
Inferring SIL Specifications
with the Abstract Interpreter Sample

Severin Heiniger

Master’s Thesis Report

Chair of Programming Methodology
Department of Computer Science

ETH Zurich

April 6, 2014

Supervised by:
Dr. Alexander J. Summers
Milos Novacek
Prof. Dr. Peter Müller

2

Abstract

Automated verifiers can prove the correctness of programs with respect to their specifi-
cations. However, writing such specifications is cumbersome and often requires consid-
erable level of expertise. In this thesis, we present a novel approach to automatically
inferring specifications for programs written in SIL, an intermediate language with a
permission-based verification methodology. We focus on programs that operate on recur-
sive data structures such as linked lists and trees, whose specifications require non-trivial
recursive assertions. Our approach builds upon a recent combined heap and value anal-
ysis based on abstract interpretation. However, the results of the heap analysis are not
directly amenable for extracting the specifications. Hence, we refine the analysis with
additional information to enable the extraction of specifications. We have implemented
our approach in the static analyzer Sample. The use of a static analysis for inferring
specifications rather than just program properties is an intriguing direction of research
that, to the best of our knowledge, has not been widely researched. Experimental results
show that our approach can infer specifications for programs that operate on recursive
data structures, without requiring any user-provided annotations.

CONTENTS 3

Contents

1 Introduction 5
1.1 Automated Software Verification with SIL 5

1.1.1 Framing . 5
1.1.2 Abstract Predicates . 6

1.2 Static Program Analyzer Sample . 6
1.2.1 Abstract Heaps . 7
1.2.2 Connection to Recursive SIL Definitions 7

1.3 Overview . 7
1.4 Outline . 8

2 The Semper Intermediate Programming Language (SIL) 9
2.1 Types and Objects on the Heap . 9
2.2 Framing . 9
2.3 Abstract Predicates . 10

3 Combined Heap and Value Analysis with Sample 12
3.1 Abstract Interpretation . 12

3.1.1 Forward Analysis . 12
3.2 Overview of Combined Heap and Value Analysis 12

3.2.1 Abstract Domain . 12
3.2.2 Join . 15
3.2.3 Widening . 15
3.2.4 Materialization . 17
3.2.5 Edge Disambiguation Ghost State 18

4 Translation of SIL Programs 20

5 Running Examples and Associated Challenges 21
5.1 List Generation . 21
5.2 List Traversal . 21

6 Analysis for Inferring SIL Predicates and Predicate Instances 26
6.1 Supported Predicates . 26
6.2 Tracking Predicates . 27

6.2.1 Representation of Predicates . 27
6.2.2 Predicates as a Mechanism for Tracking Permissions 28
6.2.3 Predicates as Placeholders . 28
6.2.4 Detecting Recursive Predicates By Merging Predicates 29
6.2.5 Restricting Heap Analysis for Known Recursive Predicates 29

6.3 Tracking Predicate Instances . 30
6.3.1 Representation of Predicate Instances 30
6.3.2 Folded and Unfolded Labels . 30
6.3.3 Initial Abstract State of a Method 31
6.3.4 Variable Accesses and Assignments 32

6.4 Adding Permissions to Predicates . 33
6.4.1 Identifying the Predicate Instance 33

CONTENTS 4

6.4.2 Adding Permissions to Identified Predicate 34
6.5 Detecting Recursive Predicates During Joining 35

6.5.1 Merging Predicates . 36
6.6 More Precise Heap Analysis for Recursive Predicates 36

6.6.1 Rerunning the Analysis . 37
6.6.2 Impossible Self-Loops . 37
6.6.3 Impossible Edges to Already Unfolded Nodes 38
6.6.4 Version Numbers for Predicate Instances 38
6.6.5 Joining Precise Abstract Heaps . 40
6.6.6 Precise Abstract Heap at Fixed Point 40

6.7 Object Allocation . 41
6.7.1 Introduction of Fresh Unfolded Predicate 42

6.8 Field Assignments . 43
6.9 Folding Predicate Instances . 43

7 Extraction of SIL Specifications from Abstract States 46
7.1 Predicates . 46

7.1.1 Placeholder Predicates . 47
7.1.2 Predicate Aliases . 47
7.1.3 Inlining Shallow Predicates . 47

7.2 Assertions . 48
7.2.1 Splitting Abstract Heaps to Handle Disjunctive Information 48
7.2.2 Predicate Instances . 50
7.2.3 Logical Assertions . 50
7.2.4 Postcondition . 50

7.3 fold and unfold Statements . 51

8 Further Technical Work 53
8.1 Web Interface . 53

8.1.1 Functionality . 53
8.1.2 Technical Basis . 56

8.2 Testing Infrastructure . 57
8.2.1 Generalization of SIL’s Testing Infrastructure 57
8.2.2 Test Annotations . 57
8.2.3 Translation and Heap Analysis End-to-End Testing 58
8.2.4 Specification Inference End-to-End Testing 58

9 Experimental Results 61

10 Conclusion 66
10.1 Future Work . 66
10.2 Acknowledgements . 67

A SIL Language Definition 70

5

1 Introduction

Software permeates our world more than ever. In cases such as transportation systems
and medical equipment, human lives depend on software. It is of paramount importance
to be able to guarantee the correctness of such critical software.

Guaranteeing the correctness of a program via testing is impossible, as the program
could take infinitely many inputs. A solution is to formally specify a program’s behavior
and mathematically prove that the program satisfies this specification, without actually
running the program. Constructing such mathematical proofs by hand is time-consuming
and often infeasible. Hence, several automated verifiers have been developed. A verifier
will either succeed in proving that a program satisfies its specification, or it will output
a list of errors that may indicate a bug in the program or that the specification is
incomplete, that is, lacks certain information required for the proof.

While verification is automated, writing specifications for programs is time-consuming.
Our thesis aims to reduce the overhead required to specify programs written in a verifi-
cation language called SIL, by automatically inferring specifications from the programs
themselves. In order to infer SIL specifications, we extend a recent combined heap and
value analysis [5].

Section 1.1 provides an overview on how SIL programs are specified and Section 1.2
briefly describes the heap analysis that our project is based on. Section 1.3 then provides
an outline of our approach to inferring specificiations for SIL programs.

1.1 Automated Software Verification with SIL

The Semper Intermediate Language (SIL) is an object-based verification language influ-
enced by Boogie [10] and Chalice. SIL programs contain specifications in the form of
method pre- and post-conditions as well as loop invariants.

SIL is a core part of the Semper project at the Chair of Programming Methodology at
ETH Zurich that aims to build an automated verification infrastructure for concurrent
programs written in modern programming languages such as Scala. The Semper project
includes two SIL verifiers1. Currently, there are front-ends that can translate Scala [1]
and Chalice [9] programs into SIL programs for verification.

1.1.1 Framing

One of the reasons why statically verifying object-based programs is challenging is that
a verifier needs to know what parts of the heap a method call is guaranteed to leave
unchanged. This is called the framing problem.

SIL solves this problem by using implicit dynamic frames [14]. SIL uses permissions to
express which heap locations a method may access. Permissions exist per heap location

1Carbon [7] and Silicon [13], based on verification condition generation and symbolic execution,
respectively.

1.2 Static Program Analyzer Sample 6

and methods can gain or lose permissions at various points.

For example, a method has permission to all the fields of any object it allocates. The
method may only access data structures supplied as parameters if the precondition
includes corresponding permissions. Any caller of the method needs to supply these
permissions. Similarly, postconditions allow methods to return permissions to their
caller.

1.1.2 Abstract Predicates

Many interesting programs operate on recursive heap data structures, such as linked
lists that consist of an unbounded number of heap locations. In SIL, recursive abstract
predicates [11] are the key to specifying such programs. An abstract predicate abstracts
over heap locations and can express the permission to (and other properties of) a whole
recursive data structure.

Example. Listing 1 depicts a recursive predicate that specifies a linked list. The pred-
icate contains the permission to the val and next field of the given list element list,
and also contains the permission to all remaining elements recursively via next.

predicate valid(list: Ref) {
acc(list.next) && acc(list.val) &&
(list.next != null ==> acc(valid(list.next)))

}

Listing 1: Recursive predicate that specifies a linked list.

Folding and Unfolding Predicate Instances. SIL verifiers distinguish between holding
an instance of a predicate via its name, and holding its body. To obtain the permissions
directly mentioned in the body of a predicate, the SIL method needs to tell the verifier
with an unfold statement to replace the predicate instance with its body. A fold

statement performs the inverse operation.

1.2 Static Program Analyzer Sample

The Semper project includes a static program analyzer called Sample (Static Analyzer of
Multiple Programming LanguagEs) [4]. Sample is based on the abstract interpretation
framework [2, 3], to soundly approximate possible states of a program.

Sample contains a combined heap and value analysis [5] that infers invariants for pro-
grams that operate on recursive data structures such as linked lists and trees. For
example, an inferred invariant may express that the shape of the heap is a linked list
and that the values in that list are sorted. The analysis does not require any program
annotations.

1.3 Overview 7

list n0 null
[(Trg, val) = 1]

[(Src, val) + 1 = (Trg, val)]

next

next

[(Src, val) = n]

Figure 1: Abtract heap that represents a linked list of the natural numbers 1 to n.

1.2.1 Abstract Heaps

At every point in the program, the heap analysis finds an abstract heap that represents
every possible heap that could exist at that point when running the program.

The analysis represents such an abstract heap as a directed graph, where nodes represent
one or more objects at runtime. Edges between nodes represent possible field references
between these objects. The heap analysis tracks the relationships among value fields
and variables as an abstract value state on each edge.

1.2.2 Connection to Recursive SIL Definitions

The heap analysis is agnostic of concepts such as permissions and predicates that are
part of the SIL verification methodology. However, the heap analysis can infer abstract
heaps that represent recursive data structures. The representation with summary nodes
suggests a connection to recursive assertions such as abstract predicates in SIL.

The abstract heap in Figure 1 represents a data structure that recurses over next fields
and is terminated by null. Such a structure can be described by the abstract predicate
from Listing 1.

1.3 Overview

This project introduces a novel approach of inferring specifications for SIL methods via
extending Sample’s combined heap and value analysis.

The project focuses on methods that operate on recursive data structures such as linked
lists and trees. Inferring specifications for such methods is challenging. It is necessary to
identify predicates that specify the data structures, and which instances of these pred-
icates need to be part of the method’s precondition, postcondition and loop invariants.
The method may also require fold and unfold statements at certain points.

The combined heap and value analysis can analyze methods that operate on recursive
data structures. However, its representation of recursive data structures is not amenable
for identifying recursive predicates that specify them.

We have devised a way to extend the heap analysis such that the analysis results con-
tain sufficient information to extract specifications. Our extended analysis incremen-
tally builds up information about predicates and predicate instances, based on how the

1.4 Outline 8

method operates on the heap. Our analysis exploits the information it has already
learned about predicates to make the heap analysis more precise. Concretely, the analy-
sis exploits that recursive predicates constrain the possible shapes of the data structures
they specify.

Once a method is analyzed, we translate abstract heaps into SIL assertions such as
method preconditions and postconditions as well as loop invariants and inject them into
the original SIL program. For example, the resulting abstract state at the end of the
method can be translated into a method postcondition. We also rely on information ac-
cumulated during the analysis to add fold and unfold statements to the method.

The SIL program with inferred specification can be presented to the user or directly
supplied to a verifier for verification. The inferred specification may not be sufficient
for a successful verification, but may still provide valuable information to the user and
serve as a starting point for further refinement of the specification.

Figure 2 depicts the steps of our approach explained above. We will describe each of
these steps in this report, with focus on the analysis.

1.4 Outline

The report is structured as follows: Sections 2 and 3 provide further background on SIL
the combined heap and value analysis, respectively. Section 4 describes how SIL pro-
grams are translated such that Sample can analyze them. Section 5 discusses challenges
associated with inferring specifications for SIL programs. While Section 6 describes
our analysis and how it addresses these challenges, Section 7 explains how to extract
SIL specifications from the results of that analysis. Section 8 covers interesting tech-
nical work conducted as a part of the project. Section 9 evaluates the capabilities and
limitations of our approach. Finally, Section 10 concludes the report.

SIL program

Translation (New)

Sample Heap Analysis (Extended)

Specification Extraction (New)

SIL program with inferred specifications

Sample CFG

Abstract heaps

Figure 2: Flow of information for inferring specifications for a SIL program.

9

2 The Semper Intermediate Programming Language (SIL)

The following section builds up on the introduction to SIL in Section 1.1 and provides
further details on the language. Section A provides the syntax of SIL.

2.1 Types and Objects on the Heap

SIL allows programs to allocate and use objects with fields on the heap. However, an
important difference to real-world object oriented languages is that there are no classes.
All objects have the same type Ref. SIL front-ends ensure themselves that a field access
only occurs on an object that provides such a field. This restriction makes SIL verifiers
easier to implement.

Besides reference types, there is also a boolean (Bool) and an integer type (Int).

2.2 Framing

Recall that SIL uses permissions to express which heap locations a method may access.
The permission to a heap location represented by the field f of an object o is denoted
as a field access predicate of the form acc(o.f).

A method may only access a heap location such as o.f in a state where it holds to the
permission to that heap location. This restrictions also applies to expressions in the
specification that access heap locations. Expressions must be framed by the correspond-
ing permissions, meaning that the permissions must be held in the state in which the
expression is evaluated. An assertion is called self-framing if it requires permission to
all heap locations that the expressions in the assertion access. For example, the asser-
tion acc(o.f) && o.f == 0 is self-framing, but the assertion o.f == 0 is not. SIL
requires that all assertions are self-framing.

Permission Transfer. When creating an object, the method automatically holds the
permission for each of the fields of the object. The method client in Listing 2 contains
an object creation, and holds the permission to perform the subsequent field assign-
ments.

In other cases, the method needs to somehow obtain the permission. For example, the
method setToZero in Listing 2 needs permission to the field f of its argument o. By
adding the field access predicate acc(o.f) to the method’s precondition, the verifier can
assume that the method holds the permission to o.f at the beginning of the method. In
order to call a method that requires a certain permission, the caller needs to hold that
permission and give it up (exhale it).

Since the caller needs to give up the permission, methods usually return permissions to
the caller, which can be achieved with access predicates in the method’s postcondition.
After the method call, the caller obtains (inhales) all permissions in the postcondi-
tion.

2.3 Abstract Predicates 10

var f: Int

method setToZero(o: Ref)
requires acc(o.f)
ensures acc(o.f) && o.f == 0 {
o.f := 0

}

method client () {
var o: Ref
o := new()
o.f := 42
setToZero(o)
assert acc(o.f) // Still have permission to o.f

}

Listing 2: SIL program that illustrates the transfer of permissions.

For example, the method setToZero in Listing 2 returns the the permission to the
location o.f to its caller. If it did not, the caller would not be allowed to access o.f

any more after the method call. The permission would have been lost.

There are restrictions on how access predicates can be used in assertions. For example,
they cannot be negated, occur in disjunctions or the left-hand side of implications.

2.3 Abstract Predicates

As explained in Section 1.1.2, recursive predicates make it possible to specify unbounded
recursive data structures. The predicate valid in Listing 3 specifies a linked list recurs-
ing over the field next.

predicate valid(list: Ref) {
acc(list.next) && acc(list.val) &&
(list.next != null ==> acc(valid(list.next)))

}

Listing 3: Recursive predicate that specifies a linked list.

SIL uses acc(valid(o)) to denote an instance of predicate valid at the object o. The
instance contains the permission to all val and next fields reachable from the object o

via next.

The permissions in the predicate instance are only available to the verifier after it unfolds
the predicate instance. The statement unfold acc(valid(o)) replaces the instance
with the body of the predicate. That is, the method has permission to the fields o.next

and o.val after unfolding. A fold acc(valid(o)) statement performs the inverse
operation. These statements are ghost statements. They are only meaningful in the
context of verification and do not affect the execution of the program.

2.3 Abstract Predicates 11

In addition to abstract predicates, SIL also offers abstraction functions that make it pos-
sible to specify recursive properties. In this project, we only consider abstract predicates
for specification.

Acyclicity. The definition of the predicate valid guarantees that linked lists are acyclic.
In SIL, it is impossible to hold a cyclic predicate instance [15]. That is, unfolding a
predicate instance recursively never yields the same predicate instance again.

12

3 Combined Heap and Value Analysis with Sample

In this section, we give a brief overview of how abstract interpretation works and describe
the combined heap and value analysis used for our project.

3.1 Abstract Interpretation

Programs perform computations in some concrete domain of values with each statement
having a concrete semantics. In general, a program’s state space at a given program
point is potentially infinite, making it intractable for the program analysis to compute
it.

However, the concrete domain and semantics can be approximated by an abstract do-
main and semantics that is computable and still preserves the properties of interest.
Abstract interpretation [2, 3] is a framework that guarantees a sound approximation of
the semantics of programs and is used for reasoning about the program correctness.

3.1.1 Forward Analysis

A common static analysis of a program aims to precisely approximate the abstract state
of a program at any given program point. A forward analysis starts from some initial
abstract state at the beginning of the program and for each program point computes
the abstract post-state of the statement at that program point by applying the abstract
semantics to the abstract pre-state of the statement.

In the presence of loops or recursion, the program semantics is described using the least
fixed point.

3.2 Overview of Combined Heap and Value Analysis

The technical report [5] formalizes the combined heap and value analysis implemented
in the static analyzer Sample. This section gives an informal overview of the analysis
and illustrates it on examples.

Running Example. Consider the method firstNaturals in Listing 4. Given a positive
integer n, the method builds a linked list of the natural numbers from 1 to n. The values
increase by one when traversing the list and the last element of the list (whose next field
is null) has the value n. The method builds the list starting with the last element.

3.2.1 Abstract Domain

The analysis abstracts concrete heaps as directed graphs, in which nodes represent con-
crete objects and edges represent possible references. Furthermore, each edge is associ-

3.2 Overview of Combined Heap and Value Analysis 13

var next: Ref
var val: Int

method firstNaturals(n: Int) returns (first: Ref) requires n > 0 {
var tmp: Ref
var i: Int
first := null
tmp := null
i := n
while (i > 0) {

tmp := first
first := new()
first.val := i
first.next := tmp
tmp := null
i := i - 1

}
}

Listing 4: SIL method that builds a linked list of the first n natural numbers.

first n0 null

tmp

[(Trg, val) = 1
∧ 0 = i < n]

[(Src, val) + 1 = (Trg, val) ∧ 0 = i < n]

next

next

[(Src, val) = n
∧ 0 = i < n]

[0 = i < n]

Figure 3: Abstract heap at the end of the method firstNaturals .

3.2 Overview of Combined Heap and Value Analysis 14

ated with a value state that approximates values of local variables and value fields of
objects in which the edge may exist.

Figure 3 depicts the abstract state inferred by the analysis at the end of the method
firstNaturals .

Nodes. The analysis distinguishes between summary and definite nodes. A summary
nodes represents possibly many concrete objects, while a definite node represents a single
concrete object. We denote summary nodes with dashed circles and definite nodes with
solid circles. null is a special definite node. The formalization in [5] represents local
variables as fields of a special definite node =.

In Figure 3, n0 is a summary node as it represents all elements in the list.

Edges. Edges in the abstract heap indicate possible targets of reference variables and
reference object fields.

In Figure 3, the edge from first to n0 indicates that this local variable refers to an object
represented by n0. Edges from n0 tell us that an object represented by n0 can point via
next to either null or an object represented by n0.

Abstract Value States on Edges. Each edge in an abstract heap is associated with
an abstract value state (also called abstract condition) that tracks the numerical values
of local variables and fields. The analysis is parametrized by a value domain. In our
examples, the analysis is parametrized by Polyhedra [2] implemented in Apron [8].

In Figure 3, the constraint 0 = i < n is present in all abstract conditions and means
that this constraint holds in all possible states at the end of the method.

Edge-Local Identifiers. Abstract value states may contain edge-local identifiers that
refer to value fields of the source or target node of the edge. Edge-local identifiers are
useful to express invariants for edges whose source or target is a summary node.

In Figure 3, the edge-local identifier (Trg, val) in the value state on the edge from first
to n0 refers to the value of the concrete object that the edge points to. The identifier
does not refer to the value field of all objects represented by n0, only the one that first
points to. Hence, the constraint (Trg, val) = 0 expresses that the first list element has
the value 0.

The edge from n0 to null is associated with the constraint (Src, next) = n. This constraint
expresses that an object represented by n0 whose next field points to null has the value
n. That is, the value of the last list element is n.

Finally, the constraint (Src, next) + 1 = (Trg, next) on the self-loop of n0 mandates that
the value of the next node is smaller by one then the predecessor node.

3.2 Overview of Combined Heap and Value Analysis 15

Heap Value Identifiers. In addition to edge-local identifiers, abstract conditions also
contain heap value identifiers of the form (n, f) for a heap node n and value field f .
Such an identifier refers to the field f of all objects represented by n, which may be a
summary node.

For the sake of readability, we omit constraints containing heap value identifiers in
Figure 3. Edge conditions contain the constraint 1 ≤ (n0, val) ≤ n, indicating that the
values of all list elements are between 1 and n.

3.2.2 Join

The join of two abstract heaps σ1 and σ2 is an abstract heap σ that overapproximates
all concrete heaps that σ1 and σ2 represent.

The join minimizes the size of the resulting abstract heap via computing the graph
representation of the join as a minimum common supergraph of σ1 and σ2. Smaller
abstract heaps are easier to interpret and result into more efficient analysis.

Finding a minimum common subgraph of two graphs can be reduced into a problem of
finding a maximum common subgraphs (MCS) of two graphs. In the resulting heap, the
abstract conditions on the edges from the MCS are joins of abstract conditions on edges
from the the source abstract heaps which formed the MCS.

Example. Figure 4 illustrates the join of two abstract heaps in the firstNaturals

method. In the abstract state before entering the loop, both first and tmp point to null
and the the edge conditions express that i = n. In the abstract heap at the end of the
first loop iteration, first points to a newly allocated node n0 with value n, while tmp
points to null and i = n− 1 is part of all edge conditions.

The conditions of the edge from n0 is the same as in the lower left-hand side heap as
it is not in the maximum common subgraph of the left-hand side heaps. However, the
condition on the edge from tmp to null is a join of the corresponding edges from the
left-hand side heaps, as it participates in the maximum common subgraph.

3.2.3 Widening

The above join operator does not guarantee the convergence of the analysis as after
every application of join, the resulting abstract heap may grow. The widening operator
ensures the termination of the analysis by bounding the size of an abstract heap. The
opeator achieves this by merging nodes into summary nodes. The analysis is parametric
in the way now nodes are merged.

Example. Figure 5 illustrates a possible merge of nodes into a summary node in an
abstract state of the firstNaturals method. Here, nodes n0, n1 and n2 are as a part
of widening all merged into a single summary node n0.

3.2 Overview of Combined Heap and Value Analysis 16

first null

tmp

[0 ≤ i = n]

[0 ≤ i = n]

first n0 null

tmp

[0 ≤ i = n− 1
∧ (Trg, val) = n]

next

[0 ≤ i = n− 1
∧ (Src, val) = n]

[0 ≤ i = n− 1]

first n0 null

tmp

[0 ≤ i = n− 1
∧ (Trg, val) = n]

[0 ≤ i = n]

next

[0 ≤ i = n− 1
∧ (Src, val) = n]

[0 ≤ n− 1 ≤ i ≤ n]

Figure 4: Abstract states before and after the first loop iteration of firstNaturals

(on the left) and the join of them (on the right).

first n2 n1 n0 null

tmp

next next

nex
t

next

next
first n0 null

tmp

next

next

Figure 5: Abstract state before and after merging nodes at the end of the loop in
firstNaturals in the third analysis iteration. Edge conditions have been omitted.

3.2 Overview of Combined Heap and Value Analysis 17

n0a null

n0

b

a

null

n1 n0

b

a

null

Figure 6: Assigning a to b in the left abstract heap yields the bottom-right abstract
heap if materialization is enabled and the top-right abstract heap otherwise.

3.2.4 Materialization

The combined heap and value analysis offers a feature called materialization that can
make the analysis more precise in the presence of summary nodes.

Whenever the program may dereference an object that is represented by a summary
node, materialization creates a new separate definite node that represents that object.
The analysis ensures that the new definite node also has all possible in-coming and out-
going edges, based on the edges of the summary node. Materialization itself does not
change the set of concrete heaps that the abstract heap represents.

However, in contrast to assignments to fields of summary nodes, assignments to fields of
definite nodes allow for more strong updates, resulting in a more precise analysis. The
main drawback of materialization is the blow up of the heap size, which hampers the
efficiency of the analysis.

For this project, materialization is always enabled.

Example. Consider the abstract heap in Figure 6 on the left. Variable a refers to an
object represented by a summary node n0. Suppose that we assign a to variable b.

Without materialization, b would simply point to n0 like a in the resulting abstract heap.
This abstract heap does not imply that a and b are aliases. According to the abstract
heap, they may refer to different objects.

With materialization enabled, the access to the variable a adds a new definite node n1
to the abstract heap that only represents the object a refers to. After the assignment
of a to b, b will only point to n1. Since n1 only represents a single object, the abstract
heap expresses that a and b are certainly aliases.

3.2 Overview of Combined Heap and Value Analysis 18

3.2.5 Edge Disambiguation Ghost State

Abstract heaps may contain multiple edges with the same source node and labeled with
the same field, allowing the abstract heap to represent disjunctive information.

Suppose that a definite node n (representing only a single object) has multiple out-going
edges labeled with the same field f . In any concrete heap, the field f of the represented
object can only be a reference represented by exactly one of these edges of n. That is,
it is not possible for more than one of these edges to be present in any concrete heap.
We say that these edges of n are ambiguous.

To decide whether some references in an abstract state are aliases, it may be necessary
to know whether certain combinations of ambiguous edges are possible. The analysis
itself does not explicitly track aliasing information.

In the following, we present how to leverage the existing heap analysis such that it
maintains information on impossible combinations of edges in the abstract heap. As a
result, the analysis provides more precise information about aliasing. This extension has
been devised and implemented as a part of this project.

Example. Consider the SIL identity method shown in Listing 5. The method returns
the reference a passed as a parameter by assigning it to the local result variable b.
Parameter a could either be null or refer to some object.

Figure 7 shows the resulting abstract heap of the unmodified heap analysis on the left.
Before the assignment, a has out-going edges pointing to both a definite node n0 and null.
After the assignment, the local variable b also has edges to n0 and null. The abstract
heap does not express that a and b are aliases.

Our solution is to introduce a local ghost variable i0 at the beginning of the method that
has a distinct value on all ambiguous edges of a. Concretely, i0 is 0 if a is null and 1 if
it points to n0. The local ghost variable is not part of the program, it only exists in the
abstract state.

In general, the analysis introduces a ghost variable for each reference parameter of a
method, and also when new ambiguous edges appear in abstract heaps due to material-
ization.

The right abstract heap in Figure 7 shows the result after assigning a to b. Both edges
pointing to null have i0 = 0 in their condition, while i0 has the value 1 on the edges
to n0. The abstract heap expresses that a and b are aliases. In a concrete heap, i0
cannot have the value 0 and 1 at the same time. That is, such combinations of edges
are impossible.

3.2 Overview of Combined Heap and Value Analysis 19

method id(a: Ref)
returns (b: Ref)

{
b := a

}

Listing 5: SIL identity method.

a

b

n0

null

a

b

n0

null

i0 = 1

i 0
=

1

i0 =
0

i0 = 0

Figure 7: Abstract heap without and with ghost
state after the assignment b := a in Listing 5.

Semantics of Ghost Variables. The analysis approximates the value of ghost variables
in edge conditions in the same way as it approximates the values of other numerical
variables and fields.

On many edges of the abstract heap, a ghost variable such as i0 may have an unknown
value (>), meaning that the edge may exist no matter what the value of i0 is. However,
when the abstract states of i0 in the conditions of two edges do not intersect (e.g., is 0
in one condition and 1 in the other), then it is guaranteed that these edges cannot both
exist in a concrete heap.

20

4 Translation of SIL Programs

The static analyzer Sample uses a small, but expressive object-oriented input language
called Simple [4]. In order to analyze a SIL program with Sample, it needs to be trans-
lated to Simple first.

Statements and Expressions. Simple does not distinguish between statements and ex-
pressions, a practice adopted by some programming languages such as Scala. Conceptu-
ally, statements such as assignments return an “empty” value. Furthermore, arithmetic
(and other) operators are not part of the language definition. Instead, they are repre-
sented as method calls. For example, the expression 1 + 2 is represented as a method
call 1.+(2). A part of the translation is to define the native semantics of such methods
with respect to the abstract interpretation.

Simple does not accomodate control flow statements such as loops and conditionals.
Instead, the body of each Simple method is a control flow graph. That is, we directly
translate the CFGs of SIL methods rather than their ASTs.

For the supported data types Ref, Int and Bool, the translation preserves most ba-
sic expressions such as literals, unary and binray arithmetic and boolean expressions,
conditional expressions as well as variable and field accesses.

Pre-Existing Specifications. The original SIL program may already contain partial
specifications. To make the analysis more precise, it is desirable to preserve such speci-
fications in the translation.

The translation preserves logical assertions such as n > 0 in method preconditions and
loop invariants. However, the translation does not support assertions that involve per-
missions, and ghost statements such as fold and unfold.

21

5 Running Examples and Associated Challenges

SIL methods that generate and traverse a linked list are simple examples of methods
that operate on recursive data structures. In this section, we present these examples and
show that analyzing them with the heap analysis described in Section 3 does not provide
enough information to infer specifications for them. We will use the examples to illustrate
our solution that can be generalized to other data structures such as trees.

5.1 List Generation

Listing 6 contains a SIL method firstNaturals with specifications, that takes as argu-
ment a positive integer n and returns a linked list whose elements have the values 1 to n
in ascending order. We already used it to illustrate the heap analysis in Section 3.

The firstNaturals method would verify without any specifications. The only field
accesses occur on a newly allocated object. Without any specifications, the method
would not return permissions to any field of the generated list to its caller. The caller
could not access any field of the generated list. Thus, the postcondition should contain
the permission to the generated list, expressed with a recursive predicate instance.

Analyzing this method with the heap analysis yields the abstract heap shown in Figure 8,
which was already discussed in Section 3.2.1. This abstract heap is not suitable for
extracting the desired postcondition for the method. To extract a predicate instance
recursing over next for first, we need to know that the abstract heap represents
an acyclic linked list. Acyclicity follows from the conditions on the edges, but this
information is not available explicitly.

5.2 List Traversal

Listing 7 contains a SIL method with specifications, that takes a linked list as argument.
The body of the method traverses every element of the list and sets the value of each
element to zero. In this program, the local variable cur always points to the current
element of the list. The termination criterion of the loop is that cur reaches null.

first n0 null

tmp

[(Trg, val) = 1
∧ 0 = i < n]

[(Src, val) + 1 = (Trg, val) ∧ 0 = i < n]

next

next

[(Src, val) = n
∧ 0 = i < n]

[0 = i < n]

Figure 8: Abstract heap at the end of the method firstNaturals .

5.2 List Traversal 22

var next: Ref
var val: Int

method firstNaturals(n: Int) returns (first: Ref)

requires n > 0

ensures acc(valid(first))
{

var tmp: Ref
var i: Int
tmp := null
first := null
i := n
while (i >= 0)

invariant (first != null) ==> acc(valid(first))
{

tmp := first
first := new()
first.val := i
first.next := tmp
tmp := null
i := i - 1

fold acc(valid(first))
}

}

predicate valid(this: Ref)

{

acc(this.next) && acc(this.val) &&

(this.next != null ==> acc(valid(this.next)))

}

Listing 6: Specified SIL method that builds a list of the first n natural numbers.

5.2 List Traversal 23

var val: Int
var next: Ref

method setListToZero(list: Ref)

requires (list != null) ==> acc(valid(list))
{

var cur: Ref
cur := list
while (cur != null)

invariant (cur != null) ==> acc(valid(cur))
{

unfold acc(valid(cur))
cur.val := 0
cur := cur.next

}
}

predicate valid(this: Ref)

{

acc(this.val , write) && acc(this.next , write) &&

((this.next != null) ==> acc(valid(this.next), write))

}

Listing 7: SIL method with specifications, that sets all elements of a linked list to 0.

Unlike the list generation example, Listing 7 would not verify without specifications.
Rather than building the data structure itself, the method operates on a data struc-
ture that the caller must supply. Thus, the precondition must contain the appropriate
permissions, expressed with a recursive predicate instance.

To infer the loop invariant for setListToZero , we need to know that before and after
every loop iteration, the local variable cur is either null or points to an acyclic linked
list, recursing over next and terminated with null. As we will show next, the result of
the unmodified heap analysis does not provide this information.

Initial Abstract Heap in Unmodified Heap Analysis. The unmodified heap analysis
analyzes the method starting from the abstract heap shown in Figure 9. Since there
is no precondition, the heap analysis does not assume anything about the heap in the
initial state. The summary node n0 represents any set of objects whose next field either
points to null or some object (possibly themselves).

Resulting Abstract Heap in Unmodified Heap Analysis. Figure 10 shows the resulting
fixed point abstract state at the guard of the loop, which we would like to extract the
loop invariant from.

The definite node n1 in the abstract heap represents the object that list and cur pointed to

5.2 List Traversal 24

list n0 null
next

next

Figure 9: Initial abstract heap at the beginning of the method setListToZero .

list n1 n2 n0

cur

null

Figure 10: Abstract fixpoint heap at the loop guard of the method setListToZero .
Labels of next fields omitted for readability.

before entering the loop. The summary node n2 represents all objects that cur could have
pointed to in any of the past loop iterations (except the one before entering the loop).
Together, n1 and n2 represent the part of the heap that the loop has “explored”, while
the summary node n0 represents all objects in the “unexplored” part of the heap.

This abstract heap is not suitable for extracting the loop invariant, for several rea-
sons.

Disjunctive Information The abstract heap contains many nodes that have multiple
out-going edges, that represent different possible shapes of the heap, and the ex-
tracted loop invariant should hold for all of them. Thus, in the loop invariant, it
may be necessary to distinguish between different shapes.

For the variable list, the distinction between its null and non-null target is easy.
However, it would in general not be possible to distinguish in the loop invariant
between the two possible non-null targets of cur. The disjunctiveness of the abstract
heap is even worse for the definite and summary nodes. Each of these nodes points
to every other node.

In the loop invariant, there should be a predicate instance with argument cur that
specifies the remainder of the list. However, this importance of the variable cur
over list is not clear from the abstract heap.

Cycles The abstract heap also represents cyclic data structures that could not be spec-

5.2 List Traversal 25

ified with a recursive predicate.

Unrelated Objects The summary nodes in the abstract heap could represent other
objects that do not belong to the list that the method recurses over. These objects
are not described by the predicate that specifies the list.

The next section will present our analysis and explain how it addresses the above prob-
lems by tracking additional information in abstract heaps.

26

6 Analysis for Inferring SIL Predicates and Predicate Instances

The previous section has illustrated that the results of the heap analysis do not provide
sufficient information to infer specifications for methods that operate on recursive data
structures. In this section, we will present how to extend the heap analysis such that
analyzing a method yields sufficient information to extract predicates and predicate
instances for that method’s specification.

Section 6.1 introduces the class of predicates that our analysis aims to infer. Section 6.2
and Section 6.3 explain what information our analysis tracks with respect to predicate
definitions and predicate instances, respectively. Later, Section 6.4 and Section 6.5
introduce how this information is accumulated during the analysis, specifically how the
analysis infers recursive predicates. Then, Section 6.6 presents how the heap analysis
can be made more precise after the analysis has inferred that a predicate is recursive.
Later sections discuss orthogonal topics that allow the analysis to infer specifications for
a wider range of programs.

6.1 Supported Predicates

We have designed the analysis to be able to handle programs whose specification can
be expressed with a restricted class P of predicates. These predicates are still expres-
sive enough for the specification of non-trivial methods that operate on recursive data
structures.

In the following, we describe this class of predicates. In later sections, we will make clear
how the analysis uses these restrictions.

Assumption 6.1. A predicate p in class P has exactly one reference parameter.

In this section, we usually call the parameter this, as it can be thought of as the receiver
of the predicate.

Since predicate instances are always acyclic (see Section 2.3), it is impossible get an
instance of a predicate in class P with the same argument by unfolding. This implies
that the data structure described by such a predicate instance is acyclic with respect to
the field of recursion.

Assumption 6.2. The body of predicate p in class P is a conjunction of

� field access predicates acc(this.f) for fields f , and

� conditional predicate instances (this.fr != null) ==> acc(q(this.fr)) for
reference fields fr and a predicate q in class P .

Field Access Predicates. According to Assumption 6.2, field access predicates are un-
conditional. That is, an expression such as (this != null) ==> acc(this.f) cannot
occur in the body of a predicate. This restriction implies that the predicate argument
this for every instance acc(p(this)) must not be null.

6.2 Tracking Predicates 27

Nested Predicate Instances. The access predicate acc(q(this.fr)) can only occur in
the predicate if the predicate also contains permission to the field f of this. Otherwise,
the access predicate would not be framed (see Section 2.2).

If the nested predicate p is the same as p, then p is directly recursive. However, q could
also be a different predicate than p.

No Logical Assertions. Logical assertions are assertions that do not involve permis-
sions, such as relationships between the values of fields. In general, SIL predicate bodies
can contain such logical assertions, as long as there are self-framed (see Section 2.2). For
example, the predicate for the method Listing 6 could also contain the assertion that
the linked list is sorted.

For simplicity, we do not support logical assertions in the body of predicates.

6.2 Tracking Predicates

Our analysis incrementally builds the predicates for the specification of a method, based
on how the method operates on the heap. When analyzing a method, we do not decide
up-front what the predicates for the method should be.

In the following, we will explain how we represent predicates in the analysis, and how
the analysis incrementally builds these predicates.

6.2.1 Representation of Predicates

In our analysis, each abstract state contains a representation of one or more predicates
described in Section 6.1. Such a predicate can be represented unambiguously with the
following information:

� The unique name of the predicate, referred to as a predicate identifier.

� The set of fields that the predicate contains the permission for.

Since we assume that the predicate has a single reference parameter (Assumption
6.1), the predicate only contains permissions for fields of the parameter object.
The name of the parameter in a predicate can be chosen arbitrarily. Thus, the
representation of the predicate does not need to include it.

� For each reference field with permission, the set of predicates the predicate contains
a nested instance of.

Thus, it is possible to compactly represent such a predicate only with a predicate iden-
tifier and an associated predicate body that stores the fields with permission and any
nested predicate instances. In this report, we use symbols such as p, p0 and p1 to identify
predicates.

6.2 Tracking Predicates 28

Notation. Consider the SIL predicate in Listing 8 that describes a linked list. For the
representation in the analysis, the only relevant information is that the predicate contains
permission for the field val and recurses over next. Assuming that we use use the pred-
icate identifier p, we denote such a linked list predicate as p 7→ [val, next→ {p}].

predicate p(list: Ref) {
acc(list.next) && acc(list.val) &&
(list.next != null ==> acc(p(list.next)))

}

Listing 8: Recursive predicate for a linked list.

6.2.2 Predicates as a Mechanism for Tracking Permissions

The method may operate on a data structure whose specification does not necessarily
need a predicate. For example, when the method operates on a non-recursive data
structure such as a simple object with a field, then simple field access predicates (see
Section 2.2) are sufficient for the specification.

The analysis uses predicates to track permissions for all data structures, even non-
recursive ones. That is, the analysis may infer that the predicate p→ [val] with a single
permission for field val can be used in the method’s specification. After the analysis,
however, it is not necessary to actually use the inferred predicate and instances of the
predicate in the specification. Instead, the field permissions in the inferred predicate can
also be added to the specification directly.

In summary, the analysis uses predicates as a mechanism to track all permissions.

Adding Permissions to Predicates. The analysis gradually populates predicates with
permissions and nested predicates. Since predicates track all inferred information about
permissions, the analysis tries to identify for each field access in the method the predicate
that the corresponding permissions should be a part of.

The analysis never removes permissions from predicates. That is, in the state at the end
of the analysis, the predicates contain all permissions that were added at any point of
the analysis.

In Section 6.4, we will explain in more detail how permissions are added to predi-
cates.

6.2.3 Predicates as Placeholders

Since the analysis gradually adds permissions to predicates, predicates are initially
empty. That is, the analysis has not yet associated and permissions with such a predi-
cate. We denote a predicate p that is empty as p 7→ >.

An empty predicate is essentially a placeholder for a predicate. If the analysis never adds
any permissions to a predicate, then the predicate is not needed and can be discarded

6.2 Tracking Predicates 29

at the end of the analysis. Recall that it is not necessary to extract an actual SIL
predicate from an inferred predicate in the analysis result. For empty predicates, this
holds true especially, because a predicate with an empty body is not useful in the inferred
specification.

The analysis may introduce many such placeholder predicates, even though they may
not be necessary in the end.

Example. Suppose that the analysis adds permission for a reference field fr to an empty
predicate p0 7→ >. At this point, the analysis does not yet know whether predicate p0
should also contain some nested predicate instance for field fr. Thus, the analysis creates
a new nested predicate that acts as a placeholder. The new predicate has an identifier
such as p1 that has never been used before (called fresh) and its body is >.

As a result, there are now two predicates p0 7→ [fr → {p1}] and p1 7→ >. p0 contains a
nested instance of predicate p1 for field fr.

The new predicate state expresses that p0 could potentially have a nested predicate
instance. This gives the analysis the ability to add permissions if it needs to.

6.2.4 Detecting Recursive Predicates By Merging Predicates

Two predicates in the analysis do not necessarily need to appear as separate predi-
cates in the inferred specification. Instead, the analysis can decide that two predicates
should be merged, such that the resulting predicate contains all the permissions of both
predicates.

Merging predicates is the mechanism that allows the analysis to implicitly detect that a
predicate should be recursive. Section 6.5 will explain and illustrate the mechanism in
more detail.

6.2.5 Restricting Heap Analysis for Known Recursive Predicates

Suppose that the analysis has already inferred that the method operates on a data
structure that is described by a recursive predicate. Such a recursive predicate guarantees
that the data structure is acyclic with respect to the field of recursion. The predicate
imposes constraints on the possible shapes of the heap.

We can exploit these constraints to make the heap analysis more precise by removing
edges from the abstract heap that are impossible for an acyclic data structure.

Section 6.6 will present the involved challenges and how we address them.

Example. The left abstract heap in Figure 11 contains a local variale list that points
to a summary node n0. Recall that accessing variable list triggers a materialization (see
Section 3.2.4) of a definite node n1 that list points to.

6.3 Tracking Predicate Instances 30

n0list null
next

next

n1 n0list nullnext
next

next

next

next

Figure 11: Abstract heaps before and after the materialization of the target node of a
variable list.

Suppose that the analysis has already inferred that there is a predicate instance recursing
over next at the object represented by n1. If the field next of that object pointed to the
object itself, this would mean that the predicate instance contains an nested predicate
instance with the same receiver. Since such a cyclic instance cannot exist, so the analysis
can safely remove such the self-loop at n2 labeled with next.

6.3 Tracking Predicate Instances

In addition to predicate, our analysis also tracks where instances of these predicates
are in the abstract heap for each point in the method. The information on predicate
instances tells the analysis which predicates to add permissions to.

6.3.1 Representation of Predicate Instances

The predicates supported by our analysis only have a single reference parameter, by As-
sumption 6.1. Thus, an instance can be represented by the identifier of the predicate and
its receiver object. The restriction to a single parameter is very useful for representing
a predicate instance in the abstract state, as we will show now.

We use extra ghost fields of an object to represent holding a predicate instances at that
particular object. The heap analysis offers a mechanism for the abstract condition on an
edge to refer to fields of the source and target objects of the edge: edge-local identifiers
(see Section 3.2.1) do exactly that.

By using an edge-local identifier (Trg, p) in the abstract condition on some edge, we can
identify an instance of predicate p whose receiver is the target object of the edge. That
is, the target object has a ghost field named p.

The analysis never uses source edge-local identifiers (Src, p) to identify predicate in-
stances whose argument is the source object of the corresponding edge. Predicate in-
stance identifiers always refer to the target object of the edge. Thus, we can make Trg
implicit for identifying predicate instances.

6.3.2 Folded and Unfolded Labels

To indicate that there is a folded instance of a predicate p at some object, the analysis
assigns the value Folded to the ghost field p of that object.

6.3 Tracking Predicate Instances 31

list n0 null
p0 : F

p0 7→ >

Figure 12: Initial abstract state for the setListToZero method.

When the method accesses a field of an object for which there is a folded instance of p,
then the analysis infers that the permission for that field should be part of p. That is,
the information on predicate instances guides the analysis in populating predicates with
permissions.

In the specification of a SIL program, it is necessary to unfold a predicate instance
that contains the permission to a field before accessing that field (see Section 2.2).
After unfolding, the method does not hold the predicate instance any more, only the
permissions stored in it.

The analysis reflects this by replacing the value Folded of the object’s ghost field p with
the value Unfolded, The Unfolded value allows the analysis to remember that there used
to be a folded predicate instance of p at that object. As we will explain in Section 6.6,
this information is central for making the heap analysis more precise.

There is another advantage to distinguish between folded and unfolded instances: re-
placing Folded with Unfolded at some point in the method suggests that the method’s
specification should contain a corresponding unfold statement at that point.

Example. Consider the abstract heap graph shown in Figure 12. The edge from list to
the summary node n0 contains the label p0 : F. F is shorthand for Folded. The label on
this edge indicates that the ghost field p of the target object of the edge has the value
Folded. Thus, when list does not point to null, the method holds a folded instance of
predicate p for the object that list points to.

The right-hand side of Figure 12 shows that p is just a placeholder predicate in this
abstract state.

6.3.3 Initial Abstract State of a Method

For the initial abstract state of a method, the analysis creates a fresh placeholder pred-
icate pr for every reference parameter r.

The analysis assumes that the method holds a folded instance of pr with argument r in
the case that r is not null. Hence, it adds a label pr : Folded to the edge of r that does
not point to null. The reason why the null edge does not have a label is our Assumption
6.2 about the shape of pr, which does not allow null as argument.

The analysis cannot infer multiple distinct predicates for a single parameter r. The
reason is that it would not be clear what predicate to add permissions to when the

6.3 Tracking Predicate Instances 32

n0

a

b

null

p
0 : F

p1 : F

p0 7→ >
p1 7→ >

Figure 13: Abstract initial state of a method with two reference parameters a and b.

method accesses any fields of parameter r.

Examples. The abstract state in Figure 12 shown earlier is exactly the initial state that
our analysis uses for the setListToZero method. The analysis assumes that if list is
not null, then the method holds an instance of p0 for list. The analysis does not associate
any permissions with p0 yet.

Figure 13 shows a more general initial abstract state of a method with two reference
parameters a and b. The analysis creates a fresh predicate for each of them.

6.3.4 Variable Accesses and Assignments

Local variable accesses of a method do not require any modifications to the predicate-
related abstract state. In SIL, accessing local variables does not require permissions,
because they only exist on the call stack.

Accessing a local reference variable with an edge to a summary node in the abstract heap
triggers a materialization of the object that the variable points to (see Section 3.2.4).

For both materialization and local variable accesses, the semantics of our analysis does
not differ from the semantics of the unmodified heap analysis. The heap analysis treats
predicate instance identifiers like all edge-local identifiers.

Example. Figure 14 contains the abstract heap after the assignment cur := list in
setListToZero . Accessing the variable list has caused the heap analysis to materialize
the node n1. list and cur point to the same definite node n1. Both of them have p0 : F
on their edge to n1.

The abstract heap in Figure 14 expresses that the method holds a single folded instance
of p0 whose argument is the object represented by target node n1. That object can be
referred to as list and cur, since they are aliases.

6.4 Adding Permissions to Predicates 33

list n1 n0

cur

null
p0 : F

p
0

:
F p0 : F

p0 : F

p0 7→ >

Figure 14: Abstract heap after the assignment cur := list in setListToZero .

6.4 Adding Permissions to Predicates

We have already mentioned earlier that the analysis adds permissions to predicates at
points where the method accesses fields. Next, we will take a closer look at this operation
and illustrate it with an example.

Constraint on Field Accesses. This report only discusses field accesses of the form
a.b, that is, field accesses on local variables. Such field accesses are easier to handle as
they do not require a recursive unfolding and adding permissions to multiple fields to
different predicates. SIL programs can be rewritten to avoid deep field accesses by using
temporary local variables. Thus, this limitation does not fundamentally limit the class
of programs that our analysis can handle.

6.4.1 Identifying the Predicate Instance

Suppose that the method accesses a field f of a local variable o. The analysis then
determines what predicate instance the permission for this field should come from.

The analysis only considers a predicate p for which there is a folded or unfolded instance
at o. That is, the ghost field o.p must either be Folded or Unfolded. One of these
predicates may already contain the permission for f , for example due to an earlier
access to the same field. Otherwise, the analysis arbitrarily picks one of the predicates
to add permissions to. In our examples, there is always just one predicate instance at
o.

If the instance of the chosen predicate is still folded, then the analysis unfolds it first,
by replacing the label Folded with Unfolded. Unfolding also causes nested predicate
instances to appear in the abstract heap, if there are any. We will later explain in
detail what happens if the instance being unfolded already contains nested predicate
instances.

Example. Figure 15 depicts the abstract state before the field access cur.val in the
first loop iteration of setListToZero . By entering the loop body, the analysis has

6.4 Adding Permissions to Predicates 34

list n1 n0

cur

null
p0 : F

p
0

:
F p0 : F

p0 : F

p0 7→ >

Figure 15: Abstract heap before the assignment cur.val := 0 in the first loop iteration
of setListToZero .

assumed that cur is not null. Thus, cur and list (an alias) do not point to null any more.
The abstract heap contains only a single edge for cur and p0 : F is the only label on that
edge. Hence, the analysis concludes that the permission for the field val must be part of
predicate p0.

6.4.2 Adding Permissions to Identified Predicate

The predicate p will contain the permission for f after the field access. After the as-
signment cur.val := 0 in the setListToZero , predicate p then has the body [val]
.

Reference Field Permissions. If the accessed field f is a reference field, then the pred-
icate p may require a nested predicate instance for that field, for example if the method
later accesses a field of the object that o.f points to. Thus, the analysis creates a fresh
placeholder predicate pnested and uses it as a nested predicate for field f in p.

Thus, predicate p contains a new entry f → {pnested} after the field access and there is a
fresh predicate pfresh 7→ >. The method now holds a folded instance of this placeholder
predicate pfresh with argument o.f , if o.f is not null. The analysis assigns the value
Folded to the ghost field o.f.pfresh to achieve this.

Example. Figure 16 depicts the abstract state of setListToZero in the first loop
iteration after interpreting cur.next, but before assigning it to cur.

The field access cur.val has caused the analysis to unfold the instance of predicate p0
by assigning Unfolded to cur.p0#0. Because of this assignment, there is a label p0#0 : U
on all edges into n1, since n1 represents the object that cur points to. Also, the analysis
has added the permission to val to predicate p0.

Later, the field access cur.next has caused the materialization (see Section 3.2.4) of the
definite node n2. The analysis has also added the permission next → {p1} to predicate
p0 and a fresh placeholder predicate p1. In addition, the non-null edges going out of
the node n1 now have the label p1 : F. That is, the method holds an instance of the
placeholder predicate p1 at cur.next, unless cur.next is null.

6.5 Detecting Recursive Predicates During Joining 35

list n1 n2 n0

cur

null
p0 : U

p
0

:
U

p1 : F
p0 : U p1 : F

p0 : U

p0 : U
p1 : F p1 : F

p0 7→ [val, next→ {p1}]
p1 7→ >

Figure 16: Abstract state after the field access cur.next in the first setListToZero

loop iteration.

list n1 n2 n0

cur

null
p0 : U

p
0 : Up

1 : F p
1

:
F

p1 : F
p0 : U p1 : F

p0 : U

p0 : U
p1 : F p1 : F

p0 7→ [val, next→ {p1}]
p1 7→ >

Figure 17: Abstract state at the end of the first setListToZero loop iteration.

Figure 17 depicts the abstract state of setListToZero in the first loop iteration after
the assignment cur = cur.next. cur could now either point to n1, n2 or null, because
these where the three possible targets of edges going out of n1 in Figure 16. If cur
does not point to null, the method now certainly holds an instance of the placeholder
predicate p1 at cur.

6.5 Detecting Recursive Predicates During Joining

So far, we have illustrated how the analysis adds permissions to the predicate that
specifies the list parameter in the setListToZero example. Up until the end of the first
loop iteration, the analysis has not yet assumed that the predicate is recursive. So far,
all operations of the method were explainable with non-recursive predicates.

The heap analysis joins the abstract state at the end of the first loop iteration with the
abstract state before entering the loop (Section 3.1). As we will show next, the analysis
may merge predicates when joining two abstract states.

Deciding that two predicates should in fact be the same is the mechanism that allows
the analysis to implicitly detect recursive predicates.

6.6 More Precise Heap Analysis for Recursive Predicates 36

6.5.1 Merging Predicates

Suppose there is a local variable o for which the method holds folded instances of different
predicates pi and pj in two abstract states σ1 and σ2 to be joined.

In such a situation, the analysis considers the predicates pi and pj to be the same
from that point on. That is, the analysis merges the predicates pi and pj into just one
predicate. The resulting predicate contains all permissions of both of them. By merging
the predicates, the method can continue holding a predicate instance at o.

Target Predicate Identifier. In principle, the identifier of the resulting predicate could
be either pi, pj , or even a fresh one. As the target identifier, our analysis chooses the one
that was created earlier. The motivation is that the older predicate identifiers are used
initially for reference parameters of the method and newer predicate identifiers often
appear temporarily due to field accesses and object allocations.

Example. Consider the abstract states of setListToZero before entering the loop and
at the end of the first loop iteration in Figure 14 and Figure 17, respectively. In the
abstract heap before entering the loop, the method holds an instance of predicate p0 for
cur. In the other abstract heap, it is an instance of predicate p1. Hence, the analysis
merges p0 and p1 into p0 in both heaps.

In the abstract state before the loop, merging has no effect because the state does not
contain the predicate p1 at all.

The abstract state after the loop contains the following predicates:

p0 7→ [val, next→ {p1}]
p1 7→ >

In this state, all occurrences of p1 are replaced with p0. Furthermore, the predicate
body of p1 is merged into the body of p0, which has no effect as p1 is empty. Thus, the
resulting predicate state is

p0 7→ [val, next→ {p0}]

In the resulting state, predicate p1 does not occur any more. Instead, the merged
predicate p0 is now recursive over next.

6.6 More Precise Heap Analysis for Recursive Predicates

Knowing that some predicate instance in the heap is recursive allows the analysis to
exploit the constraint that the predicate instance imposes on the shape of the heap.

As explained in Section 6.1, predicate instances in our analysis always specify data
structures that are acyclic with respect to the field of recursion. This mandates that if

6.6 More Precise Heap Analysis for Recursive Predicates 37

there is a predicate instance recursing over a field f at some object o, then the object
cannot have a self-loop for field f . Furthermore, the current instance at o may have
been obtained by unfolding an instance of the same predicate at some other object q.
Since predicate instances are acyclic, it is impossible to unfold the instance at o and get
an instance at the object q. Thus, the object o cannot possibly point to object q via
field f .

In this section, we will explain how the analysis can remove such impossible edges in
a sound manner. By removing such impossible edges, we can reduce the amount of
disjunction in abstract heaps, and as a result, it becomes more likely that the analysis
yields an abstract heap that can be easily described using predicates.

6.6.1 Rerunning the Analysis

Suppose that the analysis infers that a predicate describing a method parameter is re-
cursive. Our approach is not to try to retroactively make the abstract heap more precise.
Instead, we rerun the analysis from an initial state that already contains the recursive
predicate, such that the analysis can remove impossible edges from the beginning.

Such an approach is simpler and more robust. The rerun is expected to happen early,
such as after the first loop iteration. Thus, rerunning should only have a minor impact
on performance.

Next, we will show that the information on predicates and predicate instances tracked
by the analysis is in general only enough to remove impossible self-loops. To remove
impossible edges between nodes, we will need to track more information.

6.6.2 Impossible Self-Loops

If the abstract heap contains a recursive predicate instance for some object represented
by a definite node, then the analysis can remove the self-loop for the recursion field from
the node.

Figure 18 illustrates that the abstract state at the beginning of the loop in setListToZero

does not have a self-loop any more on the node that represents the first list element.

Materialized Out-going Edges of Summary Nodes. Note that this abstract heap still
contains an edge from the summary node n0 to the definite node n1. In general, it would
not be sound to remove such an edge.

Suppose that there are other variables pointing into the summary node, for example
method parameters (see Section 6.3.3). In such a case, the summary node could represent
more objects than just the elements that belong to list. There could be objects that are
not part of the list, and point to the first list element represented by n1. For example,
the summary node may represent an object that is a predecessor of list. That is, such
an edge could exist.

6.6 More Precise Heap Analysis for Recursive Predicates 38

list n1 n0

cur

null
p0 : F

p
0

:
F p0 : F

p0 7→ [val, next→ {p0}]

Figure 18: Abstract state at the beginning of the first loop iteration in setListToZero ,
during the rerun of the analysis. The self-loop of n1 was removed.

Effect on the Precision of the Analysis. Removing the self-loop from the first list
element results in a more precise abstract heap at the end of the first loop iteration. As
shown in Figure 19, cur only points to n2, representing the second list element, or null,
if there is no such element.

Note that during the first loop iteration, the predicate instance p0 at n1 was unfolded.
As the predicate already contained the permission for both field val and next, there was
no need to add any permissions to p0 and create a placeholder predicate for next.

6.6.3 Impossible Edges to Already Unfolded Nodes

In Figure 19, there is an edge from node n2 to n1, that is, from the second to the first
list element. The predicate p0 does not allow such an edge, because the current instance
of p0 at n2 was unfolded from an instance of p0 at n1, and predicate instances cannot
be cyclic.

The label p0 : Unfolded for node n1 expresses that there used to be some folded instance
of p0 at n1. However, this information is not enough to soundly remove the back-edge
from n2 to n1. The problem is that the instance of p0 at n2 may not have been unfolded
recursively from the instance at n1, but from some other instance of p0. In such a case,
we could not exploit the acyclicity of the predicate instance.

In general, the analysis needs a way to be certain that some predicate instance was
unfolded recursively from some other predicate instance. The following section illustrates
how tracking additional information can solve the problem.

6.6.4 Version Numbers for Predicate Instances

We extend the representation of predicate instances in the analysis to express that certain
predicate instances in the abstract heap were all unfolded from the same predicate in-
stance. The additional information allows the analysis to remove impossible edges.

Concretely, a predicate instance at some object is now not only identified by a predicate
p, but also by a version number v. That is, the edge-local identifier of a predicate

6.6 More Precise Heap Analysis for Recursive Predicates 39

list n1 n2 n0

cur

null
p0 : U

p
0

:
F

p0 : F
p0 : U p0 : F

p0 : U

p0 7→ [val, next→ {p0}]

Figure 19: Abstract state at the end of the first loop iteration in setListToZero , during
the rerun of the analysis. The self-loop of n2 was removed.

list n1 n2 n0

cur

null
p0#0 : U

p
0
#

0
:

F

p0#0 : F

p0#0 : F

p0#
0 : U

p0 7→ [val, next→ {p0}]

Figure 20: Abstract state at the end of the first loop iteration in setListToZero , with
predicate instance version numbers.

instance is now a tuple of p and v, which we denote as p#v. The analysis uses integers
as version numbers, starting from 0.

When unfolding a predicate instance with version number v, all predicate instances that
were contained in the instance have the same version number v. This means that in
an abstract heap, folded and unfolded instances with the same version number were all
unfolded from the same predicate instance.

Example. Figure 20 again depicts the abstract state of setListToZero at the end of
the first loop iteration. But in this abstract heap, the version number 0 was used for the
instance of predicate p0 describing the parameter list.

After unfolding the predicate instance at n1, there is now a folded instance of p0 at n2
with the same version number 0, denoted with the label p0#0 : Folded. The version
number 0 expresses that the predicate instance at n2, was contained in the predicate
instance that used to be at n1. Since predicate instances cannot contain nested instances
with the same receiver, it is sound to remove the edge from n2 to n1 for field next.

6.6 More Precise Heap Analysis for Recursive Predicates 40

6.6.5 Joining Precise Abstract Heaps

In the previous section, we have shown how version numbers allow the analysis to remove
impossible edges and make the abstract heaps more precise. Before we can discuss the
result of the analysis rerun for our running example, we need to take a look at how the
behavior of joins in the heap can change if the abstract heaps are more precise.

When the heap analysis joins abstract heaps, there may be more than one possible result,
because the result depends on how the analysis matches nodes in the two abstract heaps
(see Section 3.2.2). Even though all of these possible results are sound, not all of them
are equally useful for specification inference, as we will explain next.

Figure 21 depicts the precise abstract heaps before and after the first loop iteration,
which are to be joined. In one of these abstract heaps, list and cur point to the same
node n1, while in the other heap, they point to different nodes n1 and n2, respectively.
The resulting abstract heap must represent both possibilities. Thus, in the resulting
abstract heap, either list or cur must point to two non-null nodes.

When joining the precise abstract heaps, the heap analysis matches the nodes n1 and
n2 such that in the resulting abstract heap, cur only points to one non-null node, while
list points to two. This choice allows the heap analysis to match the most edges. This
result is more useful for our analysis than the alternative. We want to avoid introducing
disjunctive information for the cur variable which the loop uses to traverse the list.

Section 5.2 has shown that with the unmodified heap analysis, the result of the join is
different, because the analysis did not remove edges. With the unmodified heap analysis,
cur points to multiple non-null nodes in the resulting abstract heap.

6.6.6 Precise Abstract Heap at Fixed Point

Figure 22 depicts the abstract heap at the loop guard of setListToZero in the result
of our analysis. This result contains sufficient information to extract a suitable loop
invariant for the method.

Section 5.2 showed the result of the unmodified heap analysis for this method, and the
problems that make the result unsuitable for specification inference. We will now explain
how our analysis has addressed these problems.

Disjunctive Information The result of the unmodified heap analysis contained too
much disjunctive information. The variable cur pointed to more than one non-null
node. In the result of our analysis, cur only points to a definite node n2 or null. It
is trivial to distinguish between these two cases in the specification. Our analysis
has solved this problem by removing impossible edges, such that cur never points
to more than one non-null node at the end of a loop iteration.

Cycles The abstract heap resulting from the unmodified analysis represented heaps
with many possible cycles, which could not be specified with a recursive predicate.
In the result of our analysis, the folded predicate instance at n2 guarantees that

6.7 Object Allocation 41

list n1 n0

cur

null
p0#0 : F

p
0
#

0
:

F p0#0 : F

list n1 n2 n0

cur

null
p0#0 : U

p
0
#

0
:

F

p0#0 : F

p0#0 : F

p0
#0 : U

list n1 n2 n0

cur

null
p0#0 : U

p
0
#

0
:

F

p0#0 : F

p0#0 : F

p0#0 : F

p0
#0 : U

Figure 21: Abstract states before and after first loop iteration of setListToZero (left)
and joined abstract heap (right). Each state contains p0 7→ [val, next→ {p0}].

the data structure is acyclic. That is, starting from the object represented by n2,
one must eventually reach null by recursing over next.

Unrelated Objects Finally, the summary nodes in the result of the unmodified heap
analysis could also represent objects that do not belong to the list that the method
recurses over. In the result of our analysis, the summary node n0 can still represent
objects that are not part of the list. However, these objects are not a problem any
more. When our analysis materializes a new definite node in the loop body for
cur.next, then the analysis is certain that it belongs to the list. Thus, the analysis
removes impossible edges to already unfolded nodes.

6.7 Object Allocation

In SIL, methods can allocate new objects by using a statement of the form r := new()

for some local reference variable r. That is, the reference to the newly allocated object
must always be directly assigned to local variable. The new() constructor does not take
any arguments. Fields of the object need to be initialized separately.

In the heap analysis, allocating a new object and assigning it to a local variable or field
are two separate operations. For simplicity, we will treat it as a single operation. In the
abstract heap, a newly allocated object is represented by a fresh definite node n. All
reference fields of the newly allocated object are initialized to null. After the assignment

6.7 Object Allocation 42

list n1 n2 n0

cur

null

p0#0 : F

p0#0 : U

p
0
#

0
:

F

p0#0 : F p0#0 : F

p0#
0 : U

p0#0 : U

p0 7→ [val, next→ {p0}]

Figure 22: Abstract fixed point heap at the loop guard of setListToZero .

r n null
p#v : U

p 7→ >

Figure 23: Part of abstract heap after object allocation statement r := new().

to the local variable r, there will be a single edge e pointing to n. For a formal description
of the semantics of object allocation, refer to [5].

6.7.1 Introduction of Fresh Unfolded Predicate

In SIL, allocating an object gives the method permission to all fields of the object,
independently of whether they are accessed or not. The object may be added to a data
structure (see list generation example in Listing 5.2). Eventually, the object and the
permission to its fields may be returned to the caller.

By default, the heap analysis would not add any Folded or Unfolded labels to e. To the
analysis, it would appear as if there were no permission to any field of n. It would be
cumbersome to remember which objects were allocated by the method itself and treat
them in a special way.

It is possible to keep the treatment of objects uniform: the analysis creates a fresh
predicate p and instance version number v and adds the label p#v : Unfolded to the
edge. The resulting abstract heap is shown in Figure 23. The Unfolded label is artificial
in the sense that there was never an actual folded instance of p at the object.

The fresh predicate is > and subsequent accesses to fields of the object will populate
p with permissions. This is a design choice to prevent fields from appearing in the
predicate body that have nothing to do with the data structure the method is building.
Our intuition is that SIL methods usually initialize all relevant fields of a newly allocated
object.

6.8 Field Assignments 43

first n1 n0

tmp

null
p2#2 : U

p0#1 : F
p0#0 : U

p0#1 : F
p0#0 : U

p0 7→ [val, next→ {p1}]
p1 7→ >
p2 7→ [val, next→ {p0}]

Figure 24: Abstract heap after the assignment first.next := tmp in the second
analysis iteration of firstNaturals . The analysis adds next→ {p0} to the body of p2.

6.8 Field Assignments

Consider a SIL method that builds some data structure, such as firstNaturals in
Listing 6. Such a method may assign an object that represents a part of the data
structure to the field of an object that represents the whole data structure. The predicate
that specifies the whole data structure often contains a nested predicate instance that
specifies the assigned part of the data structure.

After a field assignment, the analysis adds such a nested predicate instance to the pred-
icate that specifies the receiver object.

Example. In the loop body of firstNaturals , the field assignment first.next :=

tmp assigns the old head of the list (tmp) to the field next of the new head of the list
first. Figure 24 depicts the abstract heap after this assignment in the second analysis
iteration, representing the state in the first and second loop iteration.

Before that field assignment, the newly allocated n1 is described by a fresh predicate p2
with body [val] (see Section 6.7 on object allocation). At the same time tmp could either
point to null (in the first loop iteration) or point to n0 (in the second loop iteration). n1
is specified with a folded instance of predicate p0 with permission to the fields val and
next.

The field access first.next adds next→ {pfresh} to the body of p2 for a fresh predicate
pfresh. Since the assigned node n0 is described by a folded instance of p0, the analysis
merges pfresh into p0. In the abstract heap, p0 is thus nested in p2. If pfresh were not
merged, the permissions to n0 would be lost after tmp := null.

6.9 Folding Predicate Instances

Suppose that the analysis joins two abstract states σ1 and σ2. One state may have a
local variable with a folded predicate instance, while there is only an unfolded predicate
instance for that variable in the other state.

6.9 Folding Predicate Instances 44

To make the states consistent, the analysis eagerly folds predicate instances for local
variables in both σ1 and σ2. These folds correspond to fold statements at the end of
the basic blocks that the abstract states σ1 and σ2 originate from.

The following description only consider folding predicate instances whose argument is a
local variable o. In future work, the approach could be generalized to allow the analysis
to fold predicate instances with arguments such as o.f .

Identifying Predicates for Folding. The analysis needs to decide whether to fold in-
stances of any predicates or not. In order to fold an instance of a SIL predicate, all
permissions in the body of the predicate need to be present. This includes permissions
to fields, but also nested predicate instances.

For a local variable o, the analysis only considers a predicate p as a candidate for folding,
if the following conditions are satisfied:

1. There are Unfolded labels for predicate p on the edges of o, but no Folded labels.
In other words, the object that o points to was unfolded from an instance of p
(and not folded again) or the object has been allocated by the method itself (see
Section 6.7 on object allocation).

2. If the body of predicate p contains any nested predicate instances, then folded
instances of these predicates need to be present in the abstract heap. Suppose
that p contains a nested predicate pnested for field f . Then, there must be a Folded
label for pnested on every edge that represents the field f or object o.

The version numbers of these folded predicate instances do not matter. The anal-
ysis folds the instance of predicate p as long as there is any folded instances for
each the nested predicates.

Adding New Folded Predicate Instance Labels. Let predicate p be a candidate for
folding as described above. That is, there are labels p#v : Unfolded on the edges of
o. To express that the method now holds a folded instance of predicate p for o, a
corresponding Folded label needs to be added to the edges of o.

The analysis uses a fresh version number vfresh for the new p#vfresh : Folded predicate
instance labels. The fresh version number allows the analysis to keep the existing p#v :
Unfolded label with the old version number. Keeping the Unfolded labels is important
such that future unfoldings of predicate instances p#v can continue removing impossible
edges to objects, including o, that were unfolded earlier.

Removing Folded Labels of Nested Predicate Instances. When folding p, the analysis
removes all Folded labels for nested predicate instances from the abstract heap. These
predicate instances are now nested in the newly folded predicate instance. They are not
available any more for other folding or unfolding operations.

6.9 Folding Predicate Instances 45

first n1 n0 null

tmp

p2#2 : U p0#1 : F
p0#0 : U

first n1 n0 null

tmp

p2#3 : F
p2#2 : U

p0#0 : U

p0 7→ [val, next→ {p1}]
p1 7→ >
p2 7→ [val, next→ {p0}]

Figure 25: Abstract heap before (left) and after (right) folding the instance of predicate
p2 for the local variable first at the end of the firstNaturals loop.

Example. Figure 25 illustrates the effect of folding an instance of predicate p2 for the
local variable first at the end of the firstNaturals loop.

There is a label p2#2 : Unfolded on the edge from first to n1. The body of p2 contains a
nested instance of predicate p0, and there is a matching label p0#1 : Folded on the edge
from n1 to n0 for the field next. Thus, an instance of p2 can be folded for the variable
first.

Folding adds the label p2#3 : Folded to the first edge with the fresh predicate instance
version number 3, but leaves the label p2#2 : Unfolded label untouched. Additionally,
the label p0#1 : Folded is removed from the edge from n1 to n2.

Heuristics to Prevent Undesired Folding. Folding a candidate predicate p for some
local variable o is not always desirable.

Consider the setListToZero example in Listing 7. The list variable always points to
the first list element, while cur refers to the current list element. At the end of the first
loop iteration, the analysis the local variable list a candidate for folding. However,
folding the predicate instance for list would result in a loss of the folded predicate
instance of cur, which already points to the second list element.

Our analysis uses two heuristics to prevent the folding of predicate instances that are
likely to result in useless states. The analysis refrains from folding a candidate predicate
instance for some local variable o,

1. if folding would cause a loss of any folded predicate instance for a different local
variable, or

2. if o has more than one non-null edge.

Currently, the analysis folds predicate instances independently in two abstract states to
be joined. A more holistic approach would be to take both abstract state into consider-
ation, which could make the decision whether to fold or not more robust.

46

7 Extraction of SIL Specifications from Abstract States

The result of the analysis described in Section 6 provides an abstract state for each point
in the analyzed method. The abstract states approximates the shape of the heap, values
in the heap and with our extension, also predicates and predicate instances that describe
data structures in the heap.

From these abstract heaps, we extract the following specifications and insert them into
the original SIL program.

� We extract predicates from the predicate state at the end of the method.

� For each loop in the method, we extract a SIL assertion from the abstract state that
represents the invariant of that loop. The extracted assertion contains predicate
instances that are present in the abstract state, as well as assertions on variables
and fields of objects.

� We extract the method’s postcondition from the abstract state at the end of the
method. The extraction is analogous to loop invariants.

� Extracted preconditions only contain instances of inferred predicates for reference
parameters of the method. Since Sample currently does not support a backwards
analysis, we cannot infer more preconditions, such as constraints on values.

� We add fold and unfold statements to the SIL program at the points in the
program where a corresponding operation was performed by the analysis itself.

In the following, we will first describe how predicates are extracted (Section 7.1), and
then the actual assertions (Section 7.2). Finally, we will describe how fold and unfold

statements are extracted (Section 7.3).

7.1 Predicates

The representation of predicates in the analysis (see Section 6.2.1) allows for a simple,
direct translation to SIL predicates. The identifier of the predicate in the analysis serves
as the name of the resulting SIL predicate. We use this as the name of the predicate
parameter. For each field with permission in the inferred predicate, a corresponding field
access predicate can be inserted in the body body of the resulting predicate.

We extract predicates from the exit abstract state of the method. The analysis never
removes permissions from predicates as a result of method operations or joins. Thus,
the predicates in the method’s exit state contain all the permissions that were added at
various points of the method.

Example. Suppose that the predicate state contains the predicate p0 7→ [val, next→ {p0}].
Listing 9 shows the SIL predicate extracted from this representation.

7.1 Predicates 47

predicate p0(this: Ref)

{

acc(this.next) && acc(this.val) &&

(this.next != null ==> acc(p0(this.next)))

}

Listing 9: Predicate extracted from representation p0 → [val, next→ {p0}].

7.1.1 Placeholder Predicates

The resulting predicate state may contain predicates that do not contain any permissions.
For example, if the body of a method never accesses any field of a reference parameter,
then the analysis never adds any permissions to the placeholder predicte associated with
that parameter. Placeholder predicate are not useful for the specification, so they are
ignored during extraction. It is sound to remove such placeholder predicates, because
without any permissions, the body of an inferred predicate is true.

7.1.2 Predicate Aliases

The analysis may merge multiple predicates into a single predicate during join and
widening (see Section 6.5). For example, the analysis may merge the predicates p0 and
p1 into p0. In the state resulting from the join, the identifier p1 will not occur any more.
Hence, no separate predicate is extracted for p1.

However, there may be abstract states at program points before the predicate p1 is
merged into p0. When extracting assertions from such an intermediate abstract state,
p1 should refer to the predicate eventually extracted for p0.

The analysis solves this problem with a global map that stores such predicate aliases.
This is sound because predicate identifiers are globally unique and are never reused.

7.1.3 Inlining Shallow Predicates

The analysis may infer predicates that do not contain any nested predicates other than
placeholders. An example of such a predicate is p0 7→ [val]. We call such predicates
shallow.

Instead of extracting actual instances of shallow predicates, we inline the bodies of
such predicates. For example, consider that there is a folded instance of the above
predicate p0 at the object referred to by this. Then, instead of the actual predicate in-
stance acc(p0(this)), the resulting specification directly uses the field access predicate
acc(this.val).

The resulting specification is more concise as it contains fewer inferred predicates, and
no fold and unfold statements are required for such predicates.

7.2 Assertions 48

var val: Int
var next: Ref

method setListToZero(list: Ref)
{

var cur: Ref
cur := list
while (cur != null)
{

cur.val := 0
cur := cur.next

}
}

Listing 10: SIL method, that sets all elements of a linked list to zero.

7.2 Assertions

In the following, we explain our approach to extracting a SIL assertion from a single
abstract heap. The extraction involves several challenges because the representation of
abstract heaps is not directly amenable for extracting SIL assertions.

We will illustrate the extraction of assertions for the setListToZero method shown in
Listing 11. From the abstract states at the beginning of the method and at the loop
guard, we extract a precondition and loop invariant, respectively.

7.2.1 Splitting Abstract Heaps to Handle Disjunctive Information

As explained in Section 3.2.5, a definite node n in an abstract heap may have multiple
out-going edges labeled with the same field f . In any concrete heap, only one of the
ambiguous edges labeled with field f of a source node n may exist. Ambiguous edges
allow the analysis to track disjunctive information, i.e., to represent different possible
heap shapes. An assertion extracted from an abstract heap should hold for all represented
heaps, and the assertion may thus need to distinguish between them.

Consider the example of inferring the precondition for setListToZero in Listing 11.
Figure 26 depicts the abstract state at the beginning of the method (on the left-hand
side) that we want to extract the precondition from. The edges from list are ambiguous.
There is only an instance of predicate p0 under the condition that list points to an object
represented by n0. In the extracted assertion, we need to distinguish between the two
cases.

Splitting Abstract Heaps. We make the problem of extracting an assertion from such
an abstract heap more manageable by splitting the abstract heap into multiple abstract
heaps that do not contain ambiguous edges any more. Then, we can extract an assertion
from each of these abstract heaps and combine these assertion into a disjunction.

7.2 Assertions 49

list n0 null
p0#0 : F

list null

list n0 null
p0#0 : F

Figure 26: Splitting an abstract heap (left) into two abstract heaps (right). The states
contain the predicate p0 7→ [val, next→ {p0}].

Concretely, if there is a definite node n in the abstract heap with multiple out-going
edges labeled with the same field f , then we create a separate abstract heap for each of
these edges. In each of the resulting abstract heaps, there is only one edge labeled with
f going out of n. This splitting of abstract heaps happens recursively, because there
may be multiple cases of ambiguous edges in the abstract heap.

The abstract state on the left-hand side of Figure 26 is split into two abstract heaps in
which edges from list are not ambiguous any more. The upper abstract heap gives rise
to the assertion list == null. In the lower abstract heap, there is certainly a predi-
cate instance acc(p0(list)). These two assertion can be combined to the disjunction
(list == null) || acc(p0(list)).

Avoiding Disjunctions in Assertions. Disjunctions are problematic in SIL because they
must not contain access predicates such as acc(p0(list)) (see Section 2.2). However,
Access predicates may occur on the right-hand side of implications.

To avoid disjunctions, we try to extract an implication for each split abstract heap
that contains the extracted assertion on the right-hand side. The left-hand side of the
implication is a sufficient condition for that split abstract heap.

The sufficient conditions for the two abstract heaps in Figure 26 are simple, namely
this == null and this != null, respectively. Combining the sufficient conditions
with the extracted assertions, we get (list == null) ==> (list == null) and (list

!= null) ==> acc(p0(list)), respectively. The former impliciation is a tautology
and thus does not need to be present in the extracted specification. That is, (list !=

null) ==> acc(p0(list)) is the precondition extracted for setListToZero .

It is not always possible to find such sufficient conditions, especially if the abstract
conditions of ambiguous edges intersect. For example, the variable list in the resulting
abstract heap at the loop guard of setListToZero in Figure 22 has three edges. The
extraction cannot distinguish between these three cases. Thus, the extraction does not
split the heap for these edges and the resulting assertion does not contain list.

Currently, the extraction only supports sufficient conditions that test for nullness and
non-nullness. Due to time constraints, we leave the support for a wider class of sufficient
conditions as a future work.

7.2 Assertions 50

a

b

n0

n1

[(n0, val) = (n1, val)]

[(n0, val) = (n1, val)]

Figure 27: Abstract heap illustrating the extraction of value expressions.

7.2.2 Predicate Instances

A predicate instance state in abstract edge conditions is used to extract predicate in-
stances for the resulting SIL assertion. For definite nodes, it is important not to extract
multiple instances of the same predicate, even if multiple local variables point to that
node.

The analysis eagerly folds predicate instances at the end of basic blocks (see Section 6.9).
Thus, if there is an Unfolded label but no Folded label for a predicate instance at some
object, it means that the analysis did not fold the predicate instance, for example be-
cause some nested predicate instances are missing. Thus, the extraction only considers
predicate instances labeled as Folded.

7.2.3 Logical Assertions

It is possible to extract assertions on variables and fields from abstract heaps. For non-
reference fields, the heap analysis uses identifiers such as (Trg, f) (see Section 3.2.1),
that cannot be used in SIL assertions.

In a split abstract heap, the local variables do not have ambiguous edges any more. That
is, in the abstract condition of an edge from a local variable o, we can soundly replace
an identifier (Trg, f) with a field access expression o.f .

Example. In the abstract heap in Figure 27, the variable a and b unambiguously point
to n0 and n1, respectively. Thus, we can replace the identifiers (n0, val) and (n1, val) with
the field access expressions a.val and b.val, respectively. This allows us to extract the
assertion a.val == b.val from the abstract heap.

7.2.4 Postcondition

SIL postconditions may only refer to parameters and return values of the method, but
not local variables. When extracting a postcondition from the abstract exit state of a
method, all local variables therefore need to be removed from the state.

7.3 fold and unfold Statements 51

var val: Int
var next: Ref

method setListToZero(list: Ref)

requires (list != null) ==> acc(p0(list))
{

var cur: Ref
cur := list
while (cur != null)

invariant (cur != null) ==> acc(p0(cur))
{

unfold acc(p0(cur))
cur.val := 0
cur := cur.next

}
}

predicate p0(this: Ref) {

acc(this.val , write) && acc(this.next , write) &&

((this.next != null) ==> acc(p0(this.next), write))

}

Listing 11: SIL method with inferred specifications, that sets all elements of a linked
list to zero.

7.3 fold and unfold Statements

The analysis may unfold a predicate instance in the abstract state when a field access
occurs (see Section 6.3). Similarly, the analysis eagerly folds predicate instances in
abstract heaps that are joined (see Section 6.9). These operations performed by the
analysis directly translate into corresponding fold and unfold in the SIL program with
inferred specifications.

For the extraction, we check for each statement in the program if the analysis has un-
folded any predicate instances while interpreting that statement. For any such predicate
instance, a corresponding unfold statement is added before that statement.

Analogously, for every join of abstract exit states of two basic blocks, we detect what
predicate instances where folded in each of these abstract states. For each such predicate
instance, a fold statement is added to the end of the corresponding basic block.

Listing 11 shows the setListToZero method with all inferred specifications. The speci-
fication includes an unfold statement at the beginning of the loop, due to the subsequent
field access cur.val.

Limitations.

� The extraction only considers folding and unfolding operations occuring at the

7.3 fold and unfold Statements 52

fixed point of the analysis. There is no guarantee that a exactly the same folding
and unfolding operations have occurred in every iteration of the analysis.

As a result, there may be programs for which the analysis infers fold or unfold

statements that will not verify. Future improvements to the analysis may enforce
that the same folding and unfolding operations happen in every iteration.

� A CFG may contain basic blocks that do not allow the insertion of fold and
unfold statements. For example, there is a separate basic block for the guard of
a loop. If the analysis performs unfolds a predicate instance due to a field access
in a loop guard, it is not possible to add a corresponding unfold statement to the
SIL program.

53

8 Further Technical Work

8.1 Web Interface

Even for simple methods, the result of a heap analysis consists of sizable data structures
that are difficult for humans to interpret. The result contains a complete abstract heap
graph for every point in the program. Furthermore, an abstact heap consists of nodes,
edges between them and abstract value, predicate and predicate instance states on every
edge.

Implementing and debugging an analysis that operates on such deep data structures is
a daunting task and requires optimal debugging facilities. It is cumbersome to explore
an abstract heap with the debugging facilities of a modern IDE, because they do not
account for the graphical nature of heaps.

Sample contains a Java-based GUI that can visualize the control flow graph (CFG) of a
method and the individual abstract heaps in the analysis result. The GUI is based on
Java’s GUI toolkit Swing2 and the graph drawing library JGraphX3. The existing GUI
has several drawbacks:

� The GUI does not make it possible to easily navigate between states at different
points in the program. For instance, it would be desirable to see what effect a
statement has on the abstract state by navigating to that abstract state. Fur-
thermore, the GUI always opens a new window to display a selected aspect of the
result, which soon leads to a cluttered workspace.

� It only displays the abstract state in the last iteration of the analysis, i.e., the
resulting fixpoint. However, it is often necessary to learn how the analysis arrives
at that fixpoint, especially if the fixpoint is unexpected.

To address these issues, a new web interface has been developed as a part of this
project.

8.1.1 Functionality

The new web interface allows users to analyze test files and inspect the results, all in
a single web browser window. Similar to the existing GUI, the web interface initially
visualizes the CFG of the analyzed method (see Figure 28).

Test File Selection. The web interface automatically discovers test programs in pro-
vided folders and offers them for analysis. The files are even detected if they are inside
of a JAR file. This capability should pave the way for distributing Sample, its web
interface and test programs as a single JAR to interested parties.

2Java Swing: http://www.oracle.com/technetwork/java/architecture-142923.html
3JGraphX: https://github.com/jgraph/jgraphx

http://www.oracle.com/technetwork/java/architecture-142923.html
https://github.com/jgraph/jgraphx

8.1 Web Interface 54

Figure 28: Web interface displaying the CFG of firstNaturals with clickable blocks.

Analysis Selection. The drop-down menu at the top of the web interface allows user
to choose between different analyses or analysis configurations. In Figure 28, the pro-
gram was analyzed with our predicate-aware heap analysis. An interested user could
conveniently analyze the program with the unmodified heap analysis as well.

Navigation. Figure 3 shows the web interface when inspecting a single abstract heap.
The breadcrumbs at the top inform the user about his or her current location. The
buttons on the right-hand side allow the user to navigate to between states at consecutive
points in the program.

Abstract State in Any Analysis Iteration. One of the most important additions is
the ability to inspect abstract states of the program in earlier iterations of the analysis
before a fixpoint was reached. In Figure 3, the buttons labeled 0 to 7 allow the user to
navigate to the abstract state of any of the eight fixed point iterations at this program
point.

In the abstract heap graph, the nodes can be dragged and dropped.

Abstract Edge States. Hovering the mouse pointer over an edge of the heap graph
causes the abstract state on that edge to be displayed on the right-hand side. The
abstract edge state may differ depending on the type of analysis. For our analysis,
the panel displays both the abstract value state, as well as the predicate and predicate
instance state.

8.1 Web Interface 55

Figure 29: Web interface displaying the fixpoint, loop invariant abstract heap of
firstNaturals and the state on the edge from first to n0.

8.1 Web Interface 56

8.1.2 Technical Basis

Sample’s new web interface is written in Scala, JavaScript, HTML and CSS. The goal of
the implementation was to keep the amount of custom server-side and client-side code
low by reusing existing libraries wherever possible.

The web interface can be launched by running the main method of a class App. After
launching it, the web interface is accessible at localhost:8080 or another port number
of choice.

Server-Side. Scalatra4 serves as a light-weight webserver and web micro-framework.

To render pages of the web interface, we use Twirl5, the templating engine used by the
Play Framework6. Twirl seamlessly integrates with Scala and allows type-safe templat-
ing. Twirl templates contain a mix of HTML and Scala and are compiled into Scala
source files by SBT and then treated like other Scala source files.

Listing 12 shows an example of such a template file that renders a HTML list of all nodes
in a given heap graph. Assuming the template file is named HeapGraphView.scala.html,
it is then possible to generate the HTML list from a heap graph by simply instantiating
html.HeapGraphView(heapGraph).

@(heapGraph: HeapGraph[_])

@heapGraph.nodes.map { node =>

@node.name
}

Listing 12: Example Twirl template file HeapGraphView.scala.html.

Client-Side. To render interactive CFGs and heap graphs, the web interface uses the
JavaScript library jsPlumb7 based on jQuery8 and jQuery UI9.

jsPlumb is not capable of automatically finding a good layout for graphs. Therefore, the
web interface further relies on the JavaScript library dagre10 to compute a reasonable
node layout. The library dagre is built for laying out DAGs, which neither applies to
CFGs nor heap graphs in general. Hence, the layout is often inferior to layouts computed
by sophisticated graph visualization software such as Graphviz11.

4Scalatra: http://www.scalatra.org/
5Twirl: https://github.com/spray/twirl
6Play Framework: http://www.playframework.com/documentation/2.0/ScalaTemplates
7jsPlumb: http://jsplumbtoolkit.com/demo/home/jquery.html
8jQuery: http://jquery.com/
9jQuery UI: https://jqueryui.com/

10dagre: https://github.com/cpettitt/dagre
11Graphviz: http://www.graphviz.org/

localhost:8080
http://www.scalatra.org/
https://github.com/spray/twirl
http://www.playframework.com/documentation/2.0/ScalaTemplates
http://jsplumbtoolkit.com/demo/home/jquery.html
http://jquery.com/
https://jqueryui.com/
https://github.com/cpettitt/dagre
http://www.graphviz.org/

8.2 Testing Infrastructure 57

For components such as panels and navigation elements, the web interface is based on
Bootstrap12. Bootstrap is a popular front-end web framework for quickly building robust
and feature-rich web applications.

8.2 Testing Infrastructure

From the beginning of the project, the goal was to automate the testing of the imple-
mentation as much as possible. Doing so manually would be very time-consuming.

8.2.1 Generalization of SIL’s Testing Infrastructure

At the beginning of the project, Sample did not offer an automated end-to-end testing
infrastructure to build upon. Instead of writing one from scratch, it was more reasonable
to adapt the sophisticated testing infrastructure built for SIL verifiers.

SIL’s end-to-end testing infrastructure locates all or specific SIL program files in desig-
nated resources directories and verifies them with one or more SIL verifiers. These SIL
input programs can contain annotations that describe the expected output of the veri-
fier. The testing infrastructure uses ScalaTest13, which provides a convenient integration
with IDEs such as IntelliJ IDEA.

As part of the project, we heavily generalized SIL’s existing testing infrastructure [7].
Developers can now use it to test any system that processes source code files and produces
outputs for specific positions in that source code. Annotations in the source code files
describe the expected output.

The new infrastructure is agnostic with respect to the program language being used
and to the type of output being produced. In fact, it is already being used for auto-
mated end-to-end testing of a backwards analysis [6] of TouchDevelop14 programs with
Sample.

8.2.2 Test Annotations

Without any annotations in the input program, the system under test is expected not
to produce any output for that program. Any output will result in a test failure.

Annotations that specify the expected output have the form comments with a special
prefix. The most important types of annotations are the following:

//:: ExpectedOutput(key:value) Such an annotation indicates that the system under
test must produce the output key:value at the first non-annotation line following
the annotation. The key designates the expected type of output. The value part
is optional and can include further detail about the expected output. Examples
include not.wellformed:receiver.null and sample.assert.failed.

12Bootstrap: http://getbootstrap.com/
13ScalaTest: http://www.scalatest.org/
14TouchDevelop: https://www.touchdevelop.com/

http://getbootstrap.com/
http://www.scalatest.org/
https://www.touchdevelop.com/

8.2 Testing Infrastructure 58

//:: UnexpectedOutput(key:value, /<project>/issue/<n>/) The system under test
may have a known bug or limitation that results in unexpected output. To prevent
the test suite from failing perpetually because of this known and reported issue,
the UnexpectedOutput annotation causes the output to be ignored. Once the
corresponding issue has been resolved, the annotation can be removed.

//:: MissingOutput(key:value, /<project>/issue/<n>/) Analogously, a known prob-
lem may prevent a certain output from being produced. The MissingOutput

annotation prevents the test case from failing until it is resolved.

8.2.3 Translation and Heap Analysis End-to-End Testing

We test the correctness of the translation of SIL CFGs to Sample CFGs indirectly by
analyzing the translated CFG with Sample, without trying to infer specifications. The
SIL test programs contain assertions. For each assertion, we output an error if the
assertion may not always be satisfied according to the overapproximating abstract state
of the program at that point. In other words, we use Sample as a SIL “verifier” that
only supports logical assertions.

For every SIL language feature that we support in the translation, there is a SIL program
such as the following:

var r: Ref
r := new()
assert(r != null)

//:: ExpectedOutput(sample.assert.failed)
assert (2 < 0)

In addition to the translation test cases, there are also 26 regression test cases for issues
that have been discovered and resolved in Sample’s heap analysis.

8.2.4 Specification Inference End-to-End Testing

It is more challenging to test that our analysis infers the desired specification for a given
SIL method. Test annotations as described in Section 8.2.2 are not suited for this task
because they check outputs purely based on strings.

Instead, we rely on the SIL verifier Silicon. Only if the SIL method extended with
inferred specifications verifies, is the test considered successful.

Calling Methods. The success criterion that the method verifies is not very strong.
First, the inferred precondition may be too strong (e.g., false). In such a case, the
method would always verify, but could not be called at all. Analogously, the inferred
postcondition may be too weak. For example, the inferred postcondition may not return
certain permissions to the caller.

8.2 Testing Infrastructure 59

To strengthen the test success criterion, we add a method test to every SIL test program
that calls the method which we want to infer specifications for. The test method already
has specifications and the test infrastructure does not apply specification inference to
it.

Support for Predicates. Suppose that, for a SIL method, a recursive predicate should
be inferred and the inferred precondition should contain a corresponding instance. The
calling method could not satisfy that inferred precondition, because the inferred predi-
cate does not exist yet in the original SIL program.

To solve this problem, we add a predicate to the SIL test program that matches exactly
the predicate that should be inferred and use it in the calling method. The analysis itself
is unaware of this predicate. However, the extraction logic will detect that a predicate
in the original program matches the inferred predicate. That is, the inferred predicate
contains exactly the same permissions and nested predicate instances. If this is the
case, the existing predicate will be reused in the extended program, which will then
verify.

Listing 31 shows an example of a SIL test program for a list traversal method.

8.2 Testing Infrastructure 60

var val: Int
var next: Ref

/** Method to infer specifications for. */
method traverse(list: Ref)

requires (list != null) ==> acc(valid(list), write) // Inferred
{

var cur: Ref
cur := list
while (cur != null)

invariant (cur != null) ==> acc(valid(cur), write) // Inferred
{

unfold acc(valid(cur), write) // Inferred
cur := cur.next

}
}

/** Predicate that should be detected and reused when building
* the extended program. */

predicate valid(list: Ref) { // Existing (but inferred and reused)

acc(list.next , write) &&

((list.next != null) ==> acc(valid(list.next), write))

}

/** Tests that the precondition of traverse is not too strong.
* Ignored by specification inference. */

method test(list: Ref)

requires acc(valid(list), write) // Existing
{

traverse(list)
}

Listing 13: SIL test program that contains both existing and inferred specifications.

61

9 Experimental Results

We implemented our approach to inferring SIL specifications in the static analyzer Sam-
ple and used the implementation to evaluate our approach. The implementation includes
the translation of SIL programs (Section 4), our extension to the combined heap and
value analysis (Section 6), and the extraction of specifications from the results of that
analysis (Section 7).

For the evaluation, we use a set of SIL programs that operate on linked lists and bi-
nary trees, but also non-recursive data structures. We performed the experiments on a
machine with an Intel Core i7-3667U CPU (2.0GHz) and 8 GB of RAM, running the
Ubuntu 13.10 (64-bit). For the heap analysis, we use the Polyhedra [2] value domain
implemented in Apron [8]. For all experiments, materialization (see Section 3.2.4) is
enabled in the heap analysis and widening (see Section 3.2.3) is set to occur after three
iterations of the analysis.

Table 1 lists the methods that we used for the evaluation, along with the amount of
time required to infer specifications for them. The only method with pre-existing spec-
ifications is firstNaturals , whose precondition is n > 0. In the following, we will
discuss the inferred specifications of the methods copyContainer , reverseList and
traverseTree . The inferred specifications of our running examples setListToZero

and firstNaturals are shown in Listing 7 and Listing 6, respectively.

Copying a Container. The method copyContainer in Figure 14 copies a container
(an object with a val field) provided as a parameter, unless the parameter is null. Our
analysis infers suitable pre- and postconditions that allow the method to verify.

This example highlights two features of the specification extraction:

� Since a container can be specified with a shallow predicate that only contains a field
permission and no nested predicate instances, the extraction inlines the definition
of the inferred predicate (see Section 7.1.3).

In our implementation, the inlining of shallow predicates can be enabled or dis-
abled. If disabled, the inferred precondition and postcondition of the copy method
would contain predicate instances. In addition, the method body would contain
one unfold and two fold statements.

� In addition to assertions involving permissions, the inferred postcondition also
contains logical assertions such as this.val == other.val. These assertions
strengthen the postcondition and thus make the method more useful to callers
of the method. Our implementation currently only extracts logical assertions on
fields of objects if they are framed by field access predicates.

Reversing a Linked List. The method reverseList in Listing 15 takes a linked list
as argument, reverses it and returns the resulting list. The example shows that our
analysis can infer specifications for a method whose state may contain more than one

62

Data Structure Method Inferred Specifications Time

Container makeContainer Postcondition with permission to created
container.

0.055

Container copyContainer Precondition with permission to original
container, postcondition with permission
to original and copied container.

0.161

Linked List setListToZero List predicate with instance in precondi-
tion and loop invariant. unfold state-
ment.

0.856

Linked List firstNaturals List predicate with instance in loop invari-
ant and postcondition. unfold statement.

0.607

Linked List reverseList List predicate with instances in precon-
dition, loop invariant and postcondition.
unfold and unfold statement.

1.319

Binary Tree traverseTree Binary tree predicate with instances in
precondition and loop invariant. unfold
statement.

4.554

Table 1: Inferred specifications and analysis time (in seconds) for individual methods.

var val: Int

method copyContainer(this: Ref)
returns (other: Ref)

requires (this != null) ==> acc(this.val)

ensures (this == null) ==> (this == other && other == null)

ensures (this != null) ==> (

acc(this.val) && acc(other.val) &&

(this.val == other.val) && (other != null))
{

if (this == null) {
other := null

} else {
other := new()
other.val := this.val

}
}

Listing 14: SIL method with inferred specifications, that copies a given container,
unless it is null.

63

data structure at once, each of which needs to be described with a recursive predicate
instance. The analysis also correctly infers both an unfold and fold statement.

The example also illustrates that abstract heaps with ambiguous edges are split recur-
sively to extract assertions (see Section 7.2.1). In the abstract state that we extract
the loop invariant from, both oldList and newList could either be null or refer to
a list element. The extraction splits this abstract heap into four abstract heaps in
which both oldList and newList are unambiguous, and extracts an assertion from
each of these heaps. The sufficient condition of one of these heaps is for example
newList != null && oldList == null. Our implementation simplifies the result-
ing assertion such that for example, tmp == null becomes unconditional, since it holds
in all split abstract heaps. However, the implementation did not detect that (oldList

!= null) ==> acc(p0(oldList)) holds independently of newList. This is only a
concern for human interpretability of the specification, but not the verifier.

Note that the inferred predicate p0 does not contain the permission for the field val.
Since the method never accesses the field val of any element in the list, a precondition
that only supplies permission to the next field of each list element is strong enough.

Traversing a Binary Tree. The method traverseTree in Listing 16 shows that our
analysis also generalizes to recursive data structures other than linked lists. The method
traverses a binary tree and requires a predicate that recurses over two fields left and
right. The method verifies with the inferred specification, consisting of a precondition,
loop invariant and unfold statement in the loop body.

64

var next: Ref
var val: Ref

method reverseList(list: Ref) returns (newList: Ref)

requires (list != null) ==> acc(p0(list))

ensures (newList != null) ==> acc(p0(newList))
{

var oldList: Ref
var tmp: Ref
oldList := list
newList := null
tmp := null
while (oldList != null)

invariant tmp == null

invariant (newList != null) ==>

acc(p0(newList)) &&

((oldList != null) ==> acc(p0(oldList)))

invariant (newList == null) ==>

(oldList != null) ==> acc(p0(oldList))
{

tmp := oldList

unfold acc(p0(oldList))
oldList := oldList.next
tmp.next := newList
newList := tmp
tmp := null

fold acc(p0(newList))
}

}

predicate p0(this: Ref) {

acc(this.next) &&

((this.next != null) ==> acc(p0(this.next)))

}

Listing 15: SIL method with inferred specifications, that reverses a linked list.

65

var left: Ref
var right: Ref
var val: Int

method traverseTree(tree: Ref , key: Int)

requires (tree != null) ==> acc(p0(tree))
{

var node: Ref
node := tree
while (node != null)

invariant (node != null) ==> acc(p0(node))
{

unfold acc(p0(node))
if (key < node.val) {

node := node.left
} else {

node := node.right
}

}
}

predicate p0(tree: Ref) {

acc(tree.val) &&

acc(tree.left) &&

acc(tree.right) &&

(tree.left != null) ==> acc(p0(tree.left)) &&

(tree.right != null) ==> acc(p0(tree.right))

}

Listing 16: SIL method with inferred specifications, that traverses a binary tree.

66

10 Conclusion

We have presented a novel approach to inferring specifications for SIL programs via
extending a recent combined heap and value analysis [5].

We have shown that the results of the heap analysis do not provide sufficient information
to extract specifications for programs that operate on recursive data structures. For such
a program, it is necessary to identify suitable predicates that specify the data structures.
To overcome this challenge, we have refined the heap analysis such that it incrementally
infers information on predicates and predicate instances, based on how the program
operates on the heap.

We have implemented our approach in the static analyzer Sample. The evaluation has
shown that our approach can infer specifications for programs that operate on linked
lists and trees, without requiring any user-provided annotations.

Specification inference has the potential to reduce the effort required for verification and
could thus lead to a wider adoption of verification in the industry. We hope that our
humble contribution inspires further research in the area of specification inference.

10.1 Future Work

There are several directions for further work.

Extracting More Complex Logical Assertions. Our extraction of assertions from ab-
stract heaps focuses on predicate instances that allow the method to verify. However,
the abstract heaps may also include relationships among values on the heap.

The current implementation only extracts simple logical assertions for the values on the
heap. More complex assertions, possibly involving recursive abstraction functions, could
make inferred specifications more useful. The extraction of such assertions would be
technically challenging, but could exploit the inferred information on predicates.

Lifting Restrictions on Predicates. We have imposed restrictions on predicates that
allows for a simple representation of predicates in the analysis. We believe that these
restrictions can be weakened with more engineering effort, thus enabling the inference
of more expressive predicates.

For example, our mechanisms for making the heap analysis more precise in the presence
of recursive predicate instances is expected to work for predicates with more than one
parameter, as long as the recursion only occurs over the fields of one parameter.

Adding Support for Magic Wand Operator. The inferred specification for the method
setListToZero does not return the permissions for the list to the caller of the method.
Preserving the permissions with the features of SIL described in Section 2 is involved.
The recently added support for the magic wand operator −∗ to the SIL verifier Silicon [12]

10.2 Acknowledgements 67

promises less overhead for the specifications of loops. In order to extract specifications
that use the magic wand operator, it may be necessary to track additional information
in the analysis such as the variable that points to the whole list. However, Unfolded
labels may already serve as valuable information.

10.2 Acknowledgements

Special thanks go to my advisors Dr. Alex J. Summers and Milos Novacek for many long
and fruitful discussions, providing new perspectives on the problems at hand and valuable
feedback on the written report. Furthermore, I would like to thank Prof. Dr. Peter Müller
for giving me the opportunity to work on this thesis at the Chair of Programming
Methodology. Last but not least, thanks go to my family for their encouragement.

REFERENCES 68

References

[1] Bernhard Brodowsky. Translating Scala to SIL. Master’s thesis, ETH Zurich, 2013.

[2] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

[3] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frame-
works. In Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’79, pages 269–282, New York, NY, USA, 1979.
ACM.

[4] Pietro Ferrara. Static type analysis of pattern matching by abstract interpretation.
In Proceedings of the 12th IFIP WG 6.1 international conference and 30th IFIP
WG 6.1 international conference on Formal Techniques for Distributed Systems,
FMOODS’10/FORTE’10, pages 186–200, Berlin, Heidelberg, 2010. Springer.

[5] Pietro Ferrara, Milos Novacek, and Peter Müller. Automatic inference of heap
properties exploiting value domains. 2013.

[6] Raphael Fuchs. Inferring counterexamples from abstract error states. Master’s
thesis, ETH Zurich, 2014.

[7] Stefan Heule, Ioannis T. Kassios, Peter Müller, and Alexander J. Summers. Verifica-
tion condition generation for permission logics with abstract predicates and abstrac-
tion functions. In Proceedings of the 27th European conference on Object-Oriented
Programming, ECOOP’13, pages 451–476, Berlin, Heidelberg, 2013. Springer.

[8] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract do-
mains for static analysis. In Proceedings of the 21st International Conference on
Computer Aided Verification, CAV ’09, pages 661–667, Berlin, Heidelberg, 2009.
Springer-Verlag.

[9] Christian Klauser. Translating Chalice into SIL. Bachelor’s thesis, ETH Zurich,
2012.

[10] K. Rustan Leino and Peter Müller. A basis for verifying multi-threaded programs.
In Proceedings of the 18th European Symposium on Programming Languages and
Systems: Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009, ESOP ’09, pages 378–393, Berlin, Heidelberg, 2009.
Springer-Verlag.

[11] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’05, pages 247–258, New York, NY, USA, 2005. ACM.

[12] M. Schwerhoff and A. J. Summers. Lightweight support for magic wands in an
automatic verifier. Technical Report 0, ETH Zurich, 2014.

REFERENCES 69

[13] Malte Schwerhoff. Symbolic execution for Chalice. Master’s thesis, ETH Zurich,
2010.

[14] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining
dynamic frames and separation logic. In Proceedings of the 23rd European Con-
ference on ECOOP 2009 — Object-Oriented Programming, Genoa, pages 148–172,
Berlin, Heidelberg, 2009. Springer.

[15] Alexander J. Summers and Sophia Drossopoulou. A formal semantics for isore-
cursive and equirecursive state abstractions. In Proceedings of the 27th European
Conference on Object-Oriented Programming, ECOOP’13, pages 129–153, Berlin,
Heidelberg, 2013. Springer-Verlag.

70

A SIL Language Definition

The following syntax of SIL in BNF has been typeset by Stefan Heule [7] and Bernhard
Brodowsky [1].

,? is a special repetition operator that denotes a comma-separated list.

sil -program ::= (domain | field | function | predicate | method)?

domain ::= "domain" domain -name "{"
domain -function ?

axiom ?

"}"

domain -name ::= ident | ident "[" ident ,? "]"

domain -function ::= "unique"? "function" ident "(" formal -arg ,? ")" ":"
type

formal -arg ::= ident ":" type

axiom ::= "axiom" ident "{"
exp ";"?

"}"

field ::= "var" ident ":" type

function ::= "function" ident "(" formal -arg ,? ")" ":" type
precondition ?

postcondition ?

"{" exp "}"

precondition ::= "requires" exp ";"?
postcondition ::= "ensures" exp ";"?

invariant ::= "invariant" exp ";"?

predicate ::= "predicate" ident "(" formal -arg ,? ")" "{" exp "}"

method ::= "method" ident "(" formal -arg ,? ")" ("returns" "("
formal -arg ,? ")")?

precondition ?

postcondition ?

"{" local -decl ? stmt "}"

local -decl ::= "var" ident ":" type

stmt ::= (stmt ";"?)?

| "assert" exp
| "inhale" exp
| "exhale" exp
| "fold" "acc" "(" loc -access "," exp ")"
| "unfold" "acc" "(" loc -access "," exp ")"
| loc -access ":=" exp // field assignment
| ident ":=" exp // local variable

assignment
| "if" "(" exp ")" "{"

71

stmt
"}"
("elsif" "(" exp ")" "{"

stmt
"}")? // (any number of

elseif branches)
("else" "{" stmt "}")? // (the else branch is

optional)
| "while" "(" exp ")"

invariant ?

"{" stmt "}"
| ident ":=" "new()" // object creation
| ident "(" exp ,? ")" // method call
| ident ,? := ident "(" exp ,? ")" // method call with

return values
| "goto" ident // goto statement
| ident ":" // a label (can be used

as target for goto)
| "fresh" (ident ?) "{" // fresh abstract read

permission block
stmt

"}"

exp ::= exp "?" exp ":" exp // conditional expression
| exp "==>" exp // implication
| exp ("||" | "&&") exp // disjunction and

conjunction
| "!" exp // boolean negation
| exp ("==" | "!=") exp // equality comparison
| exp ("<" | "<=" | ">" | ">=") exp // ordering (both

numerical/permission)
| exp ("+" | "-") exp // math operators (both

numerical/permission)
| exp "*" exp // int/int , perm/perm

and int/perm multiplic.
| exp ("\ " | "%") exp // integer division and

modulo
| ("+" | "-") exp // math operators (both

numerical/permission)
| ident "(" exp ,? ")" // function application
| loc -access // field read or

predicate
| integer // integer literal
| "null" // null literal
| "true" | "false" // boolean literal
| ident // local variable read
| "result" // result literal in

function postconditions
| "acc" "(" loc -access "," exp ")" // accessibility

predicate
| "forall" formal -arg ,? "::" trigger ,? exp //

universal quantification
| "exists" formal -arg ,? "::" exp // existential

quantification
| "(" exp ")"
| "[" exp "," exp "]" // inhale exhale

expression

72

| "perm" "(" loc -access ")" // current permission
of given location

| "write" // full permission
literal

| "none" // no permission literal
| "epsilon" // epsilon permission

literal
| "wildcard" // wildcard permission
| exp "/" exp // concrete fractional

permission

| "Seq" "[" type "]" "()" // the empty sequence
| "Seq" "(" exp ,? ")" // explicit sequence
| "[" exp ".." exp ")" // half -open range of

numbers
| exp "++" exp // sequence append
| "|" exp "|" // length of a sequence
| exp "[" exp "]" // sequence element for

given index
| exp "[" ".." exp "]" // take the some of the

first elements
| exp "[" exp ".." "]" // drop some elements

at the end
| exp "[" exp ".." exp "]" // take and drop at the

same time
| exp "in" exp // element containment

test
| exp "[" exp ":=" exp "]" // sequence with one

element updated

| "Set" "[" type "]" "()" // the empty set
| "Set" "(" exp ,? ")" // explicit set
| "Multiset" "[" type "]" "()"// the empty multiset
| "Multiset" "(" exp ,? ")" // explicit multiset
| "|" exp "|" // set/multiset

cardinality
| exp "union" exp // set/multiset union
| exp "intersection" exp // set/multiset

intersection
| exp "setminus" exp // set/multiset

subtraction
| exp "subset" exp // set/multiset subset

test

trigger ::= "{" exp ,? "}" // a trigger for a
quantification

loc -access ::= exp "." ident // field access
| ident "(" exp ,? ")" // predicate

type ::= "Int" | "Bool" | "Perm" | "Ref" // primitive types
| "Seq" "[" type "]" // sequence type
| ident // type variable or

non -generic domain type
| ident "[" type ,? "]" // generic domain type

ident ::= "[a-zA-Z$_][a-zA-Z0 -9$_ ’]*" // an identifier

73

(specified as regular exp)

	1 Introduction
	1.1 Automated Software Verification with SIL
	1.1.1 Framing
	1.1.2 Abstract Predicates

	1.2 Static Program Analyzer Sample
	1.2.1 Abstract Heaps
	1.2.2 Connection to Recursive SIL Definitions

	1.3 Overview
	1.4 Outline

	2 The Semper Intermediate Programming Language (SIL)
	2.1 Types and Objects on the Heap
	2.2 Framing
	2.3 Abstract Predicates

	3 Combined Heap and Value Analysis with Sample
	3.1 Abstract Interpretation
	3.1.1 Forward Analysis

	3.2 Overview of Combined Heap and Value Analysis
	3.2.1 Abstract Domain
	3.2.2 Join
	3.2.3 Widening
	3.2.4 Materialization
	3.2.5 Edge Disambiguation Ghost State

	4 Translation of SIL Programs
	5 Running Examples and Associated Challenges
	5.1 List Generation
	5.2 List Traversal

	6 Analysis for Inferring SIL Predicates and Predicate Instances
	6.1 Supported Predicates
	6.2 Tracking Predicates
	6.2.1 Representation of Predicates
	6.2.2 Predicates as a Mechanism for Tracking Permissions
	6.2.3 Predicates as Placeholders
	6.2.4 Detecting Recursive Predicates By Merging Predicates
	6.2.5 Restricting Heap Analysis for Known Recursive Predicates

	6.3 Tracking Predicate Instances
	6.3.1 Representation of Predicate Instances
	6.3.2 Folded and Unfolded Labels
	6.3.3 Initial Abstract State of a Method
	6.3.4 Variable Accesses and Assignments

	6.4 Adding Permissions to Predicates
	6.4.1 Identifying the Predicate Instance
	6.4.2 Adding Permissions to Identified Predicate

	6.5 Detecting Recursive Predicates During Joining
	6.5.1 Merging Predicates

	6.6 More Precise Heap Analysis for Recursive Predicates
	6.6.1 Rerunning the Analysis
	6.6.2 Impossible Self-Loops
	6.6.3 Impossible Edges to Already Unfolded Nodes
	6.6.4 Version Numbers for Predicate Instances
	6.6.5 Joining Precise Abstract Heaps
	6.6.6 Precise Abstract Heap at Fixed Point

	6.7 Object Allocation
	6.7.1 Introduction of Fresh Unfolded Predicate

	6.8 Field Assignments
	6.9 Folding Predicate Instances

	7 Extraction of SIL Specifications from Abstract States
	7.1 Predicates
	7.1.1 Placeholder Predicates
	7.1.2 Predicate Aliases
	7.1.3 Inlining Shallow Predicates

	7.2 Assertions
	7.2.1 Splitting Abstract Heaps to Handle Disjunctive Information
	7.2.2 Predicate Instances
	7.2.3 Logical Assertions
	7.2.4 Postcondition

	7.3 [language=sil,basicstyle=,columns=fixed]fold and [language=sil,basicstyle=,columns=fixed]unfold Statements

	8 Further Technical Work
	8.1 Web Interface
	8.1.1 Functionality
	8.1.2 Technical Basis

	8.2 Testing Infrastructure
	8.2.1 Generalization of SIL's Testing Infrastructure
	8.2.2 Test Annotations
	8.2.3 Translation and Heap Analysis End-to-End Testing
	8.2.4 Specification Inference End-to-End Testing

	9 Experimental Results
	10 Conclusion
	10.1 Future Work
	10.2 Acknowledgements

	A SIL Language Definition

