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1. Background

The Semper project aims to build an automated verifier for concurrent programs written
in the modern programming language Scala. Fig. 1 gives an overview of its components.

1.1. Verification

The project includes two verifiers: Carbon [7] and Silicon [11], based on verification
condition generation and symbolic execution, respectively. These verifiers do not directly
operate on Scala programs, but rather on the Semper Intermediate Language (SIL).
Hence, Scala [2] (or Chalice [8]) programs need to be translated to SIL before verification.

The project’s verification methodology is based on that of Chalice [9], which is itself
based on implicit dynamic frames [12] and centers around permissions [1] and permission
transfers to handle framing and guarantee the absence of data races.

1.2. Specification Inference

Another component of the Semper project is Sample (Static Analyzer of Multiple Pro-
gramming LanguagEs) [4]. It is a generic static analyzer based on abstraction interpre-
tation. It generically combines abstract heap and value domains. Sample contains a new
heap analysis [6] that uses a combined-heap-and-value domain and infers invariants on
recursive data structures like linked lists. Sample can also infer access permissions [5].

Sample has its own front-ends that translate Scala and other languages to an inter-
mediate language called Simple.

Sample is currently not integrated with other components of the Semper project.
Hence, these components do not benefit from the inference power of Sample.
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Figure 1: Selected components of the Semper project (white boxes).

2. Core Objectives

The goal of this M.Sc. thesis is to integrate the verification and static analysis parts of
the Semper project and thus enable a successful verification of incompletely-specified
SIL programs. This reduction of annotation overhead is an important step towards the
vision of making verification more practical.

Concretely, we want to translate incompletely-specified SIL programs into Simple
programs and use Sample to infer additional specifications. Next, we want to feed these
specifications back to the SIL verifier Silicon, hoping that they lead to a successful
verification. In the following, we describe a sequence of steps to handle increasingly
complex SIL programs.

2.1. Translate SIL Programs to Simple, Ignoring Permissions

In SIL, a method may only access a heap location if it has the appropriate permission.
Specifications describe the transfer of permissions within a SIL program. For instance,
methods use preconditions to specify which permissions they require from their caller.
Postconditions indicate which permissions the methods return to their caller.

Currently, there is no semantics for any language constructs that involve permissions
built into Sample. Thus, as a first step, we want to implement a translation of SIL ASTs
to a Simple ASTs, ignoring any existing specifications that involve permissions. Analyz-
ing the resulting Simple program is still meaningful, because the translation preserves
the functional part of the program.

Some SIL constructs will require special attention: Sample currently does not consider
method pre- and postconditions and does not support methods with multiple return
values, as well as old expressions.

To test the correctness of the implementation, we can add support for the assert

statement and check that Sample yields the expected result on SIL test programs.
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Figure 2: Two possible heap abstractions for parameters a and b of method m.

2.2. Infer New Specifications with Sample

The next objective is to use Sample to infer new specifications for the SIL program and
extend the program with these new specifications. We will then use the verifier again,
trying to verify the extended SIL program.

Sample’s new heap analysis [6] will be the main source of new specifications. The
analysis represents an abstract heap as a labeled, directed graph, where nodes represent
abstractions of objects. It distinguishes between definite nodes, representing exactly one
object at runtime, and summary nodes, representing possibly many objects.

An edge between two nodes is annotated with a field and indicates that objects rep-
resented by the source node may point to objects represented by the target node via
that field. In addition, each edge is annotated with the condition under which that edge
exists. Edge conditions are often defined on value fields of the source and target nodes.

We will infer new specifications from abstract heaps. Initially, we will focus on non-
recursive specifications such as permissions to individual fields and numerical constraints.
Later, we will turn our attention to recursive data structures (see Sec. 2.4), which is
exactly what Sample’s heap analysis was designed to handle well.

2.3. Infer Heap Properties From Permissions

Existing SIL specifications that involve permissions are a valuable source of information
about the heap of the program, in particular w.r.t. non-aliasing information.

2.3.1. Example

Consider the following SIL method m with two parameters a and b.

method m(a: Ref , b: Ref)
requires acc(a.f, write) && acc(b.f, write) { ... }

If we simply ignored the precondition, parameters a and b could point to the same
object. As shown in Fig. 2 on the left, Sample’s heap analysis would use a single summary
node to approximate the method’s parameters.

However, the method requires write permission to the field f of each of the objects
referenced by a and b. SIL’s permission model does not allow holding a write permission
to the same object twice. Thus, the precondition implies that a and b in fact point to
two separate objects. Telling Sample that a != b would result in a more precise heap
abstraction (see Fig. 2).
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2.3.2. Inference with Silicon

In our work, we do not plan to implement a sophisticated analysis for tracking per-
missions in Sample. Instead, we want to rely on the symbolic-execution-based verifier
Silicon for handling permission-related reasoning. Even when Silicon fails to verify a
program, it might have inferred useful heap properties such as the object disjointness in
the above example.

We have chosen Silicon over Carbon as we can access the states that Silicon holds
in all intermediate steps of the symbolic execution. We will extract from these states
the heap properties inferred by Silicon and then explicitly add these properties to the
SIL program in the form of additional method pre- and postconditions, loop invariants
or inhale statements. In the above example, the extended method will have a new
precondition a != b. Then, we will supply the extended program to Sample for analysis.

2.4. Support for Recursive Data Structures

Many interesting programs operate on recursive data structures such as linked lists.
Recursive abstract predicates and abstraction functions are the key to specify such pro-
grams. An abstract predicate abstracts over heap locations and can express the permis-
sion to (and other properties of) a whole recursive data structure.

2.4.1. Example

Listing 1 in Appendix A contains the fully specified method firstNats that builds a
linked list of the first n natural numbers in ascending order.

firstNats uses the abstract predicate valid in its postcondition to express that it
returns the permissions to the entire new list to the caller. The method also uses the
abstraction function sorted to indicate that the returned list is sorted. Both valid

and sorted are recursive. Given a reference this to an element of a list, they recurse
to the next element this.next unless this.next is null, which marks the end of the
list. A successful verification requires quite an elaborate loop invariant.

Without any annotations, Sample’s heap analysis [6] infers the heap abstraction in
Fig. 3 from the code. For example, the constraint [(trg, val) = 0] tells us that first

points to a list element whose value is 0. In this constraint, trg represents an edge-local
identifier. It refers only to the object pointed to by first, not every object represented
by the summary node n0.

2.4.2. Relating Recursive Definitions to Heap Graphs with Summary Nodes

The abstract heap produced by Sample in the above example is closely related to the
recursive definitions valid and sorted. The summary node has an edge to null and a
self-loop, while the recursive abstract predicate valid also distinguishes between next

being null and satisfying valid itself. Similarly, the recursive abstraction function
sorted relates the values of two consecutive elements, just like the edge-local identifiers
in the abstract value states associated with edges of the abstract heap.
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Figure 3: Heap abstraction at the end of the firstNats method.

A goal of this project is to exploit this connection between abstract heaps and abstract
predicates in both directions of communication between Silicon and Sample. Firstly, it
would be desirable to consider an abstract predicate that already exists in the program
and build the corresponding abstract heap. Directly supplying that abstract heap to
Sample’s heap analysis could make the analysis more precise. Secondly, we want to infer
new abstract predicates from the abstract heaps that Sample produces and feed these
abstract predicates back to the verifier as part of the inferred specifications.

There is a mismatch between abstract heaps and abstract predicates in the sense
that abstract predicates are fundamentally acyclic, which does not necessarily apply to
abstract heaps with summary nodes. Constraints on edges may imply acyclicity, though.

3. Extensions

Depending on the available time and new insights gained during the project, there are
several opportunities for further work:

Reusing Existing Abstract Predicates in Inferred Specifications As mentioned earlier,
we plan to use existing abstract predicates to make the heap analysis more precise.
In addition, it would make sense to reuse these abstract predicates in the inferred
specifications rather than creating new ones.

This extension will require some form of check whether an abstract heap and
abstract predicate match. We expect that reusing abstraction functions in inferred
specifications will be even more challenging.

Inferring Predicate Folding and Unfolding An abstract predicate has a name and a
possibly recursive body that defines its meaning. SIL verifiers distinguish between
holding a predicate instance via its name and holding its body. fold and unfold

statements tell the verifier to switch between one and the other.

As we plan to infer abstract predicates from the abstract heap, it is also desirable
to learn where to put fold and and unfold statements. There seems to be a
connection between merging and materializing heap nodes and the placement of
fold and unfold statements, respectively.

Integration of Permission Inference Sample provides an analysis for inferring access
permissions using linear programming [3]. This analysis could be exploited to
reduce the annotation overhead for verifying SIL programs.
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Iterative Specification Refinement It may be beneficial to iteratively exchange infor-
mation between Sample’s analysis and the SIL verifier.

Specifications inferred by Sample may not directly lead to a successful verification.
However, they may at least enable Silicon to verify more parts of the program and
infer additional information that may in turn make Sample’s analysis more precise.

Support for Complex SIL Types Sample contains analyses for arrays and collections.
Depending on how advanced these analyses are, we may use them to support SIL’s
dedicated types for sequences, sets and multisets.

Magic Wand Operator Recursive methods that operate on existing data structures usu-
ally unfold abstract predicates before a recursive call and fold them again after-
wards. That is, permissions to the already processed parts of the data structure
are implicitly saved on the call stack.

Because of such fold statements, such methods are not tail-recursive and can thus
not be trivially represented as loops. There is not place to put the fold statement
in a loop and thus, the loop loses the permissions to the parts of the data structure
processed in earlier loop iterations.

A future SIL extension may introduce the magic wand operator −∗ from separation
logic [10], making it possible to specify loops in a more natural way. We may look
into supporting this operator in specification inference.

4. Organization

4.1. Project Phases

The start of the project is on October 7th, 2013 and it ends on April 6th, 2014. The
project consists of the following phases:

4.1.1. Ramp-up Phase

Begin October 7th, 2013

End November 4th, 2013

Deliverables Project proposal, initial presentation

Description The purpose of this phase is to collect and read papers relevant to the
project, set up the development environment, learn the semantics of SIL and Simple
and get an overview of the codebases. Discussions with the supervisors and the
initial author of Sample will help determine the initial direction of the project.

Furthermore, preparing a range of SIL programs and manual translations to Simple
will help to get a better understanding of the problem and serve as valuable testing
artifacts in later phases.
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4.1.2. Conceptual Work and Implementation Phase

Begin October 28th, 2013

End March 7th, 2014

Deliverables Interim presentation

Description Sec. 2 gives an overview of the core objectives and a broad idea of how to
approach them. Once they have largely been achieved, the focus will shift to the
extensions as defined in Sec. 3.

4.1.3. Writing Phase

Begin February 7th, 2014

End April 7th, 2014

Deliverables Project report, final source code, final presentation

Description The project report will describe in detail the conceptual and technical work
done during the project. Writing should ideally begin two months before the end
of the project, gradually replacing the implementation effort. The last three weeks
should be devoted mostly to writing.

To facilitate writing, as many written notes and discussion summaries as possible
will be collected throughout the earlier phases.

4.2. Presentations

Over the course of the project, there will be three presentations.

Initial Presentation The purpose of this 10-minute presentation is to inform the research
group members about the project and gather initial feedback. It will take place
roughly one month after the project start.

Interim Presentation Three months in, a 20-minute presentation discusses the current
state of the project, existing problems and future work.

Final Presentation At the end of the project, a final presentation of 30 minutes gives an
overview of has been achieved during the project and an outlook on future work.
This is the only presentation that counts towards the grade.

4.3. Meetings

A meeting with both supervisors will take place weekly to discuss the project progress,
possible problems and the next steps.
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A. Appendix

var next: Ref
var val: Int

predicate valid(this: Ref) {
acc(this.next , write) && acc(this.val , write) &&
(this.next != null ==> acc(this.next.valid(), write ))

}

function sorted(this: Ref): Bool
requires acc(this.valid(), epsilon)

{
unfolding acc(this.valid(), epsilon) in (

this.next != null ==> (
this.val < (unfolding acc(this.next.valid(), epsilon)
in this.next.val) && sorted(this.next))

)
}

method firstNats(n: Int) returns (first: Ref)
requires n >= 0
ensures acc(first.valid(), write) && sorted(first)

{
var tmp: Ref
var i: Int

tmp := null
first := null
i := n

while (i >= 0)
invariant

((i < n) ==> (first != null)) &&
((first != null) ==> (

(acc(first.valid(), write ))
&& (unfolding acc(first.valid(), write) in first.val == i + 1)
&& (sorted(first ))))

{
tmp := new()
tmp.val := i
tmp.next := first
i := i - 1
first := tmp
fold acc(first.valid(), write)

}
}

Listing 1: Fully specified method that builds a list of the first n natural numbers.
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