
Verification of Information Flow Security for
Python Programs

Master Thesis Project Description

Severin Meier
Supervisor: Marco Eilers, Prof. Peter Müller

March 2018

1 Introduction

The VerifiedSCION project aims to prove correctness of the SCION router implementa-
tion, which is written in Python. The Nagini verifier1 was developed for this purpose.
It uses deductive verification, which means that the programmer has to supply a specifi-
cation in the Python code, i.e. pre- and postconditions and loop invariants, and Nagini
then tries to prove that the program fulfills the given specification. Internally it makes
use of Viper [3], a verification infrastructure with its own intermediate verification lan-
guage. Nagini transforms the Python program and its specification into a Viper program,
for which Viper proves correctness or reports a verification error. The purpose of this
project is to add information flow security verification to the Nagini verifier.

Information flow security is a program property which expresses that secret infor-
mation, such as passwords or encryption keys, is not leaked in the programs public
outputs. We can re-formulate this as a non-interference property: If the program is run
multiple times with the same non-critical inputs, but with different secret values, the
public output should always be the same. As it relates multiple executions of a program,
non-interference is called a hyperproperty.

Unfortunately verification tools, such as Viper, typically only reason about single
executions. In order to use them to verify a hyperproperty such as information flow
security, we need to give the verifier a modified program, which expresses the relation
between two executions. It is important that after this transformation, verification can
still be done modularly. Modularity allows us to verify each method of the program in
isolation, relying only on specifications of other methods, not their body. This is crucial
for performance, because without it each verification has to inspect all the code which
is reachable from the verified method. Therefore to keep the verification modular, the
program is transformed to a modular product program [2], which combines the behavior

1https://github.com/marcoeilers/nagini

1

https://github.com/marcoeilers/nagini


of multiple executions into one. This allows us to express the desired properties as a
unary specification on a single program execution, which can be verified using existing
tools.

Modular product programs are defined generally for k-safety properties, which relate
k program executions. Most interesting hyperproperties, including information flow
security, are a special case where k = 2, which is why we will limit this project to this
case for simplicity.

Currently modular product programs are only defined for a small language, which is
not expressive enough for encoding the range of programs we aim to verify. Therefore
the encoding needs to be extended, to add support for common language features, as
well as some specification constructs. These extensions should then allow to define a
suitable subset of Python, which allows for interesting programs to be encoded.

Then the transformation from Python program into a modular product program in
Viper has to be implemented. For this, we first have to find a way to declare the
inputs and outputs as high or low, meaning they are secret or public respectively. To
achieve this Nagini’s specification language will have to be extended. The next step is to
determine at which point during the encoding from Python to Viper the transformation
should be applied. The challenging part here is to do this in a way that reuses existing
infrastructure as much as possible. We want to keep the existing encoding from Python
to Viper and the partly existing encoding from Viper to modular product encoding
separate as much as possible.

The implementation should then be evaluated on example programs from the litera-
ture. These programs need to be translated to Python, together with the specifications,
and then verified to analyze the performance of the implementation.

2 Core Goals

2.1 Extending the modular product program encoding

The first goal is to extend the modular product program encoding to make it more ex-
pressive. These extensions are to be at an abstract level, meaning the encoding is not
specific to Python or any other programming language. In particular the required lan-
guage features are return statements, exception handling (try/catch blocks) and control
flow in loops (break and continue). We also need to add support for Viper’s specification
constructs, namely pure functions and predicates.

An important property we want to keep for all these encodings, is that the user does
not have to supply any specifications which are used only for the product transformation.
The transformation should rely only on the specifications which are already needed for
the functional verification and the declarations for secret data.

2.2 Design Viper encoding

The exact subset of Python for which the modular product program encoding should
be implemented needs to be defined. It should include exception handling, dynamically

2



bound calls, predicates and functions, mutable heap, and support for some built-in types,
e.g. lists. We will not support concurrency and obligations [1].

We need to determine the point during the encoding from Python to Viper where
the transformation is to be applied. The transformation then should be designed in a
way that maximizes reuse of existing infrastructure. In particular the existing encoding
from Python to Viper and the partly existing encoding from Viper to modular product
program in Viper should be kept separate as much as possible.

2.3 Information Specifications

There needs to be a way to declare information in the Python program as high or low.
This has to be added to Nagini’s specification language. For code which does not interact
with any secret data, there should be reasonable defaults.

2.4 Implementation

In this step the Nagini verifier is to be extended with the implementation of the modular
product program encoding. Depending on the design from Section 2.2, this may include
extending Nagini itself, but might also require implementing some transformation on the
Viper level directly.

2.5 Evaluation

The evaluation part consists of finding interesting example programs in literature, trans-
lating them to Python together with suitable specifications, and verifying them. We are
interested in completeness and performance of the implementation.

3 Extension Goals

Here is a list of possible extensions to the project:

• Optimizing the encoding of modular product programs for better verification per-
formance.

• Adding support for obligations.

• Developing a scheme for modelling the runtime of Python programs in Viper, in
order to prove the absence of possible timing side channels, which could leak secret
information.

• Finding a way to prove that termination depends only on public data, in order to
guarantee the absence of termination side channels.

3



4 References

[1] P. Boström and P. Müller. Modular Verification of Finite Blocking in Non-
terminating Programs. In John Tang Boyland, editor, 29th European Conference
on Object-Oriented Programming (ECOOP 2015), volume 37 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 639–663, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[2] M. Eilers, P. Müller, and S. Hitz. Modular Product Programs. European Symposium
on Programming (ESOP), 2018.

[3] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for
permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors, Verifica-
tion, Model Checking, and Abstract Interpretation, pages 41–62, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

4


	Introduction
	Core Goals
	Extending the modular product program encoding
	Design Viper encoding
	Information Specifications
	Implementation
	Evaluation

	Extension Goals
	References

