map−1(A.f) = {5 → 6, 6 → 6, 7 → 6, 8 → 6, 9 → 6, 11 → 6, 12 → 6, 13 → 6,

15 → 6, 16 → 6, 10 → 7, 14 → 9, 17 → 11, 18 → 12, 19 → 12}

13



14 3 Conceptual

Given this reverse mapping and the sliced Boogie program from Listing 2.3, we can produce
the following Spec# program slice for our example:

6 if ( x < i )
11 assert x > 0 ; /∗ This might f a i l ∗/

Listing 3.1: The slice of Spec# method A.f().

So our reverse translation function Tr−1JK will just use the reverse mapping map−1() to trans-
late back to Spec# code.

Tr−1JBK = map−1(B)

In case a statement B that cannot be found in our mapping is given to this function, Tr−1JK
will not return a Spec# statement for it. Additionally, Tr−1JK will also make sure every Spec#
statement is only mapped back once.

However, we observe that the slice produced from our reverse mapping here contains an extra
statement that does not provide any information as to why the program failed. This is due to the
encoding of conditional statements in the form of assume statements.

3.2 Handling of structured statements

We observed in Listing 3.1 that we produce slices larger than necessary. This results from the fact
that the Boogie slicer is unable to determine if an assume statement derives from a conditional or
from an assumption in the methodology. To minimize this impact, we investigated three different
options.

3.2.1 Post-processing

One way to solve this is to perform post-processing on the Spec# level. Finding and removing
these conditionals would be straight forward, but it turns out that this is not really appropriate.
The spirit of Boogie is to free the source languages from having to be concerned with the analysis
that Boogie can perform. This method would clearly violate that idea.

But even more important is the fact that we might still get larger slices than are necessary.
Assume that we have an additional statement i := i + 1 immediately before line 6 in our example
in Listing 2.1. Because of the dependency on i in the conditional, this statement would also end
up in the slice. Therefore before post-processing the slice would look like

5 i := i + 1 ;
6 if ( x < i )

11 assert x > 0 ; /∗ This might f a i l ∗/

Listing 3.2: The slice of the extended Spec# method A.f().

and post-processing would only remove the if statement leaving our newly added assignment
statement on line 5 in the slice. To achieve the most compact slice possible, we would then have
to perform slicing on the Spec# level again. However this would defeat the purpose of having
Boogie perform slicing in the first place.
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3.2.2 Structural analysis

Another option is to make use of the distinctive block structure produced by the translation of
conditionals. As we observed in Section 2.3, if statements for example translate to the following
block structure:

B1

||yyyyyyyy

""FFFFFFFF

Btrue

""EEEEEEEE Bfalse

||xxxxxxxx

B2

where B1 ends in a goto with two targets and Btrue and Bfalse contain complementary assume
statements. Detecting these patterns would remove the necessity of post-processing on the Spec#
level. However we observe that it is not always possible to determine that the blocks Btrue and
Bfalse just contain assume statements related to conditionals.

In the following example translated to BoogiePL, we wouldn’t necessarily know if the assume c
statement was explicitly introduced in Spec#, or if it is part of the structure of if statements

1 if ( q ) {
2 assume c ;
3 . . .
4 }

So this technique would only work under the condition that we knew exactly what type of
translation is performed and how it is done. This method is therefore too sensitive and not really
viable.

3.2.3 Annotating assume statements

We can remove the limitation of the translation by allowing assume statements to carry one more
piece of information. We can either put more dependency on the comments before assumes or
modify the syntax for assume statements. Our implementation makes use of the first option and
as such checks the comments before assumes to find out if they came from a conditional. But
since both variants have the same effect, we will focus on the discussion of the second, cleaner
option here.

In that case we would change the syntax of assume statements to assume q, cond where
cond is either true, meaning that this statement was translated from a conditional (i.e. from the
program text) or false to denote that it originates from the Boogie methodology or an assume
in the source language. We then have to adapt our translation function for if to

TrJif (q) b1 else b2K = goto btrue, bfalse;
btrue : assume TrJqK, true;
TrJb1K;
goto bend;

false : assume TrJ!qK, true;
TrJb2K;
goto bend;

end :
. . .
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and similarly for the other conditionals. Any other assume statement would then have their cond
parameter set to false. Like this conditionals can easily be distinguished and removed from the
slice in case they do not contain any other statements, as is the case in our example from above.

Using this last solution we would translate our extended example from Section 3.2.1 to the
following in BoogiePL

1 implementation A. f ( t h i s : ref , x : int ) returns ( $ r e s u l t : int )
2 {
3 var i : int , y : int ;
4 entry :
5 assert t h i s != nu l l ;
6 i := $Heap [ th i s , A. i ] ;
7 i := i + 1 ;
8 $Heap [ th i s , A. i ] := i ;
9 goto block1 , b lock2 ;

10 block1 :
11 assume x < i , t rue ;
12 y := 1 ;
13 goto block3 ;
14 block2 :
15 assume x >= i , t rue ;
16 y := 0 ;
17 goto block3 ;
18 block3 :
19 assert x > 0 ;
20 $ r e s u l t := y ;
21 return ;
22 }

Listing 3.3: The implementation of the extended Boogie method A.f().

which would then produce the following minimal slice:

19 assert x > 0 ;

Now mapping back to Spec# is straight forward and we can see that our slice is indeed much
smaller and more compact then without our extensions for handling conditionals correctly.

Concluding this chapter, we have seen how to map back to the original Spec# code from
its translated BoogiePL form. We have also annotated assume statements to be able to slice
conditionals correctly. Assuming that the transformations described in the background section
are sound, we can conclude that our Spec# slicer is sound too. This is indeed the case because it
proves to be equivalent to a slicer written specially for the Spec# language.



Chapter 4

Implementation

In the previous chapter we have seen how we map back slices of BoogiePL programs. According to
our Figure 3.1 this should enable us to build a Spec# slicer. But we have omitted a very important
detail so far. There are additional transformations on the BoogiePL program that are needed to
prepare it for verification condition generation. These transformations alter the Boogie program
in ways that make it impossible to easily map back to Spec# using the method described above.
Therefore in this chapter we will discuss some of these transformations and their impact on an
implementation.

4.1 Loop invariant inference

One such transformation is the loop invariant inference. In this phase, Boogie uses abstract
interpretation to generate loop invariants that are then inserted into the program. The special
property of this transformation is that it only adds elements to the BoogiePL program and does
not change it in any other way. As we have seen in Section 3.1 this poses no problem to our function
Tr−1JK because the additionally added program elements will just not map back to anything in
the source Spec# code.

4.2 Passification

The most interesting transformation happens in the passification phase[4]. This is an essential
optimization step that replaces all assignments with semantically equivalent assume statements.
The verification conditions generated from these assignment-free programs can then be proven
much more efficiently. Compared to the loop invariant inference step, this phase alters the pro-
gram in various places by replacing assignments with assumes and by substituting variables. For
example as we have already seen in Listing 3.3 the Boogie equivalent of the Spec# statement
i := i + 1 is

1 assert t h i s != nu l l ;
2 i := $Heap [ th i s , A. i ] ;
3 i := i + 1 ;
4 $Heap [ th i s , A. i ] := i ;

Listing 4.1: A simple increment in BoogiePL.

After passification, all the assignments are replaced by assume statements and the variable i
is substituted by versions that are not changed further. The assignment to the heap is even more
complex, involving duplicating it and invoking an additional helper function that realises these
changes. So our simple increment would then look as follows:

17



18 4 Implementation

1 assert t h i s != nu l l ;
2 assume i@0 == $Heap [ th i s , A. i ] ;
3 assume i@1 == i@0 + 1 ;
4 assume $Heap@0 == sto r e2 ( $Heap , th i s , $ev , tmp0) ;
5 assume $Heap@1 == sto r e2 ($Heap@0 , th i s , A. i , i@1 ) ;
6 assume IsHeap ($Heap@1) ;

Listing 4.2: A simple increment in BoogiePL after the passification phase.

We observe that these changes to the program elements pose a serious problem to our mapping
function, because they change the program quite dramatically. It is not possible anymore to easily
map back the replaced program elements, because our mapping function can only map back the
elements recorded by the transformation function.

One solution to this problem would be to create a copy of the whole program before it is altered.
Then after the intrusive changes one can try to map back to the copy again. By exploiting block
labels that stay the same and the structure of the statements in the blocks it is possible to achieve
this. Although not optimal, this scheme provides for a relatively easy implementable way to close
the last gap in our slicing efforts and that is the reason we use it in our implementation. Also,
because of the dependence on comments introduced by our solution from Section 3.2.3, we must
bring back these comments even though they are optimized away at some point. This option
allows us to achieve that easily.

However, this is hardly the optimal solution. A more general method would allow mapping
back to the original source language from any stage in the verification process. This is especially
important for a verifier like Boogie that was designed to be source language independent. To be
usable, the verification internals should be hidden from the user so that all the information he’s
faced with actually makes sense to him, i.e. the code is returned in the language it was originally
written in. Apart from making this possible, this idea also takes into account that additional
optimisation and verification passes might be added to Boogie at some point. An additional
advantage is that it does not only make our slicing efforts easier, it also simplifies the current error
reporting system.

Therefore, we propose introducing a source location indicator to every element that gives us
the location of a program element in the original source code. This additional piece of information
should always be retained when new elements are added to the program that substitute some
other element. Using this scheme, it should always be possible to map back to the statement in
the original language from any stage in the verification process. This extra information could be
compared to debugging symbols generated by compilers, that allow mapping back to the exact
position in the source code when debugging code.



Chapter 5

Conclusion

We have presented a slicer for Spec# programs to make resolving verification failures easier for
developers. It works by applying slicing to the BoogiePL representation of the program, which we
translate back to the original Spec# code again. In this back-translation, we have observed that
conditionals pose a particular problem, because they translate to simple assume statements in
Boogie. Because these assume statements are indistinguishable from assumes that were implicitly
declared or added by the methodology, we have determined that annotating them with their origin
resolves this issue.

We have also reasoned that a verifier which is designed to be language independent should
have a reliable method to go back to the original source code from any point in the verification
process. This would enable improved error reporting methods like program slicing and would also
be very useful for existing error reporting facilities.
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