
Automatically Testing Solvers for String and

Regular Expressions Constraints

Sebastian Kühne

supervised by Prof. Dr. Peter Müller, Alexandra Bugariu

October 2021

1 Problem Description

Strings with regular expressions constraints are widely used in ”find” or ”find
and replace” operations. Furthermore they also play a vital role in input val-
idation. For example checking whether a date entered by a user is valid or if
a password matches given constraints. For instance the regular expression in

”(?=.*[a-z])(?=.*[A-Z])(?=.*[0-9]).{8,32}”

Figure 1: String Regular expression for a password format [1]

Figure 1 matches all Strings with minimum eight characters and maximum 32
characters (purple), at least one lower-case letter (blue), at least one capital
letter (red) and at least one number (green).

string in lang(s,"[a-c][d-f]") = true

Figure 2: Satisfiable SMT formula in mathematical notation where s

has type String.

Satisfiability modulo theories (SMT) formulas are expressed in first-order-
logic. They can support typical theories such as Arrays and Integers but in
our thesis we will focus on SMT formula with strings and regular expressions.
For instance Figure 2 describes a simple SMT formulas with strings and regular
expressions. The left-hand side consists of a function string in lang which takes
a string s and a regular expression re as arguments. This function returns true
if s is included in the language described by re and false otherwise. Note that
here the regular expression is a constant which describes the language L = {w |
w = w1w2 ∧ w1 ∈ {”a”,”b”,”c”} ∧ w2 ∈ {”d”,”e”,”f”}}. On the other hand the
string s is a free variable.

SMT formulas are either satisfiable or unsatisfiable. An SMT formula is
satisfiable if there exists a model (an assignment of free variables such that the

1



formula evaluates to true). In Figure 2 we can assign ”ad” to s. Because ”ad”
is in L this function evaluates to true and therefore the formula evaluates to
true as well. Hence we have found an assignment of the free variables such that
the formula evaluates to true. Thus the formula is satisfiable.

string in lang(s, ∅) = true

Figure 3: Unsatisfiable SMT formula in mathematical notation where
s has type String and ∅ is a regular expression describing the empty
language.

An SMT formula is unsatisfiable if there does not exist a model. The SMT
formula in Figure 3 evaluates to false for all possible values of the free variable
s as the regular expression ∅, which describes the empty language, does not
match any strings.

SMT solvers try to determine whether a formula is satisfiable or unsatisfiable.
If they return sat they also return a model for the formula. If they return unsat
they optionally return a set of clauses that lead to a contradiction, called the
unsat core. Unfortunately they can also time out (they cannot solve the query
within a given time span). Furthermore as SMT solvers support undecidable
theories they can also return unknown if they cannot determine whether the
SMT formula is satisfiable or unsatisfiable.

The following two issues can have a negative impact on SMT solvers (besides
timing out):

• Unsoundness: An SMT solver is considered unsound if it returns sat
for an unsatisfiable formula or vice versa. We also consider it unsound
if it correctly returns sat but produces an invalid model or if it correctly
returns unsat but returns an incorrect unsat core (a sub-formula that is
satisfiable).

• Incompleteness: We consider an SMT solver incomplete if it returns
unknown for a decidable formula.

string in lang(””, loop(189, 0, string to regex(””)))

Figure 4: Formula that exposes a soundness bug in Z3 (version from
April 2020)

The formula from Figure 4 checks if the language generated by repeating the
empty string from 189 times to 0 times includes the empty string. According
to the SMT-LIB standard [3] a repetition with lower bound higher than upper
bound results in an empty language. As the empty language does not contain
the empty string the SMT formula is unsatisfiable. Nevertheless the SMT solver
Z3 [4] (version from April 2020) incorrectly returned sat which is a soundness
issue.

Our goal is to detect these issues by extending the testing technique proposed
in [2] to also support regular expressions.

2



Table 1: Regular expression operations, grouped by their return type

Return type Operation

Regular all() all char() none()
expression string to regex(s) concat(re1, re2) union(re1, re2)

intersection(re1, re2) difference(re1, re2) complement(re)
kleene closure(re) kleene cross(re) option(re)

range(s1, s2) power(n, re) loop(n1, n2, re)
String replace(s, re, t) replace all(s, re, t)
Boolean string in lang(s, re)
where s, s1, s2, t: type String re, re1, re2: type Regular expression

n, n1, n2: type Int

2 Approach

We will start from the technique described in [2] which automatically generates
SMT formulas from the string theory and extend it to support regular expres-
sions, as well as combinations between string operations and regular expressions.
We plan to expand the technique from [2] to support operations from Table 1
whose semantics are described in detail in SMT-LIB [3].

concat(re1, re2) = res

Figure 5: Simple satisfiable formula generated in step 1. All variables
have type Regular expression.

2.1 Creating satisfiable formulas

In step 1 we take formulas involving an operation with regular expressions de-
scribed in Table 1 with unconstrained parameters and an unconstrained result.
Thus those formulas are trivially satisfiable. An example for a formula generated
in step 1 is shown in Figure 5.

In step 2 we want to extend the satisfiability preserving transformations
proposed in [2] and use them to obtain more complex satisfiable formulas.

In the following, we illustrate one of these transformations, i.e. the constant
assignment transformation for satisfiable formulas.

2.1.1 Regular expression constant assignment transformation

Constant assignment transformation relies on concrete execution. Thus we need
to extend the implementation of [7] to also support regular expression opera-
tions. Therefore we need to implement all operations from Table 1 according to
the reference semantics of [3] to have an executable version of our operations.

3



In order to apply constant assignment transformation [2], we need to setup
a pool of predefined constant regular expressions as [2] did for Integers and
Strings. We propose a simple technique for creating a pool of regular expres-
sions, described below.

2.1.2 Building a constant regular expression pool suitable for con-
stant assignment transformation:

The following procedure relies again on concrete execution and generates arbi-
trarily many constant regular expressions:

1. Build a string and integer pool, for instance as proposed in [2]:
integer pool = {−1, 0, 1} and string pool consists of the empty string,
strings of length 1 and strings containing quotes.

2. Initialize an empty regular expression pool.

3. Evaluate all() and add the result, which is the regular expression describ-
ing all strings, to regular expression pool. Proceed analogously for the
operations all char() and none().

4. Add evaluated string to regex(s1) and evaluated range(s1, s2) (regular
expression describing all strings ”between” s1 and s2 if length of s1, s2 = 1
and the empty language otherwise) to regular expression pool for some
s1, s2 ∈ string pool.

5. Evaluate operations from Table 1 on constant arguments of type Regular
expressions from regular expression pool and add the result to the pool.
For instance we evaluate concat(re1, re2) where re1, re2 are some constant
regular expressions of the pool and add the result to the pool.

6. Repeat step 5 until a certain size of the pool is reached.

Having built a regular expression pool, we can apply regular expression
constant assignment transformation [2] to simple SMT formulas containing reg-
ular expressions. We illustrate the constant assignment technique on Figure
5. For illustration purposes the regular expression pool contains, among other
regular expressions, the regular expressions "[a-c]" and "[d-f]". We con-
cretely execute concat(re1, re2) for all re1, re2 ∈ regular expression pool. One
concrete execution is: concat("[a-c]", "[d-f]") = "[a-c][d-f]". We can now
substitute some of the free variables of Figure 5 with values from the concrete
execution which then yields the formula of Figure 6.

concat(re1, "[d-f]") = "[a-c][d-f]"

Figure 6: More complex satisfiable formula obtained by applying the
constant assignment transformation on the formula from Figure 5
where re1 has type Regular expression.

4



2.2 Creating unsatisfiable formulas

Creating unsatisfiable formulas requires a different approach. We cannot rely
on concrete execution as a formula is unsatisfiable if every assignment of the
free variables is unsatisfiable. Unfortunately if our free variables are regular
expressions or strings we cannot concretely execute our formula as there are
infinitely many assignments of string free variables and regular expression free
variables. Thus we can not use concrete execution to prove that a formula with
free variables is unsatisfiable.

[2] proposed a solution to this problem. They consider an input formula
F = A ∧ ¬B where A and B are equivalent. F is unsatisfiable by construction
because A is equivalent to B and A ∧ ¬A is trivially unsatisfiable. They then
transform F into more complex formulas.

We extend the unsatisfiability preserving transformations proposed in [2] to
also support regular expressions and use them to obtain more complex unsatis-
fiable formulas. In the following, we illustrate one of these transformations, i.e.
the constant assignment transformation for unsatisfiable formulas.

option(re) = res ⇐⇒ res = union(re,"")

Figure 7: Equivalent formulas for a non primitive regular expression
operation where re, res have type Regular expression and "" is the
regular expression, describing the language only containing the empty
String.

2.2.1 Regular expression constant assignment transformation

In the first step we consider simple formulas F (x, y) = ¬A(x) ∧ B(c, y) where
A and B are equivalent and c is a constant. These simple formulas are built
from equivalent formulas for a non primitive regular expression operation. An
example for such equivalent formulas is shown in Figure 7. The option(re)
operation describes the language of re united with "". Thus the formulas from
Figure 7 are equivalent. We can now build the simple formula from Figure 8
out of these equivalent formulas.

¬(option(re) = res) ∧ res = union(re,"")

Figure 8: Simple unsatisfiable formula built from the equivalent for-
mulas from Figure 7 where re, res have type Regular expression

In the second step we transform the simple formula into a more complex
unsatisfiable formula. We substitute the constant c by a new free variable zfresh
and add an additional clause C(c, zfresh) which implies that zfresh = c. For the
formula from Figure 8 we can take for instance the clause C("", zfresh) from
Figure 9 which then yields the new more complex unsatisfiable formula shown
in Figure 10.

5



C("", zfresh) := concat(∅, zfresh) = ""

Figure 9: Clause C("", zfresh), where zfresh has type Regular expres-
sion, implies that zfresh ="".

¬(option(re) = res) ∧ res = union(re, zfresh) ∧ concat(∅, zfresh) = ""

Figure 10: Unsatisfiable formula obtained by applying regular ex-
pression constant assignment transformation where re, res, zfresh have
type Regular expression.

3 Main Challenges

3.1 Implementation of regular expression operations

We will need to carefully implement all operations of Table 1, according to the
reference semantics of [3], because we rely on concrete execution when building
satisfiable formulas as described in Section 2.1. Even a slight mistake in our
implementation could lead to an unsatisfiable formula opposed to a desired
satisfiable formula.

3.2 Creating unsatisfiable formulas with constants

Some unsatisfiable formulas cannot be generated using the approach from Sec-
tion 2.2. For example we cannot obtain the formula of Figure 4 by transforming
an initial unsatisfiable formula F = A ∧ ¬B where A, B are equivalent. How-
ever this formula does not contain any free variables. We propose a technique to
automatically generate these type of formulas, similar to a technique which was
first mentioned in [6], that relies on concrete execution for building unsatisfiable
formulas.

We concretely execute string in lang(s, re) with values from our string and
regular expression pool. We can then build a more complex formula by taking
the left-hand side equal to string in lang(s, re) with s, re from the pools and
the right-hand side equal to the negation of their evaluated boolean result. If
s = ”” is in our string pool and loop(189, 0, string to regex(””)) in our regular
expression pool one of the concrete execution yields:
string in lang(””, loop(189, 0, string to regex(””))) = false. If we now negate
the boolean result we get the unsatisfiable formula:
string in lang(””, loop(189, 0, string to regex(””))) = true which can be triv-
ially simplified to the formula from Figure 4.

3.3 Adapting the string pool and the integer pool

[2] proposes the string pool to consist of the empty string, strings of length 1 and
strings containing quotes. In order to find an assignment of the free variables for
the formula of Figure 2 such that the formula is satisfiable, we need to assign a

6



string of length 2 for instance ”ad” to s. Thus we need to rethink the predefined
set of Strings because we introduced regular expressions.

Analogously, we need to adapt the integer pool as well because we introduced
the loop operation from Table 1 which involves integers.

4 Core Goals

In this project, we plan to address the following core goals:

• Create a pool of representative regular expressions, following the approach
described in Section 2.1.2.

• Design a theoretical solution that extends the technique used in [2] to
automatically generate increasingly complex satisfiable formulas with reg-
ular expressions. For each formula, we will also generate a possible model.
We will follow the approach from Section 2.1.

• Design a theoretical solution that extends the technique used in [2] to
automatically generate increasingly complex unsatisfiable formulas with
regular expressions, for which the minimal unsat core is known by con-
struction. We will follow the approach from Section 2.2.

• Design a theoretical solution for generating unsatisfiable formulas with
constants, generalizing the ideas proposed in [6]. We will follow the ap-
proach from Section 3.2.

• Extend the implementation [7] to also include regular expressions.

• Evaluate our solution on state-of-the-art SMT solvers such as Z3 [4] and
CVC4 [5]. We will use previous versions of those solvers to compare our
found bugs with previously reported bugs and the newest version to pos-
sibly detect new bugs.

5 Extension Goals

In this project, the following extension goals might also be addressed:

• Test our solution on the latest solvers supporting regular expression con-
straints such as dZ3 [8] and Z3str3RE [9].

• Automatically identify common patterns in the failed tests and express
them as regular expressions. This would avoid duplicated bug reports and
will facilitate error localization.

• Generate satisfiable formulas with strings and regular expressions which
contain universal quantifiers.

7



6 Schedule

Week Date Plan

Week 1 18.10.2021-24.10.2021 Initial presentation
Week 2 25.10.2021-31.10.2021 Create a pool of representative regular expres-

sions
Week 3 01.11.2021-07.11.2021 Theoretical solution for satisfiable formulas
Week 4 08.11.2021-14.11.2021 Theoretical solution for satisfiable formulas
Week 5 15.11.2021-21.11.2021 Implementation for satisfiable formulas
Week 6 22.11.2021-28.11.2021 Implementation for satisfiable formulas
Week 7 29.11.2021-05.12.2021 Theoretical solution for unsatisfiable formulas

(with free variables, as in Section 2.2)
Week 8 06.12.2021-12.12.2021 Theoretical solution for unsatisfiable formulas

(with free variables, as in Section 2.2)
Week 9 13.12.2021-19.12.2021 Theoretical solution for unsatisfiable formulas

(with constants, as in Section 3.2)
Week 10 20.12.2021-26.12.2021 Implementation for unsatisfiable formula
Week 11 27.12.2021-02.01.2022 Implementation for unsatisfiable formulas
Week 12 03.01.2022-09.01.2022 Evaluate solution
Week 13 10.01.2022-16.01.2022 Evaluate solution
Week 14 17.01.2022-23.01.2022 Extension goals
Week 15 24.01.2022-30.01.2022 Extension goals
Week 16 31.01.2022-06.02.2022 Write thesis
Week 17 07.02.2022-13.02.2022 Write thesis
Week 18 14.02.2022-20.02.2022 Write thesis
Week 19 21.02.2022-27.02.2022 Final presentation

References

[1] Password regular expression,
https://www.ocpsoft.org/tutorials/regular-expressions/

password-regular-expression/

[2] Alexandra Bugariu and Peter Müller (2020) Automatically testing string
solvers, In Proceedings of the ACM/IEEE 42nd International Conference
on Software Engineering (ICSE ’20). Association for Computing Machin-
ery, New York, NY, USA, 1459–1470. DOI:https://doi.org/10.1145/
3377811.3380398

[3] SMT-LIB, The Satisfiability Modulo Theories Library.
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml

[4] Z3,
https://github.com/Z3Prover/z3

8

https://www.ocpsoft.org/tutorials/regular-expressions/password-regular-expression/
https://www.ocpsoft.org/tutorials/regular-expressions/password-regular-expression/
https://doi.org/10.1145/3377811.3380398
https://doi.org/10.1145/3377811.3380398
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://github.com/Z3Prover/z3


[5] CVC4,
https://cvc4.github.io/

[6] Project description of Automatically Testing SMT Solvers by Olivier
Becker,
https://ethz.ch/content/dam/ethz/special-interest/infk/

chair-program-method/pm/documents/Education/Theses/Olivier_

Becker_BA_Description.pdf

[7] StringSolversTests by Alexandra Bugariu,
https://github.com/alebugariu/StringSolversTests

[8] dZ3 solver,
https://github.com/cdstanford/dz3-artifact

[9] Z3str3RE,
https://z3string.github.io/z3str3RE/readme.html

9

https://cvc4.github.io/
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Olivier_Becker_BA_Description.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Olivier_Becker_BA_Description.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Olivier_Becker_BA_Description.pdf
https://github.com/alebugariu/StringSolversTests
https://github.com/cdstanford/dz3-artifact
https://z3string.github.io/z3str3RE/readme.html

	Problem Description
	Approach
	Creating satisfiable formulas
	Regular expression constant assignment transformation
	Building a constant regular expression pool suitable for constant assignment transformation:

	Creating unsatisfiable formulas
	Regular expression constant assignment transformation


	Main Challenges
	Implementation of regular expression operations
	Creating unsatisfiable formulas with constants
	Adapting the string pool and the integer pool

	Core Goals
	Extension Goals
	Schedule

