
Inference of Pointwise Specifications for Heap
Manipulating Programs

Master Thesis Project Description

Severin Münger
Supervisors: Alexander J. Summers, Caterina Urban

ETH Zurich

October 19, 2016

1 Introduction

The high level goal of software verification is to prove mathematically that, given a computer
program and its specification, the program is correct with respect to the specification. In general,
the process of verifying a given program is not trivial and tedious to do by hand. In order to make
software proofs practically usable, they have to be automated. Over the last 15 years, significant
progress has been made in the field of software verification - both theoretically and practically.
One especially important achievement has been the development of so-called permission logics
that facilitate reasoning about programs that access and modify the heap during their execution,
separation logic being probably the best-known example among them. To be able to reason about
the heap in a simple way is very significant in many contexts, e.g. in verifying algorithms using
data structures such as lists. Though possible, specifying pointer-based algorithms remains very
cumbersome without special support.
Recently, a new intermediate verification infrastructure, called Viper [2], has been developed that
natively supports permissions. Viper consists of multiple components. At the front-end, Viper
provides an interface to various high-level programming languages such as Java or Scala that are
translated to Viper’s intermediate verification language. One of the core features of Viper is the
possibility to include permission assertions in contracts. For this purpose, it provides the so-called
accessibility predicate which has the general form acc(e.f, p) where e is a reference, f is a field
of reference e and p is a permission. The accessibility predicate can also be used in quantified
expressions to define permissions over a (not necessarily bounded) set of references. The general
form of quantified permissions in Viper look as follows:

forall q : T :: c(q) ==> acc(e(q).f, p(q)) (1)

While permissions significantly simplify expressing heap-modifying algorithms, they also introduce
overhead. For every heap access inside a method body there have to be enough permissions for
the respective location before the access (e.g. through a precondition or a so-called inhale) and the
corresponding permissions also have to be properly released afterwards (e.g. through a postcondi-
tion or a so-called exhale). Optimally, we would like to reduce the need of writing such contracts
by hand in order to facilitate the specification progress and ultimately to make Viper more usable.
A recent master thesis [3] employed backward abstract interpretation [1] to track location accesses

1



(reads, writes), inhales and exhales to infer preconditions and loop invariants for quantified permis-
sions. While the approach in the thesis looks promising, it suffers from some problems. In certain
cases, the analysis can be very imprecise in the sense that it requires access to more heap locations
than actually needed. A further limitation is that the analysis is only performed backwards. This
means that the inference is able to determine the locations that need to be granted permissions but
does not handle the release of the permissions afterwards. The high-level goal of this master thesis
is to generalize and formalize the results from [3] and to improve the approach by extending it with
additional analyses. The final implementation of the newly devised approach should optimally be
elaborate enough to be included in the Viper infrastructure.

2 Core Goals

In this master thesis, we would like to extend the support of automated inference of (permission-
related) contracts of Viper - both in theory and in practice. In particular, we would like to achieve
the following:

• Design of unified approach The master thesis [3] describes an algorithm which is ba-
sically divided into two separate parts: one for handling arrays and one for handling general
graphs. It has to be chosen before the analysis which specialized inference to use. Moreover,
there currently is an unsoundness in the graph part of the algorithm. We would like to come
up with a new way of relating these two separate cases and ideally to combine them to an
elaborate unified and sound solution.

• Forward analysis to infer post-conditions Until now, only weakest preconditions have
been inferred, i.e. requiring just enough permissions for a method to verify. In this thesis the
aim is to also infer strongest postconditions. For this we would have to combine the current
approach with an additional forward analysis using abstract interpretation. The main point
of this extension is to not only be able to require enough permissions for a method in the
precondition but also to return the appropriate permissions at the end of a method in the
postcondition. This way we will be able to give stronger guarantees to method callers and
we believe that this could also benefit the strength of loop invariants.

• Quantifier elimination In order to deal with changing variables inside loops, [3] intro-
duced the forget operator. A numerical analysis (also by employing abstract interpretation
with an interval domain for integer-typed variables) was used to infer all the possible values
for a changing variable inside a loop. The result of this numerical analysis is used together
with the result of the backward permission tracking analysis to generate the quantified per-
mission assertions. Unfortunately, this forget operator in general imposes imprecision as it
relies on abstract interpretation. We aim to devise a more precise approach using quantifier
elimination.

• Include heap analysis to generalize support We would like to also support inference
in case of aliasing or heap dependent receivers in arrays which is not handled in the existing
algorithm. At the time of writing this description, there is work in progress to develop a heap
analysis for Viper which would facilitate the inference for such cases.

2



3 Possible Extensions

• Revisit and refine design of the inferred sets For the part of the approach that
infers quantified permissions over sets for graph data structures, we would like to specify the
inferred sets more precisely and optimally we would also like to get rid of possibly duplicated
or redundant sets. This could go so far as to also consider all the call sites of the method in
question and to try to match the appropriate parameters with the sets in the contracts. An
important point to consider is that the inferred contracts should still be human readable. We
will probably have to balance between preciseness and readability of the inferred contracts,
especially regarding the inferred sets.

• Formal description and soundness proof We would like to precisely describe the newly
developed algorithm formally. We could take this even further and prove the soundness of
our approach. Soundness in the context of inference of quantified permissions means that it
is guaranteed that for every heap read access we hold at least a fractional (read) permission
for the respective location and that for every write access we have write permission.

• Generalize quantifier elimination Unfortunately, quantifier elimination is only pos-
sible in certain restricted theories. For theories that do not fall into this category, however,
it is possible to at least compute a formula without quantified variables that is implied by
the original formula while it is still as strong as possible. We would therefore like to combine
logical fragments that target such theories in order to be able to handle a wider range of
formulas. We could for example make use of an algorithm to compute the cover of formulas
in the theory of uninterpreted functions and linear arithmetic.

References

[1] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’77, pages
238–252, New York, NY, USA, 1977. ACM.

[2] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A Verification Infrastructure for
Permission-Based Reasoning, pages 41–62. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

[3] S. Walter. Automatic Inference of Quantified Permissions by Abstract Interpretation. Master
thesis, ETH Zürich, 2016.

3


	Introduction
	Core Goals
	Possible Extensions

