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Abstract

SMT solvers are used to determine the satisfiablity of formulas ex-
pressed in first-order-logic. The solvers can support typical theories
such as Integers and Booleans but this work focuses on strings and
regular expressions constraints. SMT solvers have many applications,
such as program verification and test case generation. All applications
rely on the queries to be answered correctly. Nevertheless, as formulas
are highly complex, ensuring correctness is hard.

To detect incorrectly answered queries by the solvers we extend a tech-
nique, which automatically generates formulas that are either satisfiable
or unsatisfiable by construction and then uses this ground truth to
test the solvers. We extended the technique to also support formulas
containing regular expressions, as well as formulas combining regular
expressions and arrays/bitvectors.

This thesis will show, that the for regular expressions extended tech-
nique, was able to detect soundness errors in state-of-the-art solver Z3.
Furthermore we generated formulas, which expose incompleteness and
performance issues in solvers.
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Chapter 1

Introduction

Satisfiability modulo theories (SMT) formulas are expressed in first-order-logic.
They can support typical theories such as Integers and Bitvectors but we put
our main focus on SMT formulas containing strings and regular expressions.
For instance Figure 1.1 describes a simple SMT formulas with strings and
regular expressions. The left-hand side consists of a function string in lang
which takes a string s and a regular expression re as arguments. This function
returns true if s is included in the language described by re and f alse otherwise.
Note that here the regular expression is a constant which describes the
language L = {w | w = w1w2 ∧ w1 ∈ {”a”,”b”,”c”} ∧ w2 ∈ {”d”,”e”,”f”}}.
On the other hand the string s is a free variable.

Furthermore we also looked at formulas combining arrays, bitvectors and
regular expressions.

SMT formulas are either satisfiable or unsatisfiable. An SMT formula is satis-
fiable if there exists a model (an assignment of free variables such that the
formula evaluates to true). In Figure 1.1 we can assign ”ad” to s. Because ”ad”
is in L, string in lang evaluates to true and therefore the formula evaluates
to true as well. Hence we have found an assignment of the free variables
such that the formula evaluates to true. Thus the formula is satisfiable.

An SMT formula is unsatisfiable if there does not exist a model. The SMT
formula in Figure 1.2 evaluates to false for all possible values of the free

string in lang(s, [”a − c”][”d” − ” f ”]) = true

Figure 1.1: Satisfiable SMT formula where s has type String.

string in lang(s, re empty) = true

Figure 1.2: Unsatisfiable SMT formula where s has type String and re empty is a constant
regular expression describing the empty language.

1



1. Introduction

string in lang(””, loop(189, 0, string to regex(””)))

Figure 1.3: Formula that exposes a soundness bug in Z3 (version 4.8.7)

variable s as the regular expression re empty which describes the empty
language, does not match any strings.

SMT solvers try to determine whether a formula is satisfiable or unsatisfiable.
If they return sat they also return a model for the formula. If they return unsat
they optionally return a set of clauses that lead to a contradiction, called the
unsat core. They can also time out (they cannot solve the query within a given
time span). Timeouts often point to performance issues. Furthermore as SMT
solvers support undecidable theories they can also return unknown if they
cannot determine whether the SMT formula is satisfiable or unsatisfiable.

The following two issues can have a negative impact on SMT solvers (besides
timing out):

• Unsoundness: An SMT solver is considered unsound if it returns sat
for an unsatisfiable formula or vice versa. We also consider it unsound
if it correctly returns sat but produces an invalid model or if it correctly
returns unsat but returns an incorrect unsat core (a sub-formula that is
satisfiable).

• Incompleteness: We consider an SMT solver incomplete if it returns
unknown for a decidable formula.

Besides detecting soundness errors in the solvers, we were also interested in
generating formulas that expose incompleteness or performance issues.

1.1 Motivation

Strings with regular expressions constraints are widely used in ”find” or
”find and replace” operations. Furthermore they also play a vital role in
input validation. For example checking whether a date entered by a user is
valid or if a password matches given constraints.

SMT Solvers such as Z3 [13] and CVC5 [1] are used to solve SMT formulas
that can contain regular expressions. SMT solvers have many applications,
such as program verification and test case generation. All applications rely
on the SMT-solver to be correct.

The formula from Figure 1.3 checks if the language generated by repeating the
empty string from 189 times to 0 times includes the empty string. According
to the SMT-LIB standard [11], the reference semantics used by Z3 and CVC5, a
repetition with lower bound higher than upper bound results in an empty
language. As the empty language does not contain the empty string the SMT
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1.2. This work

formula is unsatisfiable. Nevertheless the SMT solver Z3 [13] (version from
April 2020) incorrectly returned sat which is a soundness issue.

Although the correctness of the solvers is crucial, it is unfortunately not
guaranteed as Figure 1.3 shows. Detecting soundness errors in the solvers
was a primary motivation for our thesis. As Chapter 6 shows, we were able
to generate formulas that do expose soundness issues.

1.2 This work

We extended the approach used in [19], which automatically generates formu-
las that are either sat or unsat by construction and then use this ground truth
to test the solvers, to also support formulas containing regular expressions.
We extended the approach used in [18], which automatically generates unsat-
isfiable formulas with only constants using concrete execution, to support
regular expressions.

1.3 Contributions

The main contributions of the thesis are the following:

• We extended the technique of [19] to support regular expressions.

• We extended the technique of [18] to generate unsatisfiable formulas
with only constants to support formulas with regular expressions.

• We extended [19] and [18] to generate formulas combining regular
expressions and arrays/bitvectors.

• We evaluated the extended technique with state-of-the art solvers Z3
[13] and CVC5 [1].

1.4 Outline

The outline of this thesis is as follows: Chapter 2 summarizes the extension of
the approach of [19] and [18] to support regular expressions. In Chapter 3 we
extend the technique of [19] and [18] to support formulas, combining regular
expressions and bitvectors/arrays. Chapter 4 discusses technical details that
were needed for extending the approaches. In Chapter 5 we will discuss the
implementation needed for the techniques. In Chapter 6 we will evaluate the
extended technique. In Chapter 7 we present related work. Chapter 8 draws
conclusions of our work and presents future work.
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Chapter 2

Overview

We started from the technique described in [19] which automatically gen-
erates SMT formulas from the string theory. The basic approach of [19] to
construct and transform formulas is:

Step 1. Generate simple formulas which are either sat or unsat by construc-
tion.

Step 2. Apply automatic transformations to these formulas to obtain more
complex, equisatisfiable formulas.

The ground truth of the formulas is known as the formulas are either satis-
fiable or unsatisfiable by construction. These formulas can then be used as
inputs to test SMT solvers.

We extended the technique proposed in [19] to also support regular expres-
sions. Table 2.1 shows all considered operations involving regular expressions.

Table 2.1: Regular expression operations, grouped by their return type

Return type Operation

Regular all() all char() none()
expression string to regex(s) concat(re1, re2) union(re1, re2)

intersection(re1, re2) di f f erence(re1, re2) complement(re)
kleene closure(re) kleene cross(re) option(re)

range(s1, s2) power(n, re) loop(n1, n2, re)
String re replace(s, re, t) re replace all(s, re, t)

Boolean string in lang(s, re)
s, s1, s2, t: type String re, re1, re2: type Regular expression
n, n1, n2: type Int

5



2. Overview

Table 2.2: String operations, grouped by their return type

Return type Operation

String at(s, o f f )∗ concat(s, t) intToStr(n)
replace(s, t, u) substr(s, o f f , len)

Integer indexO f (s, t, o f f ) length(s) strToInt(s)
Boolean contains(s, t) equals(s, t) pre f ixO f (s, t)

su f ixO f (s,t)
∗ returns a char; s, t, u: type String; n, o f f , len: type Integer

a = (re empty string)a

Figure 2.1: Regex equality where re empty string is a constant regular expressions describing
the language containing only the empty string.

range(s1, s2) = res

Figure 2.2: Satisfiable formula where s1, s2 have type String and res has type Regular
expression.

2.1 Regular expression equality

Concretely performing regex equality is essential for most transformations in
this paper. According to SMT-LIB regular expressions are equal if they describe
the same language. As a consequence the regex equality in Figure 2.1 holds,
although the string representation of the two regular expressions in the
Figure is different, because both regex describe the language containing only
String ”a”.

We use the dk.brics.automaton [2] to represent regular expressions.
Dk.brics.automaton transforms regex into automatons and thus allowing us
to compare the language of regular expressions, which enables us to perform
correct regular expression equality checks.

2.2 Generating formulas

We follow the approach from [19] and generate satisfiable and unsatisfiable
formulas separately. In the following sections we present how we generate
satisfiable and unsatisfiable formulas containing regular expression opera-
tions.

2.2.1 Generating satisfiable formulas

In step 1 we take formulas involving an operation with regular expressions
described in Table 2.1 with unconstrained parameters and an unconstrained
result. These formulas are trivially satisfiable as these operations are total
functions. For instance in Figure 2.2 we use the range function which takes

6



2.2. Generating formulas

Table 2.3: Equivalent formulas for regex operations

Id Regex operation Equivalent formula

E1 di f f erence(re1, re2) =
res

res = re1 ∩ rec
2

E2 kleene cross(re) = res res = re{++}rre∗

E3 option(re) = res res = re empty string ∪ re
E4 power(n, re) = res (res = re empty string if n = 0) ∧ (res =

re{++}r power(n − 1, re) if n > 0)
E5 loop(n1, n2, re) = res (res = re empty if n1 > n2) ∧ (res =

power(n1, re) if n1 = n2) ∧ (res =
power(n1, re) ∪ .... ∪ power(n2, re) if n1 < n2)

E5’ loop(n1, n2, re) = res (res = re empty if n1 > n2) ∧ (res =
power(n1, re) if n1 = n2) ∧ (res =
power(n2, re) ∪ loop(n1, n2 − 1, re) if n1 < n2)

E6 range(s1, s2) = res (res = string to regex(s1) ∪ .... ∪
string to regex(s2) if |s1| = |s2| = 1) ∧ (res =
re empty if |s1| ̸= 1 ∨ |s2| ̸= ∨s1 > s2)

E7 complement(re) = res res = di f f erence(rec, re)
s1, s2 : type String; re, re1, re2; type Regular expression; n, n1, n2 : type Integer;
rec

2 denotes the complement of re2; {++}r denotes regex concatenation;

two strings s1, s2 as arguments and returns the language containing all
string of length 1 between s1, s2 if s1 and s2 are single characters (ordered by
their corresponding ASCII value) and the empty language otherwise. Both
arguments and the results are unconstrained.

In step 2 we apply one of the extended satisfiability preserving transforma-
tions. These transformations are described in detail in Section 2.3.

2.2.2 Generating unsatisfiable formulas

[19] considers equivalent formulas A and B and defines a formula F :=
¬A ∧ B , which is unsatisfiable by construction as A ≡ B. In a second step it
transforms F into a more complex formula with a larger unsat core. After
applying a transformation, the larger unsat core is unique and known by
construction.

Analogously to the solution from [19] for Strings, we built Table 2.3 listing
equivalent formulas, that we considered. The table is based on SMT-LIB’s
[11] description of the operations involving regular expressions. Having built
Table 2.3, allows us to generate formulas F := ¬A ∧ B, where A ≡ B with
regular expressions.

7



2. Overview

Table 2.4: Set of predefined constants used in our experiments

Pool type Elements

String ”” ”a” ”b”
Integer 0 1 3 4

Regular Expression a b re empty re all char re all
a and b are the regular expressions describing the language containing string
”a” and string ”b” respectively; re empty describes the empty language;
re allchar describes the language containing all strings of length 1; re all
describes the language containing all strings

2.3 Transforming satisfiable formulas

In this Section we present two satisfiability preserving transformations, which
were first introduced for the String theory in [19]. We extended the transfor-
mations for regular expressions.

Both transformations rely on concrete execution. [12] implements the string
operations from Table 2.2 according to the SMT-LIB standard.

To support regular expressions we extended the existing implementation.
We carefully implemented the operations from Table 2.1 according to the
reference semantics of SMT-LIB, to have an executable version of the regex
operations.

Furthermore our transformations rely on a pool of predefined constants.
Table 2.4 shows the constants of the corresponding types used in our experi-
ments.

2.3.1 Constant assignment transformation

[19] describes the Constant assignment transformation as inspired by bound-
ary testing, because many software errors are caused by the incorrect han-
dling of corner cases.

Having built an executable semantics for the operations from Table 2.1,
extending constant assignment transformation for regular expressions was
straightforward. The transformation for regular expressions proceeds as
follows:

We take any operation from Table 2.1 with some arguments from the cor-
responding pools from Table 2.4. We then obtain a result by concretely
executing this operation. We then build the satisfiable formula by setting the
operation with the corresponding arguments equal to the the obtained result.
Lastly we replace some of the constants by free variables. This formula is
still satisfiable, because assigning the same constants to the corresponding re-
placed variables is a model for the formula. This process is done exhaustively
for all possible initial values from the pools, we also exhaustively consider

8



2.3. Transforming satisfiable formulas

range(”b”, ”a”) = re empty

Figure 2.3: Satisfiable formula obtained by concretely executing the range function with
arguments ”b” and ”a”.

range(”b”, tmp str1) = tmp regex2

Figure 2.4: Satisfiable formula obtained by constant assignment transformation, where
tmp str1 has type String and tmp regex2 has type Regular expression.

all possible replacements of constants. Let us illustrate this technique on
an example. In Figure 2.3 we concretely execute the range operation with
arguments ”b” and ”a”. As the ASCII representation of ”b” is greater than
the ASCII representation of ”a” the result of the concrete execution yields
re empty. For the formula from Figure 2.3 Z3 seq [13] (version 4.8.14) and
Z3str3RE [17] incorrectly returned unsat. The bug was confirmed by the
developers from Z3str3RE.

In the second step we replace some of the constant values by free variables in
the formula. For example we can replace the constants ”a” and re empty by
free variables of the corresponding type, shown in Figure 2.4. This formula is
satisfiable as we can assign ”a” to s and re empty to res which is a model for
the formula. Hence we have generated a satisfiable formula with a known
model.

2.3.2 Term synthesis transformation

[19] describes the goal of term synthesis to test the interactions between
different operations. This is in contrast to constant assignment transformation,
where each operation was tested in isolation.

Term synthesis transformation for regular expressions proceeds as follows.
We exhaustively evaluate all operations from Table 2.1 and Table 2.2 with
arguments from the pools, building a term pool. Analogously to constant
assignment transformation we concretely execute an operation from Table 2.1
with arguments from the corresponding pools (Table 2.4) building an equality.
We then replace the result and the arguments with other terms from the
term pool with equal results. Note that we rely on regex equality as shown
in 2.1 when we replace regex constants by regex terms. Finally we replace
all constants in the formula by free variables. Note that equal constants get
replaced by the same free variable to obtain a more tight formula. Term
synthesis is done exhaustively for all possible terms.

To give further insight to the technique we illustrate term synthesis trans-
formation on an example. First we exhaustively evaluate all operations
from Table 2.1 and Table 2.2 with arguments from the pools, building the
term pool, shown in Table 2.5. We concretely execute the string in lang

9



2. Overview

string in lang(at(tmp str0, tmp int1), range(tmp str0, tmp str0)) =
contains(tmp str0, tmp str0)

Figure 2.5: Satisfiable formula obtained by term synthesis transformation where tmp str0
has type String and tmp int1 type int. Z3str3RE returns unsat.

Table 2.5: Term pool

Term Result

.... ....
at(”a”, 0) ”a”

range(”a”, ”a”) a
contains(”a”, ”a”) true

.... ....
Term pool obtained by concretely executing operations from Table 2.1 and

Table 2.2 with constant arguments.

operation with String ”a” and regular expression a. The result of the op-
eration is trivially true. This equality builds our simple formula. Next we
replace the constants by terms from Table 2.5 which evaluate to the same
constant. We replace ”a” by at(”a”, 0) because the result of at(”a”, 0) is ”a”,
replace a by range(”a”, ”a”) (range(”a”, ”a”) = a) and replace the result by
contains(”a”, ”a”) (contains(”a”, ”a”) = true.

Finally we replace the constants by free variables, note that we assign the
same variable to the same constants. This particular execution of term
synthesis results in the formula from Figure 2.5. Note that the formula is still
satisfiable as assigning the constants, that were replaced by the free variables,
to the same variables is a model for the formula.

Z3str3RE [17] returned unsat for this formula. The bug was confirmed and
fixed by the developers from Z3str3RE.

2.3.3 Term synthesis without regular expression variables

SMT solvers cannot handle formulas well with regular expression variables,
which we show in Chapter 6. This was the motivation for a slightly modified
term synthesis, involving no variables of type regular expression.

We define our regular expression pool to consist of regular expressions only
describing a language containing a single string.

The only modification to term synthesis as described in Section 2.3.2, is in
the constant replacement process. Constant regular expressions that only
contain a String s, first get rewritten by string to regex(s) and instead of
replacing the regular expression by a constant we replace the string s by a
string variable.

10



2.4. Transforming unsatisfiable formulas

concat(loop(1, 1, a), string to regex(””) = range(”a”, ”a”)

Figure 2.6: Satisfiable formula obtained by term synthesis transformation before replacing
constants.

concat(loop(1, 1, tmp regex0), string to regex(tmp str0) =
range(tmp str 1, tmp str1)

Figure 2.7: Satisfiable formula obtained by Term synthesis transformation with regular
expressions. tmp regex0 has type regular expression, tmp str0 and tmp str1 have type String.
Note that the loop operation supports no integer variables. They have to be constant.

concat(loop(1, 1, string to regex(tmp str1)), string to regex(tmp str0) =
range(tmp str 1, tmp str1)

Figure 2.8: Satisfiable formula obtained by term synthesis transformation without regular
expression variables (2.3.3). tmp str0 and tmp str1 have type String. Note that the loop
operation supports no integer variables. They have to be constant. Z3 seq (version 4.8.14)
returned an invalid model.

In our experiments we define the regular expression pool to consist of regex
a and b. By construction of the regex pool all constant regular expression
occurring before replacement, only contain a string. Note that we could also
include more complex constant regex, that cannot be rewritten using the
string to regex function in our pool and simply leave them constant in our
synthesized formula.

Let us illustrate this slight modification in the replacement process on an
example. Both transformations obtain the same initial formula from Figure
2.6. The difference between the two transformations is that term synthesis
with regular expressions (Section 2.3.2) replaces a by a variable tmp regex0
of type regular expression. Whereas the slightly modified technique (Section
2.3.3) replaces a by string to regex(tmp str1). Term synthesis with regular
expression variables obtains formula Figure 2.7, whereas the term synthesis
without regular expressions, obtains Figure 2.8.

Z3 seq [13] (version 4.8.14) returned an invalid model for the formula from
Figure 2.8.

2.4 Transforming unsatisfiable formulas

In the unsatisfiability preserving transformations introduced in [19], one
considers formulas F(x, y) := ¬A(x) ∧ B(x, y). Note that the variable x
appears in both A and B. The basic idea is to introduce a fresh free variable
x f resh, that replaces all occurrences of x in B(x, y) and then to conjoin a
new clause C(x, x f resh) that implies that x = x f resh. Note that the solvers
need to perform additional reasoning steps, as they also have to include
the additional clause C to prove its unsatisfiability. Thus the unsat core is

11



2. Overview

Table 2.6: Equalities between a regular expression operation and non-constant and constant
regular expressions

Id Equality

NC1 union(re, re empty) = re
NC2 union(re, re) = re
NC3 intersection(re, re all) = re
NC4 intersection(re, re) = re
NC5 di f f erence(re, re empty) = re
NC6 concat(re, re empty string) = re
NC7 concat(re empty string, re) = re
NC8 power(1, re) = re
NC9 loop(1, 1, re) = re
NC10 replace re(s1, re, s2) = s1 if ∀w, w1, w2 (s1 =

w1{++}sw{++}sw2) =⇒ string in lang(w, re) = f alse
NC11 replace re all(s1, re, s2) = re if ∀w, w1, w2 (s1 =

w1{++}sw{++}sw2) =⇒ string in lang(w, re) = f alse
C1 string in lang(s, re all) = true
C2 string in lang(s, re empty) = f alse
C3 range(s1, s2) = re empty if (|s1| ̸= 1) ∨ (|s2| ̸= 1) ∨ (s1 > s2)
C4 power(0, re) = re emtpy string
C5 loop(n1, n2, re) = re empty if n1 > n2

C6 union(re, rec) = re all
C7 intersection(re, rec) = re empty

s1, s2, s, w, w1, w2: type String; re, re1, re2: type Regular expression; n, n1, n2:
type Int; {++}s denotes string concatenation

¬(kleene cross(re) = res) ∧ (res =
re f resh{++}rre∗f resh) ∧ (union(re f resh, re empty) = re)

Figure 2.9: Unsatisfiable formula obtained by variable replacement transformation. All
variables are of type regular expression. Z3 seq 4.8.14 returned unknown.

extended by C.

Analogously to Table 3 in [19], which describes equalities between string
operations and non-constant and constant strings, we designed equalities
between regex operations and constant/non-constant regex, shown in Table
2.3. These equalities are used to construct the new clause C.

In the following subsections we illustrate two unsatisfiability preserving
transformations that were extended for regular expressions.

2.4.1 Variable replacement transformation

Variable replacement transformation proceeds as follows: We choose any
equality from Table 2.3 and use it to construct our formulas A and B. We
choose an identity NC1-NC11 from Table 2.6 for the additional clause.

12



2.5. Unsatisfiable formulas with only constants

¬(option(re) = res) ∧ (res = z f resh ∪ re) ∧ (power(0, re) = z f resh)

Figure 2.10: Unsatisfiable formula obtained by constant replacement transformation. All
variables are of type regular expression.

To give more insight to the technique we illustrate it on an example: We use
E2 from Table 2.3 to build the formulas A and B. Thus A := (kleene cross(re) =
res) and B := (res = re{++}rre∗). A is equivalent to B, as the kleene cross(re)
operation is defined as the concatenation of re and the Kleene star of re, ac-
cording to SMT-LIB. In the first step we negate A and replace all occurrences
of re in B by re f resh. In the second step we need to add an additional clause
that implies re = re f resh. We can for instance choose NC1 from Table 2.6.
Thus we define C := union(re f resh, re empty) = re. Finally we conjoin ¬A ,
B[re f resh/re] and C which results in the unsatisfiable formula from Figure
2.9.

Z3 seq 4.8.14 returned unknown for this formula, exposing incompleteness.

2.4.2 Constant replacement transformation

In constant replacement transformation we consider formulas F(x, y) :=
¬A(x) ∧ B(c, y), where c is a constant, chosen from Table 2.3. Instead of
replacing a variable in B as done in variable replacement transformation
(Section 2.4.1), we replace a constant c by a fresh free variable z f resh. We then
add a new clause C chosen from Table 2.6 C1-C7, that implies z f resh = c.

Let us illustrate this transformation on an example. We consider ¬A :=
¬(option(re) = res) and B := (res = re empty string ∪ re) (E2 from Table
2.3). In the first step we replace the constant re empty string in B by z f resh. In
the second step we use C4 from Table 2.6 to define C := power(0, re) = z f resh.
Note that according to SMT-LIB, power(0, re) is equal to re empty string.
Thus C implies z f resh = re empty string. We can now conjoin all 3 clauses
and obtain the formula from Figure 2.10. Note that all 3 clauses are needed
to prove its unsatisfiability.

2.5 Unsatisfiable formulas with only constants

In this section we consider an approach for generating unsatisfiable formulas
with only constants using concrete execution. We extend Olivier Becker’s
approach presented in [18] for transforming unsat formulas, only involving
constants, to also support regular expressions. Having built the concrete
execution for regular expressions, extending the transformations to support
regular expressions was straightforward.
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2. Overview

range(”a”, ”b”) = re empty

Figure 2.11: Unsatisfiable formula obtained by transforming unsatisfiable formulas with
constant values.

2.5.1 Transforming unsatisfiable formulas with constant values

Similar to constant assignment transformation (Section 2.3.1), we concretely
execute operations from Table 2.1 with arguments from the corresponding
pools (Table 2.4). Finally we set the operation equal to some constant from
the corresponding pool not equal to the result of the concretely executed
operation. Note that we need to perform regex equality on a language level,
as shown in Section 2.1. We do this procedure exhaustively for all possible
results and arguments.

We illustrate this technique on one of the generated formulas. We concretely
execute the range function with constant ”a” as the first argument and
constant ”b” as the second argument. This results in the regular expression,
describing the language containing strings ”a” and ”b”.

We then set range(”a”, ”b”) equal to a regex from the pool, describing a
different language. We can for instance choose re empty which results in the
unsatisfiable formula from Figure 2.11.

Note that unlike in constant assignment transformation, we cannot substitute
the constants by free variables. Let us assume we substitute ”a” by a free
variable tmp str0. Although we know that if we assign ”a” to tmp str0 the
formula will evaluate to false, the formula has to be false for all assignments
in order to be unsat. Assigning ”c” to tmp str0 is a model for the formula.
Thus replacing ”a” by tmp str0 makes the formula satisfiable. This unsound
replacement was not done in [18] and neither by us, but illustrates why we
have to use a different procedure for transforming unsatisfiable formulas
with variables.

2.5.2 Transforming unsatisfiable formulas with constant values and
complex result

Transforming unsatisfiable formulas with constant values and complex result
proceeds analogously to Transforming unsatisfiable formulas with constant
values (Section 2.5.1) for the first step.

The main difference is that we set the operation equal to some more complex
term with a result not equal to the concretely executed operation’s result.
The terms are chosen from the term pool which is built analogously to the
term pool from term synthesis (Section 2.3.2).

One formula that was generated by this transformation is shown in Figure
2.12.
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2.5. Unsatisfiable formulas with only constants

range(”a”, ”b”) = concat(a, b))

Figure 2.12: Unsatisfiable formula obtained by transforming unsatisfiable formulas with
constant values and complex result, where ”a” and ”b” are String constants and a, b are
constant regex.
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Chapter 3

Combining regular expressions with
arrays and bitvectors

In this chapter we consider formulas combining multiple theories. We look
at formulas containing combinations of regular expressions and bitvectors
[10], arrays [9]. Table 3.2 describes all the operations grouped by their return
type including bitvector and array operations.

The main interaction between the three theories happens with Arrays using
index or element type regular expression. Note that in contrast to for instance
java, arrays in SMT-LIB do not have to be of index type Integer. In Figure
3.1 we create an array with index type Regular Expression and element type
Bitvector.

3.1 Adapting the technique

In the following sections we extend term synthesis and unsat formulas
with constants transformations to support combination of theories. Both
transformations rely on concrete execution. Becker [18] implemented all
operations containing bitvectors or arrays from Table 3.2 according to the
SMT-LIB semantics. However he did not consider arrays having index or
element type regular expression. In order to have an executable, we extended
his implementation to also support arrays with index or element type regular
expression.

Array(Regular Expression, Bitvector)

Figure 3.1: Array with index type regular expression and element type Bitvector

Table 3.1: Bitvector pool

x#0 x#1
Both bitvectors have fixed size 4.
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3. Combining regular expressions with arrays and bitvectors

Table 3.2: Considered operations grouped by their return type

Return type Operation

Regular all() all char() none()
expression string to regex(s) concat(re1, re2) union(re1, re2)

intersection(re1, re2) di f f erence(re1, re2) complement(re)
kleene closure(re) kleene cross(re) option(re)

range(s1, s2) power(n, re) loop(n1, n2, re)
String re replace(s, re, t) re replace all(s, re, t) at(s, o f f )

concat(s, t) intToStr(n) replace(s, t, u)
substr(s, o f f , len)

Boolean string in lang(s, re) contains(s, t) pre f ixO f (s, t)
equals(s, t) bvult(v, w)

Integer indexO f (s, t, o f f ) length(s) strToInt(s)
bv2nat(v)

Bitvector concat(v, w) extract(a, b, v) bvnot(v)
bvand(v, w) bvor(v, w) bvadd(v, w)
bvmul(v, w) bvudiv(v, w) bvurem(v, w)
bvshl(v, w) bvlshr(v, w)

Array store(array(T1, T2), i, e)
T2 select(array(T1, T2), i)

T1, T2 : Regular expression, String, Boolean, Integer or Bitvector; s, s1, s2, u, t:
type String re, re1, re2: type Regular expression;
n, n1, n2, a, b, o f f , len: type Integer; v, w: type Bitvector of length m where
m is a strictly positive integer; i: type T1; e: type T2

As we are now also considering operations from the array and bitvector
theory, we need to set up a pool of predefined constants for arrays and
bitvectors, as done for Regular expressions, Strings and Integers in Table 2.4.

The considered bitvectors are listed in Table 3.1. As we are interested in
the combination of regular expressions and bitvectors/arrays we restrict our
array pool to consist of arrays having either index or value type regular
expression. Arrays in SMT-LIB also need to have an initial value type, that
is why we consider all possible initial values from our other pools as initial
values for the arrays.

Furthermore [18] tested the interaction between arrays, bitvectors and string
operations. That is why we explicitly only generate formulas that contain
both regular expressions and an array or a bitvector.

3.1.1 Term synthesis

For combined term synthesis we follow the approach from Section 2.3.2. We
now also consider array and bitvector operations and also include a bitvector
and array pool.

Figure 3.2 shows one automatically generated satisfiable formula by term
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3.2. Unsatisfiable formulas with constants and complex result

select(store(tmp array0, tmp regex1, tmp bv3), kleene cross(
select(tmp array6, tmp int7))) = bvadd(tmp bv10, tmp bv3)

Figure 3.2: Satisfiable formula obtained by term synthesis. tmp array0 : type Array(Regex,
Bitvector); tmp array6 : type Array(Int,Regex), tmp regex1 : type Regex; tmp int7 : type
Integer; tmp bv10, tmp bv3: type Bitvector; all bitvectors have fixed size 4.

bvult(x#1, x#1) = select((as const (Array Regex Bool) true), all char)

Figure 3.3: Unsatisfiable formula obtained by unsatisfiable formulas with constant values
and complex result combining different theories.

synthesis. Z3 seq 4.8.14 correctly returned sat with a correct model for this
formula.

3.2 Unsatisfiable formulas with constants and complex
result

We followed the same approach from Section 2.5.2 , but we now also consider
array and bitvector operations and also include a bitvector and array pool.
One automatically generated formula by the technique is shown in Figure
3.3.
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Chapter 4

Technical details

In this chapter we explore some additional technical details for generating
formulas with regular expressions.

4.1 Regular expression pool

We decided to fix the regular expression pool in our experiments, mainly
because we wanted to be exhaustive. An alternative approach is to randomly
create a regular expression pool, which is presented in the following section.

4.1.1 Randomized regular expression pool

The following procedure relies on concrete execution and generates arbitrarily
many constant regular expressions given a fixed String pool string pool and
Integer pool integer pool :

1. Initialize an empty regular expression pool.

2. Add re all, re empty, re allchar to the regular expression pool

3. Add evaluated string to regex(s) to regular expression pool for all s in
string pool

4. Randomly choose operations from Table 2.1 with return type Regular
Expression, concretely execute the operations with randomly chosen
arguments from the corresponding pools and add the result to the
pool. For instance we evaluate concat(re1, re2) where re1, re2 are some
randomly chosen constant regular expressions of the pool and add the
result to the pool.

5. Repeat step 5 until a certain size of the pool is reached.
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4. Technical details

concat(string to regex(”a”), string to regex(”b”)) =
concat(string to regex(”a”), string to regex(”b”))

Figure 4.1: Regex operation and result.

concat(string to regex(”a”), string to regex(”b”)) = string to regex(”ab”)

Figure 4.2: Regex operation and simplified result.

4.2 Representing regex in SMT-LIB

The only way of representing regex in SMT-LIB is by using the functions
described in Table 2.1 with return type Regular Expression. As a consequence
the result obtained by some operation with return type Regular expression
can only be expressed as an other regex operation.

This in contrast to operations with return type String, where the result can
simply be represented as a string. Note that the representation of the string
result is unique, whereas there are infinitely many ways of representing a
result of type Regular expressions (different operations, describing the same
language).

Let us consider Figure 4.1 where we represent the result of the operation
simply as the operation. Nevertheless we probably prefer the representation
of the result used in Figure 4.2. This simplification also leads to more inter-
esting test cases for the solvers (in constant assignment transformation from
Section 2.3.1), as the solver cannot simply compare the string representation
of the operations to reason about regex equality.

In the following section we present some simplifications for regex.

4.2.1 Regex simplifications

Table 4.1 shows all considered simplifications. These simplifications are ap-
plied for regex results obtained by concrete executions in constant assignment
transformation (Section 2.3.1). Note that there might exist more possible
simplification rules.
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4.2. Representing regex in SMT-LIB

Table 4.1: Regex simplifications

Initial regex Simplified regex

concat(string to regex(s1), string to regex(s2)) string to regex(s1{++}ss2)
union(re1, re2), where re1 = none() re2

union(re1, re2), where re2 = none() re1
union(re1, re2, where re1 = re2 re1

intersection(re1, re2), where re1 = all() re2

intersection(re1, re2), where re2 = all() re1
intersection(re1, re2), where re1 = re2 re1

range(s1, s2), where s1 = s2 and |s1| = |s2| = 1 string to regex(s1)
power(1, re) re
loop(1, 1, re) re

re, where re = none() none()
re, where re = all() all()

re, re1, re2 : type Regular expression; s1, s2: type String.
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Chapter 5

Implementation

We extended the existing implementation [12] to support regular expressions.
Furthermore we also integrated the code from [18] for bitvectors/arrays and
extended the arrays to support index and value type Regular expression.

We used Java JDK 11.0.14 [6] and Z3 (4.8.14) Java API [15] for the implemen-
tation.

5.1 Structure

Our code is divided into two parts: generator and runner. In the generator we
generate formulas which are either satisfiable or unsatisfiable by construction.
If the formulas are satisfiable, we additionally provide a model for the
formula and if the formula is unsatisfiable we provide an unsat core.

In the runner we run the generated tests with some SMT-solver and then
validate the output of the solver. If the solver returns sat we additionally
validate its model. If the solver returns unsat we check its unsat core.

Becker documented the existing implementation for String operations as well
as Arrays and Bitvectors in [18], which is why we put our primary focus on
describing newly added functionality involving regular expressions.

5.2 Reglan types

In Section 2.1 we have seen that representing regex as strings is not sufficient.
We use dk.brics.automaton [2] to represent regex. This package also supports
non standard representation of regular expressions, such as intersection and
complement. Furthermore dk.brics.automaton automaton package trans-
forms regex into automatons. This allows us to perform equality checks on
regex. Note that performing equality checks and including complement/in-
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5. Implementation

Reglan
Automaton

ReglanString
toSMT()

ReglanIntersection
toSMT()

extends extends

....

extends

Figure 5.1: Reglan inheritance

tersection operation for regex is not included in widely used regex packages
such as java.util.regex [7].

Dk.brics.automaton [2] does not support transformation to SMT formulas.
As this SMT transformation was essential, we needed to write a wrapper for
dk.brics.automaton to support conversion to SMT.

The wrapper class Reglan (Listing 5.1) has a String field regVal which is
the String value used to build an object of type RegExp regexp. RegVal
needs to carefully follow the semantics of [3]. With the specified regexp we
build the corresponding automaton. This automaton allows us to use method
isStringInLang(String s) which checks whether s is in the language described
by the regex. Furthermore having built the automaton, we can perform
equality checks on objects of type Reglan using the equals method.

For each regex type such as ReglanIntersection and ReglanString shown in
Listing 5.3 and Listing 5.2 we need a class that extends the Reglan class
(inheritance diagram shown in Figure 5.2) in order to track the construction
history. Each subclass of Reglan implements a toSMT() method, allowing us
to generate SMT regex. Listing 5.4 gives an example on how to use Reglan
objects.

Listing 5.1: Simplified version of reglan class

public abstract class Reglan {

//fields needed for tracking "history"

//fields are initialized by subclasses

protected Reglan re1;

protected Reglan re2;

protected int n1;

protected int n2;

protected String s1;

protected String s2;

//string regVal needed to initialize RegExp

protected String regVal;
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5.2. Reglan types

//objects from dk.brics.automaton

protected RegExp regexp;

protected Automaton automaton;

//returns an object of Z3 for creating SMT regex

public abstract ReExpr toSMT(Context ctx);

public boolean equals(Object other) {

Reglan otherObject = (Reglan) other;

Automaton otherAutomaton = otherObject.automaton;

return this.automaton.equals(otherAutomaton);

// returns true if both automatons describe same language

}

public boolean isStringInLang(String s) {

// transform regex into automaton and run the automaton on s

return automaton.run(s);

}

}

Listing 5.2: Simplified version of ReglanIntersection

public class ReglanIntersection extends Reglan {

public ReglanIntersection(Reglan re1, Reglan re2) {

super(re1, re2);

//build regVal according to dk.brics.automaton.regexp semantics

//regVal is then used to initialize the regexp object

this.regVal="("+re1.regVal +"&"+ re2.regVal+")";

}

public ReExpr toSMT(Context ctx) {

ReExpr first = re1.toSMT(ctx);

ReExpr second = re2.toSMT(ctx);

ReExpr[] arr = new ReExpr[] { first, second };

return ctx.mkIntersect(arr);

}

}

Listing 5.3: Simplified version of ReglanString

public class ReglanString extends Reglan {

public ReglanString(String s1) {

super(s1);
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5. Implementation

this.regVal = "("+s1+")";

}

public ReExpr toSMT(Context ctx) {

SeqExpr seqi = ctx.mkString(s1);

return ctx.mkToRe(seqi);

}

}

Listing 5.4: Code example for Reglan

//build regex1=a++b

Reglan regex1 = new ReglanConcat(new ReglanString("a"), new

ReglanString("b"));

//build regex2=(re_all_char || a)^c

Reglan regex2 = new ReglanComplement(new ReglanUnion(new

ReglanAllChar(), new ReglanString("a")));

//perform equality check

regex1.equals(regex2);

//check whether the string "ab" is in regex1

regex1.isStringInLang("ab");

//transform regex2 to SMT

regex2.toSMT();

5.3 SMT-LIB reference semantics

An executable version of the SMT-LIB semantics is needed in both runner
and generator. Becker [18] documents the executable semantics for string
operations, array operations and bitvector operations. We present in the
following sections the newly added SMTReglan class shown in Listing 5.5 as
well as operations involving regex.

5.3.1 SMTReglan

In contrast to other SMT objects such as SMTString where we represent
the constant value with a value field, we represent the constant value of
SMTReglan (shown in Listing 5.5) with a regVal field of type Reglan (Listing
5.1). Using the objects of type Reglan to represent constant regex, allows us
to check for equality on regex as described in Section 2.1. Furthermore this
class allows us to represent regex variables.

Listing 5.5: Fragment of SMTReglan

public class SMTReglan extends SMTConstructedObject {

protected Reglan regVal;
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5.3. SMT-LIB reference semantics

public SMTReglan(Reglan regVal, Operation history, boolean

isConstant) {

//set history, isConstant of object

super(history, isConstant);

//set regVal

this.regVal = regVal;

}

}

5.3.2 SMTReglan operations

SMTReglan operations follow the same pattern. One checks whether the
arguments contain variables. If there are variables, the result is also a variable
of the corresponding type. If the operation only involves constants, one builds
the result of type Reglan, following the SMT-LIB semantics and then returns
the new SMTReglan object. An example is shown in Listing 5.6 for the range
operation.

Listing 5.6: Range operation simplified

public class ReRange extends ReglanOperation {

public SMTConstructedObject apply() {

//if one argument contains a variable return a new unconstrained

SMTReglan

if (atLeastOneUnconstrainedArgument()) {

return new SMTReglan(unconstrained, this);

}

//all arguments are constants

String s1 = arguments[0].getValue();

String s2 = arguments[1].getValue();

if (s1.compareTo(s2) > 0 || s1.length() != 1 || s2.length() !=

1) {

Reglan reglan = new ReglanEmpty();

return new SMTReglan(reglan, this, true);

}

// s1<=s2

//result of type Reglan

Reglan reglan = new ReglanRange(s1,s2);

return new SMTReglan(reglan, this, true);

}
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5. Implementation

5.4 Generator and Runner for regular expressions

Having built the SMTReglan class and having implemented the regex opera-
tions, extending the generator and runner of the existing implementation to
support regular expressions was rather straightforward.

One of the challenging parts was parsing and validating the returned models
of type regular expressions, as the java API had some parsing bugs. This
issue was reported by us and fixed by the developers of Z3 (issue [5]).

5.5 Limitation of the implementation

Due to our technique being exhaustive and having to build an automaton
for each regular expression, to perform equality checks, our implementation
often runs out of memory. As a consequence we needed to restrict the
number of the predefined constants, to some small number. Thus also not
allowing us to build a complex random regular expression pool.

There were attempts of lifting the constraint of being exhaustive in the
transformations, allowing us to use a complex randomized regular expression
pool and perform multiple rounds of a transformation. However, at the time
of writing, this work is not complete for all transformations. Finalizing this
task is left as future work.
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Chapter 6

Evaluation

In this chapter we present and discuss the results for our considered solvers.
We show that our technique was able to detect soundness errors, complete-
ness issues as well as performance issues. Furthermore we will discuss the
limitations of the technique for regular expressions.

6.1 Experimental setup

The solvers were run with a fixed random seed (42). We set a timeout of 15
seconds for each test. Furthermore options produce-models and produce-
unsat-cores were enabled for the solvers. For CVC5 we used the option
”strings-exp” to enable non-primitive string operations. The experiments
were performed on an Intel Core i7-7700K CPU @ 4.20GHz with 16 GB ram
and 400 GB additional swap memory.

6.1.1 Not supported operations

We did not consider all operations from Table 3.2. At the point of writing the
re replace, re replace all were not supported by Z3. Furthermore the power
operation was added to the Java API (issue [8]) after having conducted the
experiments and thus also not included in our experiments.

The loop operation does not allow its integer arguments to be variables. As a
consequence we left the integers used in the loop operation constant for all
transformations.

6.2 Non exhaustiveness

In principal our method is designed to be run exhaustively. Nevertheless
due to time and memory issues, we decided to be non exhaustive for the
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6. Evaluation

Table 6.1: Experimental results for Z3 seq 4.8.14
Theory Expected Transformation #Tests IM IC S U K T E

Regex sat operation 11 0 0 11 0 0 0 0
Regex sat constant assignment 814 0 0 618 11 132 53 0
Regex sat term synthesis (2.3.2) 2689 0 0 523 0 1543 544 79
Regex unsat const (2.5.1) 993 0 0 0 993 0 0 0
Regex unsat constComplexResult (2.5.1) 1534 0 0 0 1533 1 0 0
Regex unsat larger unsat core (2.4.1, 2.4.2) 81 0 0 0 0 1 80 0

Combined sat term synthesis 278 0 0 15 0 136 127 0
Combined unsat constComplexResult 865 0 0 0 857 0 8 0

IM=incorrect model; IC=incorrect unsat core; S=sat; U=unsat; K=Unknown;
T=timeout; E=error

transformation presented in Section 2.5.2 where we limited the amount of
complex results to some configurable value (10 in our experiments).

The two transformations for combined theories were also not run exhaustively.
We limited the generated formulas of each operation to some configurable
value (20 in our experiments) to avoid memory issues.

6.3 Testing latest versions of SMT solvers

In our evaluation we consider the latest solvers of Z3 seq [13] (version 4.8.14),
CVC5 [1] (version 0.0.7) and Z3str3 (version 4.8.14) [13].

6.3.1 Z3 seq 4.8.14

In this section we discuss the most important results for the latest version
of Z3 seq. These are summarized in Table 6.1. In this table we specify
the theory (column 1) which can either be Regex or Combined (combining
regex and arrays/bitvectors), the expected result (column 2) which is either
sat or unsat, the transformation (column 3),as described in Chapters 2 and
3, used to generate the formulas and the total number of tests generated
(column 4). The remaining columns specify the actual result returned by
the solvers. Solvers can return an incorrect model (correctly return sat, but
the produced model is not valid with respect to our executable semantics),
return an incorrect unsat core (correctly return unsat, but an incorrect unsat
core), return sat, return unsat, return unknown, they can timeout or return
an error (solver returned an error message).

Constant assignment transformation

We discovered a total of 11 unsoundly returned unsat cases (marked with
red in Table 6.1). One of the unsound test cases was described in Figure 2.3
for the range operation involving only constants. The other 10 unsound cases
involved regex variables and contained either the difference, intersection,
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6.3. Testing latest versions of SMT solvers

intersection(tmp regex0, re allchar) = intersection(a, re allchar)

Figure 6.1: Sat formula obtained by constant assignment transformations for which Z3 seq
4.8.14 unsoundly returned unsat, where tmp regex0 has type Regular expression.

kleene closure or option operation. One other instance of a sat formula for
which the solver unsoundly returned unsat is shown in Figure 6.1.

As we used both constants a and b in our regex pool, we do not expect all
11 unsat cases to be caused by different bugs. For instance we also obtained
unsat for using b instead of a in Figure 6.1.

Constant assignment transformation was very effective and we managed to
achieve our goal of exposing soundness bugs.

Larger unsat core

Increasing the unsat core of a formula by using Constant replacement trans-
formation or Variable replacement transformation (transformation described
in Section 2.4) was very effective in exposing performance issues. Out of 81
test cases Z3 seq timed out 80 times. We experimented with increasing the
timeout to one minute, Z3 seq 4.8.14 still timed out. Although it was not
tested for even larger timeout values, we assess a change of outcome to be
rather unlikely when increasing the timeout value further.

Unsat formulas with only constants

Z3 seq performed very well for formulas generated by the transformations
described in Sections 2.5.1 and 2.5.2. Z3 seq correctly returned unsat for 2526
out of 2527 tests. For one test case the solver returned unknown, thus this
test case exposed a completeness issue.

Combined

Combined term synthesis exposed completeness issues as well as perfor-
mance issues. Constant and complex result for combined formulas exposed
further performance issues. Note that Z3 seq performs significantly better if
formulas only contain constants.

6.3.2 CVC5 0.0.7

Testing the latest version of CVC5, we obtained many errors, as CVC5
does not support regular expression equality in general (CVC5 can only
reason on a string representation level) nor does it support regex variables.
Our technique did not expose any soundness issues, nor did it expose
completeness or performance issues in CVC5. The results are presented in
Table 6.2.
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Table 6.2: Experimental results for CVC5 0.0.7
Theory Expected Transformation #Tests IM IC S U K T E

Regex sat operation 11 0 0 0 0 0 0 11
Regex sat constant assignment 814 0 0 210 0 0 0 604
Regex sat term synthesis (2.3.2) 2689 0 0 53 0 0 0 2636
Regex unsat const (2.5.1) 993 0 0 0 35 0 0 958
Regex unsat constComplexResult (2.5.1) 1534 0 0 0 53 0 0 1481
Regex unsat larger unsat core (2.4.1, 2.4.2) 81 0 0 0 0 0 0 81

Combined sat term synthesis 278 0 0 0 0 0 0 278
Combined unsat constComplexResult 865 0 0 0 24 0 0 841

IM=incorrect model; IC=incorrect unsat core; S=sat; U=unsat; K=Unknown;
T=timeout; E=error

kleene closure(tmp regex0) = kleene closure(re allchar)

Figure 6.2: Formula for which Z3str3 4.8.14 returns an incorrect model: tmp regex0 =
string to regex(”!0!”) and Z3 seq 4.8.9 returns unsat.

Table 6.3: Experimental results for Z3str3 4.8.14
Theory Expected Transformation #Tests IM IC S U K T E

Regex sat operation 11 0 0 11 0 0 0 0
Regex sat constant assignment 814 190 0 615 1 8 0 0
Regex sat term synthesis with regex var. 2689 1797 0 556 0 320 16 0
Regex unsat const (2.5.1) 993 0 0 613 380 0 0 0
Regex unsat constComplexResult (2.5.1) 1534 0 0 986 548 0 0 0
Regex unsat larger unsat core (2.4.1, 2.4.2) 81 0 0 13 68 0 0 0

Combined sat term synthesis 278 184 0 51 0 33 10 0
Combined unsat constComplexResult 865 0 0 162 703 0 0 0

IM=incorrect model; IC=incorrect unsat core; S=sat; U=unsat; K=Unknown;
T=timeout; E=error

6.3.3 Z3str3 4.8.14

The results for Z3str3 4.8.14 are summarized in Table 6.3. Z3str3 4.8.14 often
returned incorrect models for formulas using regex variables such as Figure
6.2. This formula was reported in the Z3-issue tracker and remained an open
issue [16] at the time of writing. Furthermore for unsat formulas with only
constants and complex result (described in Section 2.5.2) 986 tests out of
1534 were unsoundly returned sat. Overall I believe Z3str3 4.8.14 should not
be used to solve formulas with regex variables and formulas solving regex
equality as the results show.

6.4 Known issues

In this section we compare our generated tests evaluated with Z3 seq 4.8.9
(described in Table 6.4) with known reported issues. For Z3 seq we looked at
tests in the Z3-Issue tracker [14] starting from Sep 11, 2020 where the new
regular expression solver was integrated until October 17, 2021. We only
looked at tests containing regular expression operations. The considered
issues are listed in Appendix A. Out of 47 tests we were able to reproduce
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6.4. Known issues

Table 6.4: Experimental results for Z3 seq 4.8.9
Theory Expected Transformation #Tests IM IC S U K T E

Regex sat operation 11 0 0 11 0 0 0 0
Regex sat constant assignment 814 44 0 566 5 49 150 0
Regex sat term synthesis (2.3.2) 2689 0 0 516 0 1188 960 25
Regex unsat const (2.5.1) 993 0 0 0 969 0 24 0
Regex unsat constComplexResult (2.5.1) 1534 0 0 0 1530 0 4 0
Regex unsat larger unsat core (2.4.1, 2.4.2) 81 0 0 0 0 0 81 0

IM=incorrect model; IC=incorrect unsat core; S=sat; U=unsat; K=Unknown;
T=timeout; E=error

0 tests with our technique. To give an explanation, we identify common
patterns in the reported issues in the following section.

6.4.1 Common patterns in the reported issues

Regular expression Variables Out of 47 tests only one reported issue [4]
contained regular expression variables. String variables on the other hand
were present in almost all tests that caused bugs. Only few tests consisted of
constants only.

String in lang operation Most issues were caused using the string in lang
operation as the most outer operation. Most reported issues containing
the string in lang operation compared CVC5’s [1] result to the result of Z3,
which is an alternative approach for testing the solvers [21]. Note that regex
equality is not supported by CVC5 and one cannot do differential testing
for Z3 using CVC5 as a reference for formulas solving regular expression
equality.

Multiple clauses for satisfiable formulas. Some tests contained multiple
clauses for satisfiable formulas.

Nested operations. Strikingly many reported issues contained multiple
nested operations.

If statement operation. Many issues contained if-statements in satisfiable
formulas. Note that our generated satisfiable tests do not contain the if-
statement.

6.4.2 Comparing our identified issues to the reported issues

The tests that were unsoundly returned unsat for our generated formulas
by Z3 seq 4.8.9 were formulas, solving regex equality with regex variables
such as Figure 6.2 or contained only constants. Whereas the reported issues
mostly contain the string in lang operation with multiple nested operations,
containing String variables and no regex variables.
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6. Evaluation

Table 6.5: Z3 seq 4.8.14 Term synthesis comparison
Theory Expected Transformation #Tests IM IC S U K T E

Regex sat term synthesis with regex var. 2689 0 0 523 0 1543 544 79
Regex sat term synthesis without regex var. 1103 1 0 1096 0 4 2 0

IM=incorrect model; IC=incorrect unsat core; S=sat; U=unsat; K=Unknown;
T=timeout; E=error

Table 6.6: Z3 seq 4.8.9 Term synthesis comparison
Theory Expected Transformation #Tests IM IC S U K T E

Regex sat term synthesis with regex var. 2689 0 0 516 0 1188 960 25
Regex sat term synthesis without regex var. 1103 0 0 783 0 0 320 0

IM=incorrect model; IC=incorrect unsat core; S=sat; U=unsat; K=Unknown;
T=timeout; E=error

6.5 Impact of regular expression variables for Z3 seq

For term synthesis with regex variables (presented in Section 2.3.2) out of
2689 tests Z3 seq 4.8.14 returned unknown or timed out for 2087 (described
in Table 6.6). If we follow the approach from Section 2.3.3 for term synthesis
only 6 out of 1103 tests result in unknown or timeout. This shows us, that
formulas with regex variables are very hard to solve.

Term synthesis without regex variables was able to detect a test case for
which Z3 seq returned an incorrect model shown in Figure 2.7.

Term synthesis without regex variables in Z3 seq 4.8.9 (shown in Table 2.7)
resulted in a total of 320 timeouts or unknowns, whereas its latest version only
results in a total of 6 timeouts or unknowns, which is a great improvement
of the latest version.

6.6 Limitation of the technique

As shown in Section 6.3.2, CVC5 does not support regex variables and the
support for regex equality is very limited. Yet our technique generates only
few test cases that are supported by CVC5 in general (string in lang operation
with no regex variables).

In Section 6.4 we have shown that many reported issues in [14] contain
multiple nested operations. Due to memory issues as shown in Section 5.5
our technique is not able to generate formulas containing multiple nested
operations.
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Chapter 7

Related work

In this chapter we discuss alternative approaches for testing SMT-solvers.

Differential testing

Differential testing [21] is a widely used approach for testing SMT-solvers.
One tests a formula on two different solvers and compares the result pro-
duced by the solvers. If the results are different, it points to a bug in one of
the solvers. Most reports in the Z3-issue tracker [14] for formulas containing
regular expression, refer to a different result obtained in CVC5 and thus
applying differential testing.

One cannot use differential testing (with solvers CVC5 and Z3) for formulas
containing regular expressions variables and containing regex equality, as
these functionalities are not supported by CVC5 yet. Whereas our technique
can determine bugs in formulas containing regex variables and regex equality
in Z3.

Semantic Fusion

Semantic fusion [20] is an effective approach to generate SMT formulas. The
key concept is to fuse two tests (both sat or both unsat) into an equisatisfiable
formula that can then be used to test the solvers. One considered theory in
[20] is regex. They present a formula with regex, exposing a soundness bug
for Z3 which is not obtainable by our technique.
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Chapter 8

Conclusions

In this thesis we have extended the transformations proposed in [19] to also
support regular expressions. Furthermore we have explored other trans-
formation techniques only involving constants [18] and extended them to
support regular expressions. We also considered the generation of formulas
combining arrays, bitvectors and regex. Our evaluation shows that all trans-
formations are able to expose performance, as well as incompleteness issues
for state-of-the art SMT solvers. Some of them can even detect soundness
issues in the solvers.

Additionally we have shown that state-of-the art solvers do not have good
support for regex variables and regex equality. CVC5 does not support regex
variables/regex equality, Z3str3 often returns incorrect models. The only
solver I consider appropriate for solving formulas with regex equality is
Z3 seq. Our evaluation shows that Z3 seq reliably answers queries solving
regex equality containing only constants. However our evaluation also shows,
that Z3 seq often returns unknown or timeout for formulas containing regex
variables and thus also not offering good support for regex variables. Overall
I believe, that the evaluation shows, that formulas with regex variables and
regex equality are very hard to solve for SMT solvers in general.

8.1 Future work

In this section we present future work, extending our presented approach.

Replace operation. In Section 6.1.1 we have shown that not all operations
are supported by Z3 yet. The replace operations involving regex are likely
to be added to Z3 in the future. Adding these replace operations to our
implementation would not require much effort, as the framework for regex
is already implemented.

Additional transformations. We adapted variable/constant replacement
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8. Conclusions

transformation for regular expressions but we did not consider this technique
for combination of arrays/bitvectors and regex. This would require new
rewriting rules (similar to Table 2.6) involving multiple theories.

Non exhaustive methods. Our proposed technique is mainly designed to
be exhaustive. Due to memory issues of the implementation, we cannot do
multiple rounds of, for instance, term synthesis. Lifting the constraint of
being exhaustive would enable us to generate more complex formulas, at the
cost of possibly missing interesting test cases for the solvers. As many bug
reports in the Z3-issue tracker contain multiple nested operations, this might
be an effective approach for detecting issues in the solvers.

Sat formulas with quantifiers. Our formulas do not contain universal
quantifiers. In universally quantified sat formulas, the model for a free
variable occurring in universally quantified clauses has to hold for all possible
values for the quantified variables, which is complicated. We were not able to
find a method of adapting our transformations for universally quantified sat
formulas and are rather convinced that a new theoretical approach is needed.
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Appendix A

List of known issues in the Z3-Issue
tracker

• https://github.com/Z3Prover/z3/issues/5140 (25 tests containing
regex)

• https://github.com/Z3Prover/z3/issues/5298 (1 test containing regex)

• https://github.com/Z3Prover/z3/issues/5390 (1 test containing regex)

• https://github.com/Z3Prover/z3/issues/5467 (7 tests containing
regex)

• https://github.com/Z3Prover/z3/issues/5591 (8 tests containing
regex)

• https://github.com/Z3Prover/z3/issues/5603 (5 tests containing
regex, within considered time span)
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