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Abstract

Research in the field of automated software verification has made tremendous progress over
the last decades. Special logics such as separation logic and implicit dynamic frames allow
efficient reasoning about general heap manipulating programs. Viper, a software verification
infrastructure, is designed based on these techniques and incorporates the concept of permissions.
In order for a program to successfully verify, the programmer has to require explicit ownership
to each heap location that gets accessed in the program by declaring according permissions.

In this thesis, we propose an elaborate and general approach for the automatic inference of
access permissions which unifies and improves existing algorithms. Moreover, we introduce a
sound rule for propagating permissions over heap modifications. Integer-dependent heap accesses
are handled by including the results of a numerical analysis into our algorithm using quantifier
elimination. We extend programs with our inference results using quantified permissions which
are natively supported by Viper. The presented algorithm is sound and able to infer permissions
for a broad range of real programs efficiently. Finally, with our prototype implementation,
we evaluate generated specifications for concrete Viper programs including a sophisticated
tree traversal algorithm in terms of precision and how their readability benefits from various
simplifications we employ.
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1 Introduction

The field of Software Verification has seen tremendous progress over the last decades. Theoretical
frameworks such as abstract interpretation or Hoare logic allow to prove or disprove certain
properties of programs statically and have paved the way for automated software verification.
In order to prove that a program is correct with respect to the properties in question there first
needs to be a precise mathematical specification of the program to prove. The specification,
also called contract, describes the properties that the program should have in a very precise
mathematical manner that can be understood by the underlying verifier. For some properties
this might be a straightforward task. However, specifying complex functional behaviors or heap
manipulating programs can quickly result in contracts that are of bigger size than the program
itself. This is one of the main reasons why static software verification is still not widely used
in industry as opposed to, e.g, testing. Therefore, a lot of research in the field of software
verification now focuses on improving the usability and on reducing the verbosity of the needed
contracts.
Additional annotations are required especially when dealing with general programs that might
access and modify the heap. Several special theories and techniques have been introduced
that facilitate the handling of heap accesses and modifications, such as separation logic [22],
an extension of Hoare logic, or implicit dynamic frames [23]. These theories introduce the
notion of permissions which are used to declare ownership to parts of the heap and provide
the ability to reason about parts of the program locally. However, on the downside, declaring
permissions imposes an additional annotation overhead to the programmer. The Viper framework
[20] developed at ETH Zurich is a comprehensive and flexible verification framework which
incorporates permission-based reasoning by design.

1.1 Motivation

While allowing to specify heap manipulating programs, on the downside, theories such as
separation logic or implicit dynamic frames, which Viper is based on, require explicit declarations
of permissions to every heap location that gets accessed or modified at any point in the program.
A big advantage of Viper compared to other permission-based frameworks is that it supports
declaring universally quantified permissions [19]. Specifying those permissions is usually a
rather trivial task compared to the specification of functional behavior but still they can impose
considerable effort to the programmer writing the specification. Contracts mainly appear in
three places in methods of a program: On method entries as preconditions, at loop heads as
invariants and at the end of a method as postconditions. In order to make a heap-manipulating
program verify successfully in Viper, method preconditions have to require enough permissions
to enable all the field accesses and modifications occurring in the method. Loop invariants should
guarantee enough permissions for any number of iterations of the loop body. Automatically
inferring permission-related contracts would drastically improve the usability of an automated
verification framework for heap manipulating programs such as Viper.

1



1 Introduction

1.2 Goals and Outline

The general goal of this master thesis is to continue previous work on the automatic inference
of quantified permission [24]. In particular, we generalize the approach presented in [24] and we
address several of its limitations and unsoundness issues.
In the following we give an overview of the goals we set ourselves before starting this thesis.

Design of unified approach The work in [24] describes two specialized and disjoint
approaches: one for handling arrays and one for handling general graph-like data structures. It
has to be chosen before the analysis which specialized inference to use. We propose a new way
of relating these two separate approaches and combine them to an elaborate unified and sound
solution.

Quantifier elimination In order to deal with changing variables inside loops, [24] introduced
the forget operator. A numerical analysis by abstract interpretation was used to infer all
the possible values for a changing variable inside a loop. The result of this numerical analysis
was used together with the result of a backward permission tracking analysis to generate
the quantified permission assertions. Unfortunately, this forget operator in general imposed
imprecision and also contained an unsoundness. We propose a more precise approach to project
out changing variables using quantifier elimination (cf. Section 3.5).

Support heap manipulations We also support sound inference in case of heap-dependent
receivers that potentially get changed themselves. In particular, we present a sound rule for
propagating permissions over heap modifications which was not supported in [24]. Furthermore,
we incorporate into our approach a heap analysis to facilitate the inference in certain cases (cf.
Section 3.4).

Forward analysis to infer post-conditions Until now, only weakest preconditions have
been inferred to require at least enough permissions for a method to verify. We also develop
strongest postcondition rules for quantified permissions and explain how to extend our algorithm
with an additional forward analysis using abstract interpretation (cf. Section 3.7).

Simplify generated specifications We will present various simplifications and optimiza-
tions of the generated specifications (cf. Section 3.8). All these enhancements improve readability
a lot in general.

Furthermore, we will give an overview of the work done in [24] and a brief introduction to
abstract interpretation and the Viper framework in Chapter 2. In Chapter 3 we will describe our
algorithm in detail. This will lead over to the evaluation in terms of soundness and precision of
our algorithm for concrete Viper programs in Chapter 4. Finally, Chapter 5 will cover possible
extensions and improvements and especially how the limitations of our algorithm could be
addressed in future work. We will conclude this thesis in Chapter 6.

2



2 Related Work

2.1 Previous Work

This master thesis is based on the work done by Seraiah Walter [24]. In the following we will
shortly summarize the most important contributions of that work.
The main goal in [24] was to infer quantified permissions for two different kinds of Viper programs:
Programs operating on arrays and programs operating on graph data structures. The developed
approach consists of two separate algorithms. The algorithm to infer permissions for array
programs employs a separate numerical analysis to infer constraints on integer-valued variables
that occur in array accesses. This information is then used to project out changing integer
variables in loops. Similarly, the graph algorithm projects out changing reference variables that
are receivers of field accesses using sets.
One disadvantage of the approach in [24] is that it has to be decided manually which of the
two algorithms to use. That also means that the approach is not able to handle programs that
contain both array accesses and graph-like data structure accesses. Another shortcoming is that
heap modifications in the graph algorithm are not supported. This led to the main motivations
for our work.

2.2 The Viper Framework

Viper [20] is a verification framework that has its own intermediate verification language and
provides flexibility to write front-ends for multiple high-level programming languages as well as
interfaces for various back-ends. The modular structure of Viper is shown in Figure 2.1. The
core component of Viper is its own intermediate verification language. The Viper language is
sequential, imperative and object-based. A Viper program can consist of global field declarations,
abstract and non-abstract functions, predicates, domains, and methods. Domains in turn consist
of a sequence of abstract functions, so called domain functions, and axioms. Viper natively
provides only a limited number of data types: Int, Bool, Rational, Perm (data type for
permissions), Ref (data type for references), Set[T], and Seq[T]. It is important to note that
fields are only declared once per program and can be accessed on any Ref-typed receiver. The
Viper language was designed with the balance between simplicity and expressiveness in mind.
It can be used to handle modern high-level programming languages while still providing only a
limited number of language features. Still, it is not overloaded with language features which
makes it easier to develop efficient back-ends.
The modular structure of Viper minimizes the effort for a programmer to adapt a new pro-
gramming language to the Viper framework. As soon as there is a complete front-end, i.e., a
compiler that translates programs written in the original programming language to equivalent
Viper programs, it is possible to verify any program written in this language. There already
exist various front-ends, e.g., for Chalice [14], Java [2], or a subset of Scala.

3



2 Related Work

On the back-end, there currently exist two verifiers that are part of Viper. Carbon, which
basically translates Viper programs into Boogie [1] programs and Silicon, which is based on
symbolic execution. Both back-ends rely on Microsoft’s Z3 SMT solver [10].
There exists a specification inference framework for the Viper language, called Sample. It is
based on abstract interpretation and we will introduce it in Section 2.3.1.

Figure 2.1: The Viper Framework. Note that Silver is the old name of the Viper language.

In the following, we will shortly describe in some more detail the most relevant Viper features
for our work.

2.2.1 Permissions

A central feature of the Viper language is a built-in permission system that supports defining
fine-grained access permissions for heap locations. To represent permissions, Viper has a special
type Perm. We can use write to denote full permission which is needed for a field write, none
to denote no permission and a fraction, e.g. 1 / 2, to denote read permissions needed for a field
read. To declare permissions Viper provides the special accessibility predicate acc which takes
as arguments a location and a permission amount. It can occur in preconditions, invariants and
postconditions to request or return permissions. A Viper program which performs a simple
field write can be seen in Listing 2.1. It requires write access to r.f in the precondition and
returns the same permission in the postcondition.

4



2 Related Work

1 method assignField(r: Ref)
2 requires acc(r.f, write)
3 ensures acc(r.f, write)
4 {
5 r.f := r
6 }

Listing 2.1: A simple field assignment.

Moreover, Viper also allows adding and removing permission from the current state through the
keywords inhale and exhale. The statement inhale A assumes all pure assertions in A and
adds all permissions in A defined through the accessibility predicate to the current state. The
statement exhale A is the dual of the inhale. It asserts all pure assertions in A and removes
all permissions in A from the current state. Listing 2.2 illustrates the use of inhales and exhales
as well as fractional permissions. Before executing line 4, we start out with no permission to r.f.
Then, we inhale the fractional permission 3 / 4 to location r.f which allows us to perform the
field read on line 5. On line 6, the permission amount 1 / 2 is exhaled to the same location.
Finally, we end up with permission acc(r.f, 1 / 4) after having executed line 6 which is
exactly the permission we return in the postcondition defined on line 2.

1 method extractField(r: Ref) returns (res: Ref)
2 ensures acc(r.f, 1 / 4)
3 {
4 inhale acc(r.f, 3 / 4)
5 res := r.f
6 exhale acc(r.f, 1 / 2)
7 }

Listing 2.2: Fractional permissions and the use of inhale and exhale.

If a program contains field accesses or exhales for which not enough permissions are specified in
preconditions or invariants, the verification of the program will fail.

2.2.2 Encoding of Arrays

Viper does not natively support the notion of an array. However, it supports custom data types
through the declaration of domains. A domain may consist of uninterpreted functions and
axioms. We can encode arrays in Viper through the definition of a custom domain. A standard
array domain definition can be seen in Listing 2.3.
An array access in a higher-level programming language, e.g. arr[i] in Java, will be represented
as loc(arr, i).val in Viper. The loc function represents the array slot corresponding to
a given array and index and the val field represents the value stored in this array slot. The
axiom lengthNonneg expresses that the length of every array is non-negative. Finally, the
allDiff axiom expresses that the loc function is injective, i.e., that two different indexes of
any array will always identify a different heap location.

5



2 Related Work

1 field val: Int
2
3 domain Array {
4 function loc{a: Array, i: Int): Ref
5 function length(a: Array): Int
6 function rToA(ref: Ref): Array
7 function rToI(ref: Ref): Int
8
9 axiom allDiff {

10 forall a: Array, i: Int :: {loc(a, i)} rToA(loc(a, i)) == a && rToI(
loc(a, i)) == i

11 }
12 axiom lengthNonneg {
13 forall a:Array :: length(a) >= 0
14 }
15 }

Listing 2.3: Encoding of Arrays in Viper.

2.2.3 Notation

In Viper it is syntactically incorrect to write 0 for no permission or 1 for write permission.
Instead, we have to write none and write, respectively. Nevertheless, throughout this report,
we will use 0 and 1 likewise for none and write for the sake of simplicity.
We will often omit field declarations in examples of Viper programs where the existence of that
field is obvious from the code.
In addition, we will omit the encoding of arrays completely and assume that it is present in
every program in the form described in Section 2.2.2. However, note that our algorithm is not
restricted to work on this exact definition of arrays. We could, for example, as well handle
arrays where val has a different type than Int.

2.3 Abstract Interpretation

Abstract interpretation [8] is a framework for static program analysis introduced by Patrick
Cousot and Radhia Cousot. It is used to over-approximate the behavior (or semantics) of a
program in a sound way. Thus, abstract interpretation allows to gain information about the
semantics of a program without having to perform concrete executions of the program. We will
now give a short overview over the most important concepts of abstract interpretation.
From a high level perspective, abstract interpretation provides the ability to reason about
properties of a program at different abstraction levels. The most precise semantics are the
trace semantics which describe all possible executions of a program exactly, usually representing
program states by the program counter and a representation of the whole memory, i.e., variables
and the heap. However, in general, these semantics are not decidable. Fortunately, interesting
semantics do not have to be as precise and irrelevant information for the program property
of interest can be abstracted away. For instance, one might only be interested in the values

6
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integer-typed variables can have throughout the program. In that case, an abstract semantics
could be derived from the concrete semantics by discarding all but integer-typed variables.
In abstract interpretation, the representation of a program state in the abstract semantics is
an abstract state. The domain of concrete as well as abstract states has to form a lattice. A
lattice is a partially ordered set (a so called poset) in which every two elements have a unique
least upper bound and a unique greatest lower bound. Concrete states and abstract states are
strongly connected by mathematical functions. A function that maps a concrete state to an
abstract state is called an abstraction function, a function that maps an abstract state to a
concrete state is called a concretization function. In particular, abstract states always represent
an over-approximation of their corresponding concrete states. In other words, abstract states
represent a superset of the program behaviors represented by the corresponding concrete states.
As every element in the complete lattice has a unique least upper bound and a unique greatest
lower bound, there are two unique elements that are larger or smaller, respectively, than every
other element in the lattice. These two elements are called top and bottom, respectively.
A computation by abstract interpretation is performed in the abstract domain and starts
with the bottom element. The bottom element represents the element denoting no program
executions, the top element represents all possible program executions. The goal now is to
reach a fixed point by repeatedly applying a monotone function f to the abstract state. f is
defined in terms of abstract transformers which describes the effect of each statement type
encountered in the program on abstract states. With every iteration before a fixed point is
reached, the computation captures increasingly many program executions - possibly also some
which cannot actually happen in practice. This leads to imprecision. Of bigger importance,
however, is that the computation captures at least all possible executions which makes it a sound
over-approximation. Reaching a fixed point is the main difficulty in abstract interpretation
and depending on the lattice, such a fixed point computation can take a very long time or
not terminate at all. In that case, a post-fixed point can be reached efficiently by applying a
widening operator. However, widening potentially loses precision as often there would exist a
more precise fixed point.

2.3.1 Sample

Sample [4] stands for ”Static Analyzer of Multiple Programming LanguagEs” and is a static
verification tool that is based on abstract interpretation. It is part of the Viper framework (see
Figure 2.1). There exist parsers that convert between programs written in Viper language and
their respective Sample representation (and vice versa). It can be used to strengthen existing
specifications for Viper programs or to infer new ones. There already exist implementations of
different abstract domains such as the octagon [15] or the polyhedra [9] abstract domains for
integers. The implementation of our algorithm mainly takes place in Sample.

7



3 Inferring quantified permissions

In this chapter we present our algorithm to infer quantified permissions for Viper programs that
allow the program to verify successfully. We first explain in detail how we collect and track
required permissions by weakest precondition rules through straight line code and how we deal
with changing expressions inside loops. Then, we present how we handle integer-dependent
field accesses in which case a quantifier elimination algorithm is used to generate a precise
expression that guarantees the required permissions. Finally, we will discuss further aspects of
the approach such as what simplifications we apply on the inferred specifications to make them
more readable or how we could extend the existing approach to also infer postconditions.

3.1 Overview

Our analysis works backwards, starting at the bottom of the method with zero permission for
every field to any heap location. The main goal of the inference is that at each relevant point in
the program, the tracked permissions represent at least the required permissions needed at that
point in order for Viper to successfully verify the rest of the program. ‘Relevant points’ in our
context refer to loop heads, where we will need to generate invariants, and to method entries,
where we will need to generate preconditions. For this, the backward propagation mainly has to
achieve two things. First, we have to add new permissions to our representation of permission
expressions as we encounter new field accesses for which we have not collected permissions yet.
Second, we also need to reflect changes to variables and the heap appropriately in our abstract
state. Special attention needs to be given to loops as they can be executed an unknown number
of times. Therefore, every variable or field assignment inside the loop body can be executed an
unknown number of times. To account for that, we will have to use a special ‘forget’ operator
similar to the one used in [24] which, broadly speaking, lifts our collected permissions to not
only specify permissions for single heap locations but for a set of locations.

3.2 Collecting Permissions by Weakest Precondition Rules

We now first describe how we collect and propagate permissions through straight line code, i.e.,
in code that does not contain loops. For every statement type, we will provide a Hoare-style
backward inference rule. A Hoare triple in our case has the form {P} s {Q} where Q denotes the
collected permissions before traversing statement s and P denotes the collected permissions we
get from propagating Q backward through s. In the following section, we will briefly describe the
syntax of our abstract state describing collected permissions which resembles a tree structure.
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3.2.1 Syntax of Permission Trees

Permission trees are our internal representation for the collected permissions. A leaf of the tree
represents a concrete permission amount to a certain heap location and is represented as a triple
(r, f, p) where r denotes the receiver expression of the field access, f the accessed field and p
the actual permission amount. An inner node in the tree is built up according to the syntax in
Figure 3.1. All tree operators are left-associative.

Tree ::= Tree onmax Tree | Cond ? Tree : Tree | Tree + Tree | Tree − Tree | bound(Tree) | Leaf

Leaf ::= (Rec, Field, Perm)

Figure 3.1: The grammar of permission trees where Cond denotes a boolean condition, Rec
denotes a receiver expression, Field denotes a field and Perm denotes a permission expression.

Permission trees are to be understood as point-wise declarations of permission amounts. We can
imagine permission trees to be implicitly quantified over the domain of references. Therefore, a
leaf (r, f, p) can be informally understood as forall r : Ref :: acc(r.f, r == r ? p

: none). In other words, the leaf (r, f, p) yields permission amount p for heap location r.f

and no permission for every other heap location. We will talk more about how we actually
generate permissions from the inferred permission trees in Section 3.6. The intuitive meanings
of all the nodes in Figure 3.1 is as follows:

t1 onmax t2: The point-wise maximum of the permissions in t1 and t2.

b ? t1 : t2: The permissions in t1 if b holds, the permissions in t2 if b does not hold.

t1 + t2: The point-wise addition of the permissions in t1 and t2.

t1 − t2: The point-wise subtraction of the permissions in t1 and t2.

bound(t): The point-wise maximum between the permission in t and no permission (none).
In other words, bound(t) denotes only non-negative permissions.

In the following, we will briefly explain the intuitive meaning of each tree construct. After that,
we will list the Hoare-style inference rules of our backward analysis which will make use of those
tree operations.

3.2.2 Permission Extraction

The function ‘getAcc’ detects all field accesses in an expression and collects all the necessary
permissions. We will need this function in order to extract permissions e.g. for field accesses in
nested receivers or inside conditions. This function is recursively defined as follows:

getAcc(e) =


(e’, f, read) onmax getAcc(e’), if e matches e’.f

getAcc(e1) onmax getAcc(e2), if e matches e1 • e2

getAcc(e’), if e matches -e’

∅, else


where • denotes a binary operator out of (+,-,*,\,%,<,<=,>,>=,==,!=).
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3 Inferring quantified permissions

3.2.3 Variable Assignments

For a variable assignment v := e we do not have to request any write permission because
variables are not part of the heap. However, we have to ensure that we have read permission
for every field access that occurs in the right expression e. If we have already collected enough
permission for a field access, we do not want to add another read permission. This is why
we do not add but apply the maximum operator to the new permissions and the previously
collected permissions. At the same time, we also have to take care of the change to variable
v. To represent the assignment in our state, we replace every occurrence of v with e in the
permissions collected so far.

[VA]
{P[v 7→ e] onmax getAcc(e)} v := e {P}

To illustrate this rule, consider Listing 3.1. The tracked permissions for the field next are
indicated in comments after the statements. Note that we omit the field next in the comments
for the sake of simplicity. On line 5, there is an assignment to x.next. Therefore, we add a
permission leaf (x, next, write) to the (at that point still empty) permission tree. The
variable assignment on line 4 now has two effects. First, the left hand side of the variable
assignment x gets replaced in the existing permission tree by the right hand side of the assignment,
x.next. Second, the new permission tree is calculated by the rule VA which tells us to add
permission by means of the maximum operator for all the field accesses of the right hand side
which in this case is just the field access x.next. Finally, the permission tree is propagated
over another variable assignment on line 3. We again replace all occurrences of the left hand
side with the right hand side of the assignment, meaning that every x is replaced by head. The
final permission tree can be seen in the comment on line 3.

1 method varAssignment(head: Ref)
2 {
3 var x: Ref := head // (head.next, write) onmax (head, read)
4 x := x.next // (x.next, write) onmax (x, read)
5 x.next := x // (x, write)
6 }

Listing 3.1: Simple variable assignment.

3.2.4 Field Assignments

For a field assignment l.f := r we need to have write permission to l.f. Additionally we
have to make sure that we have read permission for every field access in r, similarly to the
variable assignment rule, as well as read permission to every field access appearing in l. Again
we do not need to add any permissions if there is already enough permissions available in the
tracked expressions because a field assignment does not add or remove any permission amount
from the program state. Thus, we again use the maximum operator to add the new permissions.
Furthermore, we also have to account for possible changes in our tracked permissions so far due
to the assignment of r to l.f. In addition to simply replacing every occurrence of l.f with r,
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we also have to take care of the fact that the assignment can potentially affect every expression
of the form e.f where e can be an arbitrary expression. The reason for this is that e and l

might alias. In the case they actually alias, the assignment l.f := r effectively also changes
e.f to r. We account for this by introducing a helper function fa which returns the appropriate
replacement for every e.f depending on whether e syntactically matches l or not (note that
here, e has to be understood as a placeholder for an arbitrary expression).

[FA]
{P[e.f 7→ fa(f, e, l, r)] onmax (l, f, write) onmax getAcc(l) onmax getAcc(r)} l.f := r {P}

where fa is defined as follows:

fa(f, e, l, r) =

{
r, if e syntactically matches l

(e == l ? r : e.f) else

}
Again, we present a simple example in Listing 3.2 to visualize this rule. On line 5, there is a
field assignment to y.f.f. Note that in order to execute the field write to y.f.f, in accordance
to the field assignment rule, we also need read access corresponding to the inner field access
y.f. The two leaves, (y.f, write) and (y, read) are connected by the maximum operator.
When propagating over the field assignment on line 3, the access path y.f gets replaced by
the conditional (y == x ? y : y.f) which accounts for the possible aliasing of x and y.
Furthermore, write access is added for the receiver x of the field assignment.

1 method fieldAssignment(head: Ref)
2 {
3 x.f := y // ((y == x ? y : y.f), write) onmax (y, read) onmax

4 // (x, write)
5 y.f.f := x // (y.f, write) onmax (y, read)
6 }

Listing 3.2: Simple field assignment.

3.2.5 Exhales

With an exhale, permissions can be removed from the program state. Consequently, we have to
add the exhaled permission amount to the tracked permissions. We represent this by applying
the + operator to the permission leaf corresponding to the exhale statement. Note that we also
have to traverse the receiver r for an exhale to collect possible additional field accesses.

[Exhale]
{P + (r, f, p) onmax getAcc(r)} exhale acc(r.f, p) {P}

In the example in Listing 3.3, an exhale of 1 / 2 is followed by a read to the same location.
That means, that after the exhale, there still needs to be a permission amount left that is strictly
greater than none. In our backwards analysis, we first record the read permission for the field
read on line 4. On line 3, we add the exhaled permission. Note that since we exhale to the
exact same location, we can simplify the expression by merging (x, read) + (x, 1 / 2) to
(x, read + 1 / 2)
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1 method writeExhale(x: Ref) returns (res: Ref)
2 {
3 exhale acc(x.next, 1 / 2) // (x, read + 1 / 2)
4 res := x.next // (x, read)
5 }

Listing 3.3: An exhale followed by a field read to the same location.

3.2.6 Inhales

An inhale adds permissions to the current program state. For our analysis, this means that
we can subtract the respective permission amount from our tracked expressions. However, we
have to take additional care that we do not end up with a negative permission amount which
is why a simple subtraction would be unsound. Remember that we want to track at least
the permissions that are required for the program to successfully verify. The consequence of
allowing permission amounts that are less than none would be that an inhale that follows an
exhale could cancel out the permission potentially needed for the exhale. We therefore apply
the ‘bound’ operator to the subtraction of the inhaled permission amount from the collected
permission. This operator bounds negative permission values to none.
To illustrate the problem, consider the simple example Listing 3.4 in which we first exhale write
permission to index 0 of arr and then inhale the same amount of permission for the same
location. Remember that our analysis works backwards. We would therefore add (loc(arr,
0).val, -write) to the collected permissions on line 4 and end up with a temporary negative
amount. On line 3, write permission would get added again and the final sum of permissions
for the particular location loc(arr, 0).val would be none. Therefore, the program would
fail to verify as we would not require write permission which would be needed for the first
exhale.

1 method negativePerm(arr: Array)
2 {
3 exhale acc(loc(arr, 0).val, write) // (loc(arr, 0), 0)
4 inhale acc(loc(arr, 0).val, write) // (loc(arr, 0), -write)
5 // (loc(arr, 0), 0)
6 }

Listing 3.4: An example which uses the unsound inhale rule which does not apply the boundary
function. Although the overall sum of permissions in this program is none, we need to require
write permission in the precondition. This example illustrates that we always have to bound
collected negative permission amounts by none.

Our rule therefore becomes:

[Inhale]
{bound(getAcc(r) onmax P − (r, f, p))} inhale acc(r.f, p) {P}
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3.2.7 Conditionals

For a conditional, we first traverse each branch separately, collecting permissions using the rules
described above. We try to be as precise as possible in our analysis and hence merge the two
branches together using a ternary operator on the head of the condition. Additionally, we also
have to traverse the condition itself and add read permissions to every field access we encounter
therein.

{P1} s1 {Q} {P2} s2 {Q}
[If]
{getAcc(b) onmax (b ? P1 : P2)} if (b) { s1 } else { s2 } {Q}

Let us consider the permission tree which is collected in Listing 3.5 for the field next. The
permission trees for each point in the program are shown in Figure 3.2. At the bottom, on
line 7, there is a field read to y.next. Thus we start out with the permission leaf (y, read).
Next, the permission tree is propagated through both of the branches of the conditional on
lines 4 to 6. The false-branch does not contain any statement, hence the permission tree does
not get modified in that branch. In the true-branch, we first process the variable assignment,
replacing (y, read) by (x.next, read). Moreover, we add the leaf (x, read) to the permission
tree by applying the maximum operator to the leaf and the already present leaf to account
for the field read on the right side of the assignment. We end up with the permission tree
(x, read) onmax (x.next, read) for the true branch. Joining with the permission tree from the false
branch using the conditional operator and after propagating through the assignment y := x

on line 3 we get the permission tree b ? (x, read) onmax (x.next, read) : (x, read).

1 method simpleConditional(b: Bool, x: Ref) returns (res: Ref)
2 {
3 var y: Ref := x // see Figure 3.2d
4 if (b) { // see Figure 3.2c
5 y := x.next // (x.next, read) onmax (x, read)
6 }
7 res := y.next // (y, read)
8 }

Listing 3.5: The permission tree on method entry for this method will contain the branch
condition b.

3.2.8 Loops

Not surprisingly, loops are the most difficult statement to handle. Consider the simple list
traversal in Listing 3.6. Clearly, depending on how many times the loop iterates, we need
permission to more or less heap locations. If head is null, the loop is never executed and thus
no field access at all happens. If the loop is executed once, read permission to head.next is
required. If the loop is executed twice, read permissions to head.next as well as head.next.
next is required, and so on. The important observation is that permission to the field access on
line 6 can no longer be thought of as a single comparison operation (r == head ? x : none).
Because the number of loop iterations in a concrete execution of the program depends on
the shape of the heap, we have to find a representation that can express permission to the
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(y, read)

(a) Permission tree corresponding to line 7 and the
false branch of the conditional.

onmax

(x, read) (x.next, read)

(b) Permission tree at the top of the true branch
(between lines 4 and 5).

b

onmax

(x, read) (x.next, read)

(y, read)

false
true

(c) Permission tree after joining of true and false
branch between lines 3 and 4.

b

onmax

(x, read) (x.next, read)

(x, read)

false
true

(d) Permission tree at method entry (between lines 2
and 3).

Figure 3.2: The permission tree for the field next at the indicated locations in program
Listing 3.5. Ellipses correspond to inner nodes, rectangles to permission leafs.

different values x can take on line 6 in an arbitrary number of iterations. That is where sets
come into play. Instead of a comparison with the expression x we augment the receiver x

to a set description of receivers representing all possible concrete values x can take at any
loop iteration. When generating the contract, we will instead of generating the loop invariant
(r == x ? read : none) generate an expression (r in set_x ? read : none).

1 method listTraversal(head: Ref)
2 {
3 var x: Ref := head
4 while (x != null)
5 {
6 x := x.next // (x, read)
7 }
8 }

Listing 3.6: Simple list traversal.

We will get the specification of the set by abstract interpretation (see Section 3.3). An additional
helper variable set_x will be introduced. For the above example, the specification of set_x
would then look as follows:
head != null ==> head in set_x

forall r: Ref :: r in set_x && r.next != null ==> r.next in set_x
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Also, if the condition of a conditional inside a loop contains at least one changing variable, we
have to assume that both branches are executed because we will, in general, have no way to
express the condition outside of the loop. In that case, a conditional (b ? t1 : t2) is approximated
to t1 onmax t2.
We represent this additional step that has to be taken in loops by applying ‘forget’ in the
backward rule for loops.

{P} s {Q}
[While]

{Q onmax forget(getAcc(b) onmax P)} while (b) { s } {Q}

3.3 Over-approximating Receivers by Abstract Interpretation

In the last section we collected permissions for every field access at any point in the program.
However, receivers of field accesses that happen inside or after a loop can take different values
depending on how many times loops are executed. We cannot determine purely syntactically all
the values those receivers will take during an execution of the program. Therefore we employ
abstract interpretation [8] to over-approximate all the possible reference values each receiver
can take. For this we introduce, for every field access r.f occurring in the method, a set which
represents all the possible expressions r can represent at a specific point. Our abstract state
then consists of a mapping from every field access to a collection of concrete expressions that
each denote a possible receiver for that specific field access. These concrete expressions get
modified as we propagate them backwards through the program. In general, the sets can grow
indefinitely when we propagate them through loops. Therefore we will have to employ widening
at some point to avoid infinite iteration of the algorithm. This abstract interpretation framework
will be explained in more detail in the following.

3.3.1 Abstract State

An abstract state consists of one receiver set per field access in the program. We can uniquely
identify a receiver set by a pair (pp, rec) where pp denotes the unique program point (in
Sample, a program point of a statement is uniquely determined by the line number and column
number of the statement) of the field access and rec denotes the receiver expression. A receiver
set is a set of expressions that denote concrete receivers. The bottom element is defined as the
state where all the receiver sets are empty, the top state is defined as the state where all receiver
sets contain all possible heap locations (this is just a theoretical element, in practice we will
never use this element). As usual in abstract interpretation over set domains, the join operator
for the abstract state is set union. Our analysis will work backwards and we start with the
bottom state, i.e., every receiver set being the empty set. Our abstract transformers are defined
as follows:

Field Assignment
When we propagate the state over a field assignment l.f := r at program point pp, we add
the element l to the receiver set corresponding to (pp, l). Furthermore, for every receiver set,
we replace every l.f occurring in any receiver expression with r. We also have to replace, in
every receiver set, field accesses e.f where e is an arbitrary expression which is not syntactically
equal to l. Every expression of this form is replaced with (e == l ? r : e.f), similarly to
the assignment rule in Section 3.2.4.

15



3 Inferring quantified permissions

Variable Assignment
When we propagate the state over a variable assignment v := e at program point pp, we
replace v in all expressions in any of the receiver sets with e.

Field Read
When we propagate the state over a field read rec.f at program point pp, we add the element
rec to the receiver set corresponding to (pp, rec).

Joining Branches
Our join or least upper bound operator is defined as the element-wise set union, as is usual in
set domains. I.e. if we join two states s1 and s1 t s2 is defined to be the state that contains for
every receiver set defined by (pp, rec) the union of the corresponding receiver sets in s1 and
s2.

The abstract transformers are iterated by Sample on the program until a fixed point is reached
or the widening limit is reached. The widening limit is an adjustable parameter in Sample that
determines, how many times a statement is allowed to be executed before the widening operator
is applied.

3.3.2 Widening

Widening for our states means that we have to lift some or even all of the finite receiver sets
to a potentially unbounded set description. For the example in Listing 3.7 the set of possible
receivers for the field access x.next on line 6 is head and for all elements r that are not null,
r.next is also in the set. Before widening the set of concrete expressions for x on line 6 will
therefore contain longer and longer chains of next accesses to x. This is visualized in Table 3.1.
After the first iteration the set would consist of x. After the second iteration it would contain x

and x.next and so on. On the widening step we switch from a set of concrete expressions to a
regular expressions like representation, in this case x(.next)*. After propagating the receiver
set through the assignment on line 3, every x in the receiver set will be replaced by head.

1 method listTraversal(head: Ref)
2 {
3 var x: Ref := head
4 while (x != null)
5 {
6 x := x.next
7 }
8 }

Listing 3.7: A simple list traversal where the set of possible receivers on line 6 will all be
repeated next accesses to head.

On the widening step we also over-approximate all potentially contained ternary conditionals in
a changing receiver set. A ternary conditional (x == r ? e : x.f) will be over-approximated
to the set {e, x.f}. This means that the condition cond is approximated away as if the
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Iteration 1 2 3 widened

Receivers {x} {x, x.next} {x, x.next, x.next.next} x.(next)*

Table 3.1: The development of the receiver set corresponding to the field access on line 6 in
Listing 3.7 at the loop head.

conditional would be non-deterministic. Note that it is possible that expressions contain nested
conditionals, e.g. (c1 ? e1 : (c2 ? e2 : x.f).f). In this case, the transformation step is
applied recursively and we end up with the set {e1, e2.f, x.f.f}.
The widening operator we implemented in our analysis in Sample is imprecise. Due to lack of
time, we only implemented a very basic widening operator which in general over-approximates
the resulting sets heavily. However, in many interesting examples, the effect of this additional
over-approximation keeps within reasonable limits.

3.4 Integrating Heap Analysis

Using information from a heap analysis we can eliminate some of the case distinctions introduced
for field assignments on the fly. Before our actual algorithm we conduct an alias analysis
developed by Jérôme Dohrau at the Chair of Programming Methodology [3]. The results of this
alias analysis are two alias graphs at every point in the program: the ‘may-alias’ graph and
the ‘must-alias’ graph. Both graphs are an approximation of the heap layout at the respective
position. They consist of a store and a field map. The store is a mapping from variable names
to the set of abstract heap nodes to which the variables point to. The field map maps pairs
of a heap node and a field to a set of heap nodes the field of the heap node points to. A heap
node is identified by an access path. An access path is a list of strings where the head of the list
represents the base variable and each element of the tail represents a field. Alias graphs provide
a function pathsAlias which takes two access paths and returns a boolean value indicating
whether or not the two paths alias in the graph. In simplified terms this is the case if and
only if the two heap nodes identified by the paths are the same. The meaning of the graphs
is as follows. If the may-alias tells us that two given paths p1 and p2 do not alias, we can
be sure that the two paths at that particular program point certainly do not alias. If they
do alias in the may-alias graph, they might or might not alias. We can then go on and ask
the same question to the must-alias graph. If p1 and p2 alias in the must-alias graph then
we know for sure that p1 and p2 always point to the same heap location at that particular
program point. This is illustrated in Table 3.2. Then, instead of directly replacing every x.f in
our state by (x == r ? e : x.f) when propagating over an assignment r.f := e, we first
check whether either x and r alias (in that case we can directly replace x.f by e) or if they
must not alias (in that case, x.f is not affected by the assignment and stays the same). In the
case where the alias analysis tells us that x and r maybe alias we still have to replace x.f by
(x == r ? e : x.f). We also use the case distinction in the case where the alias analysis
fails. This is the case when a field access has a form which cannot be handled by the current
implementation of the heap analysis, e.g. when a receiver contains a function.

17



3 Inferring quantified permissions

mustAlias(p1, p2) = true mustAlias(p1, p2) = false

mayAlias(p1, p2) = true p1 and p2 alias p1 and p2 maybe alias

mayAlias(p1, p2) = false not possible p1 and p2 do not alias

Table 3.2: The various meanings of the alias test depending on what information we get from
the may-alias and must-alias graphs. Note that it is not possible that two paths p1 and p2 alias
in the must-alias graph but not in the may-alias graph.

3.5 Handling of Integer-dependent Accesses

As already mentioned in Section 3.3 we handle integer-dependent heap accesses separately. To
get information about the set of possible values an integer-dependent receiver can take, we solely
rely on a numerical analysis by abstract interpretation. Of particular interest in this context are
array accesses, i.e., heap accesses that occur to the val field of arrays (cf. Section 2.2.2). We
will therefore use array examples to illustrate the concepts in our numerical analysis. However,
note that our algorithm is flexible and can handle other functions that depend on integers. The
only restrictions we make are that every access to the same field happens through the same
function and at most one integer-typed parameter is a changing variable (although we will talk
about under which circumstances we can lift this restrictions in Section 3.9.3). That also means
that we are still able to handle programs that contain both accesses to fields through reference
variables as well as accesses to fields through functions as long as all the accesses to a particular
field only happen through one of the two access types. Our description of possible receivers
for the field in question will then purely be in terms of integer constraints over the arguments
of the receiver. In the array case, instead of describing the set of references the expression
loc(arr, i) can take as a receiver for the field val, we will talk about the possible range
of integers i can take to produce different receivers for val. In other words, we will assume
the fixed form loc(arr, .) of the receiver for val. Consider the example in Listing 3.8. It
performs a simple traversal of an array and initializes each array location with its index.

1 method initializeArray(arr: Array)
2 {
3 var i: Int := 0
4 while (i < 10)
5 {
6 loc(arr, i).val := i // At this point, i ∈ [0, 9]
7 i := i + 1
8 }
9 }

Listing 3.8: A simple traversal of an array.

Note that the array access on line 6 happens to multiple locations. To be more specific, all
the possible array slots we access correspond to indexes in the interval [0, 9]. We cannot define
permissions in terms of i as it is a changing variable inside the loop. Therefore, we have to find
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a way to describe a set of possible integer values i can take at that point without mentioning i.
This step of over-approximating the set of integer values inside a receiver can be seen as the
counterpart to the over-approximation of receiver sets.
In the rest of this section we will describe the numerical analysis we use and how we include its
result into our analysis.

3.5.1 Numerical Abstract Interpretation

Before our actual algorithm, we run a numerical abstract interpretation using the polyhedra
abstract domain [9]. Our algorithm is flexible to use any other integer domain instead of
polyhedra, e.g. integer octagons [15] or intervals [7]. We chose the polyhedra domain because it
is very precise and, in contrast to e.g. the interval domain, a relational domain that is able to
infer linear relationships between variables. A polyhedron can be described by a conjunction of

linear inequalities written as
n∧
i=1

〈~ai, ~x〉 ≤ bi where n is the number of inequalities, ~ai is the ith

row of A ∈ Zn×m, the coefficient matrix, ~x ∈ Zm denotes the vector holding all integer-typed
program variables and~b ∈ Zn is a vector containing the limits of the inequalities. The inequalities
can also be more compactly written as Ax ≤ b.

1 method numericalExample(bound: Int)
2 {
3 var i: Int := 0
4 var j: Int := bound
5 while (i < bound)
6 {
7 i := i + 1
8 j := j - 2
9 }

10 }

Listing 3.9: A simple iteration over integer variables.

Consider the simple example in Listing 3.9. This program contains three integer variables: local
variables i, j and the method parameter bound. After the two initializations on lines 3 and 4 of
the program, the polyhedra would consist of the following inequalities (note that equalities a = b
are represented as a ≤ b∧−a ≤ −b in the polyhedra domain): i ≤ 0∧−i ≤ 0∧j ≤ bound∧−j ≤ 0
or in matrix notation:


1 0 0
−1 0 0

0 1 −1
0 −1 1


 i

j
bound

 ≤


0
0
0
0


By manual inspection, one can find that i ≥ 0, i ≤ and 2 ∗ i+ j == bound are invariants for
the loop on line 5. This would be represented in the polyhedra domain as follows:
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
−1 0 0

1 0 −1
−2 −1 1

2 1 −1


 i

j
bound

 ≤


0
0
0
0


For our analysis it is important that we can retrieve those constraints from the analysis result
in a form that we can easily handle. In Sample, there already exists an interface to the APRON
library [13] which provides an implementation of the polyhedra domain among other numerical
abstract domains. We can then get constraints corresponding to a certain variable as inequalities,
exactly as represented above.

3.5.2 Injectivity Requirement for Receiver Functions

In order for our mapping from integers back to locations through the loc function to be sound,
we need the receiver expression to be injective in the respective input arguments. To test
whether this is the case, we perform an injectivity check on the fly during our analysis by using
one or multiple additional calls to the verifier. In our concrete example for arrays, we want to
know if the loc(arr, i) function is injective on the relevant set of integers for i. Consider
again the example in Listing 3.8. On line 6, we learn from the polyhedra element at that point
that i ∈ [0, 9]. Thus, we have to ensure that injectivity holds in this range, i.e.

∀i1, i2 ∈ Z.(i1 6= i2 ∧ 0 ≤ i1 ∧ i1 ≤ 9∧ 0 ≤ i2 ∧ i2 ≤ 9) =⇒ loc(arr, i1) 6= loc(arr, i2) (3.1)

We create a program consisting of all the domain information (abstract functions and axioms),
functions and fields of the original program (cf. Section 2.2), but no methods. We add only one
method that has an empty method body and no return value. The arguments of the method
are the original arguments of the currently considered method plus additional arguments we
need for the injectivity check. The precondition of the method is the left side of the injectivity
implication which expresses that the corresponding variables are different from each other and
they are in the relevant range. The postcondition is the right side of the injectivity implication.
Then, if the verifier can successfully verify this program, we know that the injectivity constraint
holds. The so generated injectivity test corresponding to Listing 3.8 can be seen in Listing 3.10.
Note that for the injectivity test it is crucial that also the domain definition of Array and the
val field are included. The axiom axiom_all_diff (cf. Section 2.2.2) is also the key to prove
the injectivity test. Without it, the verification would fail.

1 method injectivityTest(a: Array, i1: Int, i2: Int)
2 requires i1 != i2 && i1 <= 9 && i1 >= 0 && i2 <= 9 && i2 >= 0
3 ensures loc(a, i1) != loc(a, i2)
4 {
5 }

Listing 3.10: The automatically generated injectivity test for Listing 3.8.
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3.5.3 Forgetting Variables in Loops

Unfortunately, the numerical analysis only gives us an over-approximation of all the possible
values that can occur inside a loop but it does not tell us in which order they occur during
the loop execution. Consider the example in Listing 3.11. We need write permission to
loc(arr, 9).val for the field write on line 7. Actually, it happens that we inhale write
permission to this index on line 6, but only in a later iteration of the loop. An unsoundness
in [24] is attributable to ignoring the fact that the order in which the changing values assume the
values inferred by the numerical analysis is arbitrary. Thus, what we seek for is an expression
that does not mention i or in general, that does not mention any changing variable, and that
asserts at least the required permissions for any location in an arbitrary loop iteration.

1 method arrayExample(arr: Array)
2 {
3 var i: Int := 0
4 while (i < 10)
5 {
6 inhale acc(loc(arr, i).val)
7 loc(arr,9).val := i
8 i := i + 1
9 }

10 }

Listing 3.11: A simple array example with one inhale and a field write to index 9.

Intuitively speaking, the expression we seek is the maximum of the required permission amounts
in any loop iteration. To formalize this, let v1, ..., vn denote all the changing variables inside
a loop, let INV(v1, ..., vn) be the loop invariant returned by the numerical analysis and let
collected(q, t, v1, ..., vn) be the expression which returns permissions according to the collected
permission tree t inside the loop body. The expression we aim for is

∀q ∈ Z.p(q) = max
v1,...,vn

{collected(q, t, v1, ..., vn) | INV(v1, ..., vn)} (3.2)

where p is a function p : Int→Perm that returns for every array index q the required permissions
for the val field at that location. We now consider the permission expression for a fixed index q
and reformulate the maximum over the changing variables maxv1,...,vn . This way, the expression
can be written as follows:

(∃v1, ..., vn.INV(v1, ..., vn) ∧ p(q) = collected(q, t, v1, ..., vn)) ∧
(∀v1, ..., vn.INV(v1, ..., vn) =⇒ p(q) ≥ collected(q, t, v1, ..., vn))

(3.3)

As already mentioned, we ultimately aim for an expression that does not mention changing
variables anymore and that describes permissions purely in terms of q. Thus, we need a way
to eliminate the quantification over the changing variables. This is exactly what quantifier
elimination does. Quantifier elimination is a computational simplification that produces, for a
given formula containing one or more quantifiers, an equivalent formula which is quantifier-free.
For example, an equivalent formula to ∃y.(x = y ∧ y ≥ 0) without quantifiers would be x ≥ 0.
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In the next section, we will describe how we rewrite permission trees into a form that can be
handled by quantifier elimination. The section thereafter will describe the algorithm we use to
perform quantifier elimination in detail.

3.5.4 Rewriting Permission Trees

In the general case where the collected permission tree has a complex shape containing maximums
(onmax) or conditionals, we first have to rewrite the tree to contain only formulas that the quantifier
elimination can handle. The basic quantifier elimination we use can handle formulas written in
Presburger arithmetic [21]. A formula in Presburger arithmetic can contain algebraic expressions
with integers, variables and addition, binary comparison operators such as <, = or ≥ and the
logical connectives ∧, ∨, ¬ with their usual meaning. Multiplication of integer variables by a
constant is also possible as the multiplication can be rewritten to an addition: 2a = a+ a. The
formula can be existentially quantified over one or multiple variables. Universal quantification
is then trivially supported as well since ∀x.p(x) can be rewritten to ¬∃x.¬p(x).
We now first give a recursive description how we rewrite each permission tree construct to an
intermediate representation in terms of the rewriteq function. The q in rewriteq highlights the
use of q as index of interest in the rewrite process. Our intermediate representation is a set of
pairs (c, p) where c is a boolean expression and p is a permission amount.
After that, we will explain how to turn the set of pairs into an assertion about p(q) which is
equivalent to Equation (3.3).

Leaves
A leaf is turned into a set of two pairs. The first pair accounts for the case where the integer
parameter e is equal to the quantified variable q in which case the corresponding permission is
the collected permission p. The second pair denotes the case where q 6= e in which case this leaf
does not contribute any permission.

rewriteq((loc(arr, e), p)) = {(q = e, p), (q 6= e, 0)} (3.4)

Maximum
Taking the maximum of two permission trees adds for every possible combination of pairs
(c1, p1) ∈ rewriteq(t1) and (c2, p2) ∈ rewriteq(t2) two pairs to the resulting set. One for the case
where p1 is greater than p2 and one for the other case.

rewriteq(t1 onmax t2) ={(c1 ∧ c2 ∧ p1 ≥ p2, p1) | (c1, p1) ∈ rewriteq(t1) ∧ (c2, p2) ∈ rewriteq(t2)}∪
{(c1 ∧ c2 ∧ p2 ≥ p1, p2) | (c1, p1) ∈ rewriteq(t1) ∧ (c2, p2) ∈ rewriteq(t2)}

(3.5)

Addition
Rewriting a permission addition consists of linking each condition from a pair of the first tree
with each condition from a pair of the second tree with a conjunction and summing up the
corresponding two permission amounts.

rewriteq(t1 + t2) ={(c1 ∧ c2, p1 + p2) | (c1, p1) ∈ rewriteq(t1) ∧ (c2, p2) ∈ rewriteq(t2)} (3.6)
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Conditionals
Rewriting conditionals is rather straightforward. For every pair (c1, p1) ∈ rewriteq(t1) we add the
same pair with the additional condition b to the resulting set, for every pair (c2, p2) ∈ rewriteq(t2)
we add the same pair with ¬b to the resulting set.

rewriteq(b ? t1 : t2) ={(c1 ∧ b, p1) | (c1, p1) ∈ rewriteq(t1)}∪
{(c2 ∧ ¬b, p2) | (c2, p2) ∈ rewriteq(t2)}

(3.7)

Zero-bounded permission tree
Rewriting zero-bounded permission trees is similar to rewriting maximum permission trees. The
left subset of the union accounts for all cases where a permission in rewriteq(t) is non-negative
and the right subset clamps all negative permission amounts to 0.

rewriteq(bound(t)) ={(c ∧ p ≥ 0, p) | (c, p) ∈ rewriteq(t)}∪
{(c ∧ p < 0, 0) | (c, p) ∈ rewriteq(t)}

(3.8)

We can now write the assertion that constrains p(q) to require enough permission according to
Equation (3.2) in the same form as Equation (3.3) as follows:

∃v1, ..., vn.

INV(v1, ..., vn) ∧
∧

(c,p)∈rewriteq(t)

(
c =⇒ p(q) = p

)∧
∀v1, ..., vn.

INV(v1, ..., vn) =⇒
∧

(c,p)∈rewriteq(t)

(
c =⇒ p(q) ≥ p

) (3.9)

Finally, we rewrite the universal quantification in the second part of the formula so that we can
apply existential quantifier elimination. Applying double negation to the second big conjunct
and propagating the inner negation inwards, we get:

∃v1, ..., vn.

INV(v1, ..., vn) ∧
∧

(c,p)∈rewriteq(t)

(
c =⇒ p(q) = p

)∧
¬∃v1, ..., vn.

INV(v1, ..., vn) ∧
∨

(c,p)∈rewriteq(t)

(
c ∧ p(q) < p

) (3.10)

In the following section we will now describe in detail how we perform existential quantifier
elimination on this formula to eliminate quantification over all the changing variables v1, ..., vn
in both of the major conjuncts.

3.5.5 Quantifier Elimination

The quantifier elimination we use for our analysis is based on Cooper’s method and follows
closely the implementation described in [17] with some tweaks from [6]. It performs quantifier
elimination on formulas written in Presburger arithmetic augmented with a divisibility predicate
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k | · for k ∈ Z+. The semantics of k | x is that x is divisible by k, or more formally:
k | x ⇐⇒ ∃y.(x = ky). We will call literals the terms in formulas that do not contain a logical
connective symbol (∧ or ∨) (literals can, however, contain logical negations).
The basic idea of Cooper’s algorithm is to distinguish two cases in which ∃x.F (x) could be true.
Either there is a least x making F (x) true or there is no least x making F (x) true, meaning
that for every x for which F (x) is true, we will always find a smaller number x′ that still makes
F (x′) true. Cooper’s algorithm will construct two formulas corresponding to both those cases.
We will now briefly describe the four steps of the algorithm to eliminate existential quantification
of x in the formula ∃x.F (x).

Step 1 - Convert F (x) to negation normal formal (NNF)
A formula is in NNF if it is a positive Boolean combination of conjunctions and disjunctions
of literals. To convert a formula to negation normal form, we have to propagate all negations
to the innermost algebraic literals. We can do this by repeatedly applying the De Morgan’s
laws and eliminating double negations. In our case, we are actually able to eliminate negations
altogether (except around divisibility literals); our non-divisibility literals will after step 1 all be
of the form a • b or ¬(a • b) where a and b are integer terms and • is one of =, 6=, <, ≤, > or
≥. In the second case, we can further push the negation inwards by ’negating’ the operator •.
This can be done by replacing = by 6=, < by ≥ and > by ≤ and vice versa. Thus, after having
executed step 1, we end up with the formula F1(x) where ∃x.F1(x) is equivalent to ∃x.F (x) and
F1(x) only contains negations around divisibility literals.

Step 2 - Collect x in terms
Collect terms containing the variable x such that x only occurs on one side of literals and only
with positive coefficient. That means, all literals mentioning x have the form hx • t, t • hx,
k | hx+ t or ¬(k | hx+ t) where t is a term that does not contain x and h ∈ Z+

0 , k ∈ Z+. The
result of this step is F2(x) where again ∃x.F2(x) is equivalent to ∃x.F (x).

Step 3 - Normalize coefficients of x
In this step, let δ′ = lcm{h : h is a coefficient of x in F2(x)} where lcm denotes the least
common multiple. Now, literals in F2(x) are multiplied by constants so that δ′ is the coefficient
of x everywhere. That means, hx • t gets multiplied by h′ such that hh′ = δ′, k | hx+ t by h′

such that hh′ = δ′, and so on. This results in a formula F ′2(x) in which each coefficient of x is
δ′. Next, δ′x is replaced by a fresh variable x′ to form F ′′2 := F ′2[δ

′x 7→ x′]. By replacing δ′x by
x′ we implicitly assume that x′ is divisible by δ′. To make this explicit, we add a divisibility
constraint to the final result of step 3 which then becomes F3(x

′) := F ′′2 (x′)∧ δ′ | x′. Each literal
of F3(x

′) that contains x′ has one of the following forms:

(A) x′ • a

(B) b • x′

(C) h | x′ + c

(D) ¬(k | x′ + c)

where a, b, c and d are terms that do not contain x and h, k ∈ Z+. Moreover, ∃x′.F3(x
′) is

equivalent to ∃x.F (x).

Step 4.1 Construct the left infinite projection F−∞(x′)
The left infinite projection is the formula corresponding to the case where there does not exist a
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least x satisfying F (x). The left infinite projection is formed by replacing terms x′ • a and
b • x′ in F3(x

′) with either > or ⊥ according to Table 3.3 where > means ‘true’ and ⊥ means
‘false’.

< ≤ ≥ > = 6=

x′ • a > > ⊥ ⊥ ⊥ >

b • x′ ⊥ ⊥ > > ⊥ >

Table 3.3: The replacements for x′ • a and b • x′, respectively, for the corresponding values
of •.

E.g. x′ < 4 is replaced by > and x′ = 10 is substituted by ⊥. Intuitively speaking, every
term that expresses that x′ is smaller than a certain term is replaced by > and each term that
expresses that x′ is equal to or bigger than a certain value is replaced by ⊥.

Step 4.2 Construct the final equivalent formula
Let δ = lcm{h : h | x′ + c or ¬(h | x′ + c) is a literal in F3(x

′)} and let B be the set of terms
for each literal according to Table 3.4.

< ≤ ≥ > = 6=

x′ • a – – a− 1 a a− 1 a

b • x′ b b− 1 – – b− 1 b

Table 3.4: The terms that are added to the B set for every literal (’–’ means that there is no
term added for this literal).

The final quantifier-free formula which is equivalent to ∃x.F (x) is defined by F4 :=
∨

j=1,...,δ

F∞(j)∨∨
j=1,...,δ

∨
b∈B

F3(b+ j). F∞(x′) only mentions x′ in divisibility literals. It asserts that an infinite

number of small integers n satisfy F3. If there exists an n that satisfies F∞, then for every
k ∈ Z+, n− kδ also satisfies F∞. If there exists a least n ∈ Z satisfying F3, this will be captured
by the second major disjunct in F4. For a more thorough explanation and a proof of correctness
of the algorithm we refer to [17] and [6].

Note that existential quantification distributes over disjunction, i.e., ∃x.(P (x) ∨ Q(x)) ≡
∃x.P (x)∨∃x.Q(x). We take advantage of this by splitting a formula into its disjuncts, applying
quantifier elimination on each disjunct separately and then joining the resulting formulas again
by disjunction. This can help in some cases to reduce the potential formula blowup caused by
quantifier elimination.

3.5.6 Example

Let us consider a simple example. We want to eliminate existential quantification over i in the
formula ∃i.(q == i ∧ 0 ≤ i ∧ i ≤ 9) corresponding to the field access on line 6 of the example in

25



3 Inferring quantified permissions

Listing 3.8. The formula is already in NNF. Therefore, after step 1, the formula is unchanged.
The formula does not change in step 2 either as i is already collected in all literals. The same
holds for step 3 as the only coefficient of i is 1, so F1(i) = F2(i) = F3(i) = (q == i∧0 ≤ i∧ i ≤ 9)
(note that for F3(i) we can eliminate the additional divisibility literal as the least common
multiple of the coefficients of i in F is 1 and 1 | x is > for all x ∈ Z). The left infinite projection
is equivalent to ⊥ since F3(i) contains literals as conjuncts that get replaced by ⊥ according
to step 4.1. Our B set is, according to Table 3.4 B = {q − 1,−1}. Thus, the final formula
is F4 =

∨
j=1

⊥ ∨
∨
j=1

∨
b∈{q−1,−1}

F3(b + j) =
∨

b∈{q−1,−1}
F3(b + 1) = F3(q) ∨ F3(0) = (q == q ∧ 0 ≤

q ∧ q ≤ 9) ∨ (q == 0 ∧ 0 ≤ 0 ∧ 0 ≤ 9) which can be simplified to 0 ≤ q ∧ q ≤ 9.

3.5.7 Simplifying Formulas

Our approach of applying quantifier elimination in general leads to a blowup of formulas, in the
worst case exponentially in terms of the number of literals contained in the formula. However,
in many cases, we are able to simplify the resulting formula drastically. For example, the result
from quantifier elimination will often contain constructs like 1 ≥ 0 which can be simplified to >
or a∧⊥ which can be simplified to ⊥. We implemented a whole list of such simplifications which
as a whole help to reduce the size of formulas a lot. Some advanced simplifications could even
go so far and analyze integer-related expressions semantically and simplify e.g. A = 1 ∨ 1 ≤ A
to 1 ≤ A. However, we leave more complex simplifications as future work since simplifying
formulas was not our main focus.

3.6 Generating Specifications

In the sections so far, we described in detail how we collect permissions in our approach as well
as the special handling of integer-dependent heap accesses. In this section we will explain how
our algorithm actually translates our analysis results into Viper specifications and uses them to
extend the program. Permissions generally have to be specified in preconditions of methods
and in loop invariants. We will talk about a possible extension under certain assumptions
to also infer postconditions in order to return remaining permissions from the callee to the
caller. The generated specifications consist of two main parts corresponding to the two phases
of our algorithm and some additional helper specifications. Again, we will cover the case of
integer-dependent receivers separately (cf. Section 3.6.4).
For non-integer-dependent heap accesses, we will first describe how we turn permission trees into
quantified permission expressions in Section 3.6.1. As described in Section 3.3, we introduce, for
every leaf (r, p) in our collected permission trees, a set representing all the possible values r can
take. In general, we will introduce one Set variable for every such receiver set. In Section 3.6.2
we will show how to specify those sets. In cases where the sets are not widened we will be able
to omit the introduction of a set.
We will also briefly talk about how we specify symbolic variables that denote read permissions
and how custom trigger generation will help us to decrease verification time in some cases.
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3.6.1 Quantified Permission Expressions

The first part of the generated specifications corresponds to the collected permission trees. For
every accessed field in the method, we generate exactly one quantified permission expression
that declares the permissions expressed by the collected permission tree. The basic form of
quantified permission expressions looks as follows:

forall r: Ref :: acc(r.f, permAmount(r))

where permAmount(r) is a permission expression that represents the required amount of
permission for reference r depending on the permission tree. For the simple list traversal in
Listing 3.12, the permission tree at top of the method consists of a single leaf corresponding to
the field read on line 13. The quantified permission expression for the field next is

forall r: Ref :: acc(r.next, r in sx ? rdAmount : none)

1 field next: Ref
2
3 method listTraversal(head: Ref, rdAmount: Perm, sx: Set[Ref])
4 requires none < rdAmount && rdAmount < write
5 requires forall r: Ref :: acc(r.next, r in sx ? rdAmount : none)
6 requires head in sx && forall r: Ref :: r in sx ==> r.next in sx
7 {
8 var x: Ref := head
9 while (x != null)

10 invariant forall r: Ref :: acc(r.next, r in sx ? rdAmount : none)
11 invariant x in sx && forall r: Ref :: r in sx ==> r.next in sx
12 {
13 x := x.next
14 }
15 }

Listing 3.12: List traversal

Note that we introduced a variable rdAmount which also appears as a formal argument to denote
read permission. We also added a special precondition none < rdAmount && rdAmount <

write to specify this variable, similarly to [24]. We will cover this symbolic read variable in
more detail in Section 3.6.5.
In the following we will explain how each permission tree node or leaf gets converted to a
permission expression.

Leaves
A leaf (x, p) in general gets converted to (r in set_x ? p : none) where set_x is the set
corresponding to the receiver set of x. In case the receiver set corresponding to x is finite,
in other words, is not widened, we can omit the introduction of a set and instead use one or
multiple comparisons. To visualize this, consider the example Listing 3.13. In this example, the
receiver set corresponding to x in the field access on line 8 is finite and contains the elements y
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and z. In that case, the corresponding permission expression could be written as forall r:

Ref :: acc(r.f, (r == z || y != null && r == y ? write : none)). As a further
optimization, even the quantification could in this example be omitted as well and we could just
require access to y.f and z.f separately.

1 method finiteReceiver(y: Ref, z: Ref)
2 {
3 var x: Ref // (y != null ? (y, write) : (z, write))
4 x := z // (y != null ? (y, write) : (x, write))
5 if (y != null) {
6 x := y // (y, write)
7 }
8 x.f := x // (x, write)
9 }

Listing 3.13: A simple example where the possible receivers for the field access on line 7 are y
and z.

Maximum
To handle maximum constructs t1 onmax t2, we introduce a helper function max which returns the
largest of two permission amounts, see Listing 3.14. Now, let p1 and p2 denote the permission
expressions corresponding to t1 and t2, respectively. Then, the generated expression becomes
max(p1, p2).

1 function max(x: Perm, y: Perm): Perm {
2 (x > y ? x : y)
3 }

Listing 3.14: The maximum function.

Addition
t1 + t2 is converted similarly to a maximum. Let again p1 and p2 denote the permission
expressions corresponding to t1 and t2, respectively. The permission expression corresponding
to t1 + t2 is p1 + p2.

Conditionals
The conversion of b ? t1 : t2 is straightforward. Let again p1 and p2 denote the permission
expressions corresponding to t1 and t2, respectively. The generated expression then is (b ? p1

: p2).

Zero-bounded permission tree
For the conversion of zero-bounded permission trees bound(t), we introduce another helper
function bound (see Listing 3.15). Then, the conversion of bound(t), is bound(p) where p is
the permission expression corresponding to permission tree t.
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1 function bound(x: Perm): Perm {
2 (x < none ? none : x)
3 }

Listing 3.15: The boundary function.

3.6.2 Receiver Set Descriptions

We have already seen in the last section that a finite receiver set can be directly used inline in
the permission expression and therefore does not require an additional set variable. Furthermore,
if the receiver is a function that has at least one integer-typed argument, it is handled specially
and no receiver sets are needed (cf. Section 3.5). In this section, we therefore focus on the
general case where a set contains an unknown number of elements that do not depend on
integers. The three main expression types receivers can be made of are variables (local variables
or arguments), field accesses and functions. Here, we present a basic way of expressing the
receiver sets requiring a minimum amount of additional sets. To be more precise, we need
exactly one variable of type Set[Ref] for each receiver set we define. Later we will see that
in some cases we are even able to reduce the number of needed sets further by eliminating
duplicate sets (cf. Section 3.8.3).
Given a widened receiver set, we build up the expression as follows. Let the set be called
set_x. For every variable x occurring in the receiver set, we add the constraint x in set_x.
For every field occurring in the receiver set, we add the constraint forall r: Ref :: r

in set_x ==> r.next in set_x. For every function f that occurs in the receiver set,
we add forall v1, ..., vn: Ref :: v1 in set_1 && ... && vn in set_n ==> f(

v1, ..., vn) in set_x where v1, ..., vn denote the arguments of the function f and
set_1, ..., set_n are the receiver sets corresponding to the arguments of f.
In some cases, we need an additional permission check (perm(r.f) > none) before we add a
field to a set because the underlying verifier is not able to assert that we have the necessary
permissions at that point. This might seem like an unsound restriction of possible values for the
set. However, if the field f occurs in a receiver set description at some point then by definition
our algorithm will already have requested permission to r.f for each possible r at that point.
Thus, we always add this additional permission check to receiver set definition expressions.

3.6.3 Influence of Branch Conditions

In general we have to ignore conditions in our analysis (cf. Section 3.3.2). This means that
we have to take the maximum of permissions of the two branches of the conditional. However,
branch conditions often consist of one or multiple null checks that effectively prevent null
dereferences in subsequent field accesses if those accesses are dominated by the respective
condition. If we ignore such conditions completely we end up with permission expressions
that request permissions to fields for too many receivers even though this could never happen
during a concrete execution of the program. In Viper, requesting permission to a field with a
possibly null-valued receiver automatically asserts that the receiver is non-null. Since we would
like to infer the weakest possible precondition, we do not want to unnecessarily strengthen
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preconditions that way. We therefore improved our inference of receiver sets to at least take
into account conditions that impose such null-constraints.
To illustrate this, consider again Listing 3.12. Clearly, we never dereference null as the field
access x.next on line 13 is guarded by the loop condition x != null (line 9). However, if we
just ignore this condition we will keep adding next elements, hence implicitly restricting the
list to be cyclic (e.g. if head is not null and head.next is pointing to head itself). Therefore,
we do not only track receiver expressions but we track them together with a boolean value that
indicates whether or not the expression is ’guarded’ by a null check. The criterion whether or
not a set can contain null is whether all concrete expressions contained in the set are guarded
by a null check. If so, we include a null check for every expression that adds an element to that
set. The list traversal example with included null checks can be seen in Listing 3.16.

1 field next: Ref
2
3 method listTraversal(head: Ref, rdAmount: Perm, sx: Set[Ref])
4 requires none < rdAmount && rdAmount < write
5 requires forall r: Ref :: acc(r.next, r in sx ? rdAmount : none)
6 requires (head != null ==> head in sx) &&
7 forall r: Ref :: r in sx ==> r.next != null ==> r.next in sx
8 {
9 var x: Ref := head

10 while (x != null)
11 invariant forall r: Ref :: acc(r.next, r in sx ? rdAmount : none)
12 invariant (x != null ==> x in sx) &&
13 forall r: Ref :: r in sx ==> r.next != null ==> r.next in sx
14 {
15 x := x.next
16 }
17 }

Listing 3.16: List traversal with null checks

A sketch of how our analysis performs the first two iterations on the program in Listing 3.16
is depicted in Table 3.5. The ’root’ expression x in sx becomes x != null ==> x in sx

and the quantified part becomes r in sx ==> r.next != null ==> r.next in sx. An
expression is guarded by a condition if the program location where the expression occurs is
dominated by that condition, for instance, if all paths that pass through the expression also pass
through the condition and the expression and condition do not contain variables that change in
between.
In some cases part of a condition can be influenced by a previous null check in the condition itself.
Consider e.g. the condition node != null && !node.marked. Clearly, the set of possible
receivers for the field access node.marked can never be null. We try to account for this fact
at least partially as far as the Viper framework allows by splitting up branch conditions to their
conjuncts and processing each conjunct one after the other backwards to detect cases where a
conjunct contains a field access guarded by a null check in a previous conjunct. Therefore, for
the example node != null && !node.marked, we split up the condition around the && and
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ENTRY

8: x := head

9: x != null 13: x := x.next

EXIT

A

B

C D

EF

Figure 3.3: The control flow graph to the program in Listing 3.12.

Code Analysis steps

Iteration 1 Iteration 2

A {(head, true)} {(head, true), (head.next, true)}
# ENTRY

B {(head, true)} {(head, true), (head.next, true)}
8 x := head

C {(x, true)} {(x, true), (x.next, true)}
9 while(x != null)

D {(x, false)} {(x, false), (x.next, true)}
13 x := x.next

E {} {(x, true)}
EXIT

F {} {}

Table 3.5: 2 iterations of our analysis run on the program in Listing 3.12. The letters A - F
denote the edges in the control flow graph in Figure 3.3.
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first process the second conjunct where we record the field access to marked in !node.marked.
Only afterwards we process the first conjunct node != null and hence can add the non-null
condition to the receiver of !node.marked.

3.6.4 Integer-Dependent Quantified Permissions

As we have seen in Section 3.5, we convert permission trees corresponding to integer-dependent
receivers to an assertion about a placeholder function p. Therefore, the basic layout of permission
expressions corresponding to such an assertion looks as follows:

forall q: Int :: acc(rec(q, e1, e2, ...).val, p(q))

where rec is the receiver function which depends on q and in general one or multiple further
constant expressions. In the array case, the receiver function would be loc(arr, q). Finally,
we also have to specify the helper function p appropriately. We do this by introducing an
abstract function with an empty body, no preconditions and one postcondition which is exactly
the assertion obtained in the procedure described in Section 3.5. Note that we replaced p(q)
with result in order to specify the postcondition correctly. In Listing 3.17 we can see how this
will look like for a simple array traversal of indexes 0 to 9. Moreover, we can also see that even
for rather simple examples, the quantifier elimination produces big formulas. This blowup of
formulas is one of the current problems of our approach which we will discuss in Section 5.7.

1 function p(q: Int): Perm
2 ensures ((q != 0 || result == write) && (q == 0 || result == none) || q

<= 8 && q >= -1 && result == none || q <= 9 && q >= 0 && result ==
write) && ((q != 0 || result >= write) && (q == 0 || result >= none) &&
(q > 9 || q < 0 || result >= write) && (q > 8 || q < -1 || result >=
none))

3
4 method arrayExample(arr: Array)
5 requires (forall q: Int :: acc(loc(arr, q).val, p(q)))
6 {
7 var i: Int := 0
8 while (i < 10)
9 invariant (forall q: Int :: acc(loc(arr, q).val, p(q)))

10 invariant i >= 0
11 {
12 loc(arr, i).val := i
13 i := i + 1
14 }
15 }

Listing 3.17: Simple array traversal.

Note that in general the assertion in the p function can depend on other variables present in the
method scope. In that case, we have to pass these variables on to p and extend the declaration
of p with additional corresponding formal arguments.
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3.6.5 Symbolic Read Variable

While field writes require write permission, field reads only require a fractional permission
amount that is bigger than none. For this, we introduce a symbolic read variable called
rdAmount. Whenever a symbolic read access occurs in a permission leaf of any of the collected
permission trees inside a method, we will have to add this variable as a formal argument to the
argument list of the method. Moreover, we have to restrict the variable to be positive and we
also know for sure that the variable will always be less than write. Thus, none < rdAMount

&& rdAmount < write might seem to be a reasonable specification. However, in some cases,
the upper bound write is not strong enough. In Listing 3.18, a permission amount of 1 / 2 is
exhaled to r.f before a field read happens to the same location. Constraining rdAmount to be
smaller than write here is not enough. In that case, a caller that passes 3 / 4 for rdAmount
would also fulfill the precondition. However, the permission expression would then in total
require a permission amount of 5 / 4 to r.f which is equivalent to false. Hence, we have to
restrict rdAmount to be less than 1 / 2. If rdAmount is specified that way, we are sure that
also 1 / 2 + rdAmount will be strictly less than write. Note that this is not an issue related
to precision and not to soundness as our program would still verify with write as the upper
bound.

1 method exhaleRead(r: Ref, rdAmount: Perm) returns (res: Ref)
2 requires none < rdAmount && rdAmount < 1 / 2
3 requires (forall r0: Ref :: acc(r0.f, (r0 == r ? 1 / 2 : none) + (r0 == r

? rdAmount : none)))
4 {
5 exhale acc(r.f, 1 / 2)
6 res := r.f
7 }

Listing 3.18: An exhale followed by a read. The permission required to r.f is strictly larger
than 1 / 2 as after the exhale, there still has to be enough permission for the following read.

We will now briefly describe how we calculate an upper bound for the rdAmount variable. Note
that in general this bound can be too restrictive. The bound could be none or even negative
in which case we would fall back to write and accept the imprecision caused thereby. If we
would restrict rdAmount by none < rdAmount && rdAmount < none this would result in a
contract that is unsatisfiable, i.e., that is even more imprecise.
We compute a bound for rdAmount by examining all possible permission sums through every
permission tree by summing up the corresponding permissions and occurrences of symbolic
read amounts separately. Sums are written as pairs (n/d, k) where n/d denotes the fractional
permission amount and k denotes the number of reads. Permission sums are recursively computed
as follows:

Leaves

paths((r, p)) =

{
{(0/1, 1)}, if p = read

{(n/d, 0)} if p = n / d

}
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Maximum
paths(t1 onmax t2) = paths(t1) ∪ paths(t2)

Addition
paths(t1+t2) = {((n1d2+n2d1)/(d1d2), k1+k2) | (n1/d1, k1) ∈ paths(t1), (n2/d2, k2) ∈ paths(t2)}

Conditionals
paths(b ? t1 : t2) = paths(t1) ∪ paths(t2)

Zero-bounded permission tree

paths(bound(t)) =
{(n/d, k) | (n/d, k) ∈ paths(t) ∧ n ≥ 0} ∪
{(0, k) | (n/d, k) ∈ paths(t) ∧ n < 0}

For every pair (n/d, k), the restriction we put on rdAmount is as follows:

n

d
+ k · rdAmount < 1 (3.11)

Thus, the final upper bound for rdAmount in a permission tree t will be calculated as follows:

rdAmount < max
(n/d,k)∈paths(t)

{
d− n
kd

}
(3.12)

3.6.6 Triggers

Universal quantifiers in Viper may be annotated with triggers. Triggers are Viper expressions
that restrict the possible instantiations of the quantified expression. It is possible to declare
triggers explicitly in curly braces directly after the double colon in forall expressions. We
have already seen the use of triggers in the injectivity axiom for arrays (see Listing 3.19).

1 axiom allDiff {
2 forall a: Array, i: Int :: {loc(a, i)} rToA(loc(a, i)) == a && rToI(loc

(a, i)) == i
3 }

Listing 3.19: The injectivity axiom from the array definition (cf. Listing 2.3).

The trigger in this case restricts the possible instantiations of the axiom allDiff to expressions
of the form loc(a, i). If no trigger is specified, Viper will automatically infer one or multiple
trigger sets. However, in our experimentations, we found that adding custom triggers to our
specifications of receiver sets reduces verification time substantially for some examples.
Consider the following part of a set specification.

forall r: Ref :: (r in s_n && r != null && r in s_n) ==> r.next in s_n

By default, Viper will infer the following trigger sets:
{ (r in s_n) }, { (r.left in s_n) }

We prevent this by providing a single custom trigger set
{ (r in s_n), r.left }.
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3.7 Inferring Postconditions using a Forward Analysis

In this section, we summarize the main findings of our research in inferring postconditions.
Originally, our goal was to incorporate a forward analysis to infer method postconditions into
our algorithm. However, there are some obstacles that prevent a completely automatic inference
of postconditions at the moment. We motivate the automatic inference of postconditions,
give basic ideas how a forward inference could look like and show up the main difficulties in
developing a fully automated approach.

3.7.1 Motivation

The main motivation to also infer postconditions of a method is precision. When no explicit
postconditions are specified for a method in Viper, the default postcondition is true. For
single methods this is no problem as a method will also verify without specified postconditions.
However, in general programs, methods can call other methods and for a caller method, true
is a very weak assertion. The goal is to be as precise as possible, in other words, to come
up with strongest postconditions with respect to permissions. Consider the method caller

in Listing 3.20 which calls another method, callee. The method callee requires write
permission to x.next and performs a simple write to it. In the program state after the
assignment, callee still holds write permission to x.next. When there are no postconditions
specified, the problem is that this write permission is not returned to the caller because Viper
will not infer automatically that this permission could be returned to the caller without an
explicit declaration in a postcondition. Thus, for caller, the method call to callee looks like
an exhale to x.next. As a consequence, the caller himself will in turn not be able to, e.g.,
write to x.next although a stronger postcondition of callee would ensure that it returns the
permissions to x.next. The verification of this program would fail which is imprecise.

1 method callee(x: Ref)
2 requires acc(x.next)
3 {
4 x.next := x
5 }
6
7 method caller(x: Ref)
8 requires acc(x.next)
9 {

10 callee(x) // Permission to x.left is leaking
11 x.next := x // Will fail to verify
12 }

Listing 3.20: Leaking permissions.

In this example, the postcondition of callee is exactly the same assertion as the postcondition,
namely ensures acc(x.next), which is at the same time the strongest postcondition. However,
coming up with sound and precise postconditions in general is hard if the method body contains
loops.
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3.7.2 Tracking changing References

An additional difficulty with forward propagation is that we have to keep track of changing
references. In Listing 3.21, if we recorded the receiver of the field assignment on line 11 simply
as x.left, we would not have captured the fact that x.left points to y at that point of the
program (due ot the assignment on line 10). We have to record the previous assignment to
x.left and appropriately plug in y for x.next when generating the postcondition.
Moreover, the field access x.left.right on line 9 cannot be represented in the post-state of
the method. Because x.left is overwritten on lines 9 and 10, there exists no access path that
could denote the original location x.left. Therefore, the only way to express the original heap
location x.left pointed to is with the use of the old keyword.

1 method oldExample(x: Ref, y: Ref)
2 requires acc(x.left)
3 requires acc(y.right)
4 requires acc(x.left.right)
5 ensures acc(x.left)
6 ensures acc(y.right)
7 ensures acc(old(x.left).right)
8 {
9 x.left := x.left.right

10 x.left := y
11 x.left.right := y
12 }

Listing 3.21: An example that demonstrates the use of the old keyword. Note that the use of
old is inevitable in this case. Because of the assignments to x.left on lines 10 and 11, there
is no other expression that could describe the memory location x.left was pointing to at the
beginning of the method.

This example illustrates well the main challenges compared to the backward analysis: it is much
more difficult to keep track of how variables and the heap changes. Moreover, the generated
specifications have to be expressed in the post state of the method, possibly using the old
keyword. We have seen that is not sufficient to only track permissions. We also have to keep
record of which expressions denote which heap locations. We believe that integrating a heap
analysis here could help us again.

3.7.3 Strongest Postcondition Rules

In the following we informally describe strongest postcondition rules for straight-line code,
similarly to the weakest precondition rules described in Section 3.2 for the backward analysis.
Soundness for strongest postcondition rules in terms of permission means that we return at most
all the permissions that are available at the end of the method. The main difference will be the
join operator for branches of conditionals or loops. For this, we will introduce the onmin operator
where t1 onmin t2 returns the minimum of the permission amounts represented by two trees t1
and t2. In other words, onmin is the counterpart of onmax. We will again use the same concept of
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permission trees to denote the collected permissions. Note that the described approach collects
information about postconditions independently of the inferred precondition for the method.
Another possibility would be to assume that the backward inference to infer postcondition has
already been conducted and to start with the collected permissions at the top of the method.
For that analysis, different rules would be needed and we do not consider this case here.
Strongest postconditions in terms of permissions means that after executing every statement,
we want to maintain as many permissions as possible.

Variable Assignments
For a reference variable assignment v := e, every occurrence of v in the tracked permission
expressions has to be replaced by e. Furthermore, we have to reflect the change of variable
in tracked heap information accordingly. This is important for cases where, e.g., the variable
assignment is followed by a field assignment v.f := a. This field assignment would then need
to be correctly recognized as an effective write to e.f.

Field Assignments
For a field assignment l.f := r, we add write permissions to field f using the onmax operator
only for every expression e that must alias with l at that point. If we would add permissions to
references that only may alias with l, this would be unsound. Furthermore, we have to reflect
the heap update in the tracked heap information.

Inhales
For an inhale acc(r.f, p), we add the inhaled permissions p to the tracked permissions
using the + operator. While doing this, we have to under-approximate the locations to which
permission is inhaled. Consequently, we only add the permission to locations that must alias
with r at that point.

Exhales
For an exhale acc(r.f, p), we subtract the exhaled permissions p from the tracked permis-
sions using the − operator. While doing this, we have to over-approximate the locations to
which permission is exhaled. Therefore, we have to subtract the permission from all locations
that may alias with r at that point.

Conditionals
When joining conditionals, we can again use a ternary expression as in Section 3.2.7. However,
in cases where the condition has to be over-approximated, we do not use the onmax operator as
this was the case for weakest preconditions, but we use the onmin operator to join the permission
trees from each branch.

Loops
Similarly to conditionals, we join the collected permissions from both branches using the onmin

operator. The main problem here is that applying the onmin operator is generally a heavy
over-approximation and will presumably often imprecisely result in zero permissions. Again, we
would need to approximate receiver sets in the true branch of the loop, but this time we would
have to under-approximate them. In other words, we would need guarantees how many times
a loop is at least executed. This is where our ideas for a forward analysis get vague, but we
believe that an under-approximating abstract interpretation could help us here. There already
exists work about under-approximating backward integer analysis [16].
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3.8 Simplification of Inferred Contracts

In this section, we briefly present the various simplifications we apply before the actual generation
of the specifications.

3.8.1 Simplifications of Permission Trees

In a first step we simplify the collected permission trees on a purely syntactical level. In
particular, we perform the following simplifications:

Flattening nested maximum operators
As an example, consider the permission tree (t1 onmax t2) onmax t3. We simplify this tree by
flattening the tree structure into a set {t1, t2, t3}. The maximum operator will then operate as a
maximum over all the trees in this set.

Eliminating identical permission trees inside the maximum
Clearly, taking the maximum of two identical permission trees is just one of the trees:
t onmax t = t.

Simplifying conditionals
We can simplify a conditional syntactically if either the condition is a literal or both trees are
the same. E.g., (true ? t1 : t2) is simplified to t1 and (b ? t : t) to t.

Eliminating unnecessary bound operators
bound(bound(−t1) − t2)) can be simplified to bound(−t1 − t2).

3.8.2 Semantic Simplifications

In the second step we simplify the collected permissions further by also considering the corre-
sponding receiver sets. We simplify permission expressions like

max(r in set1 ? p1 : none, r in set2 ? p2 : none)

to (r in set2 ? p2 : none)

if p2 ≥ p1 and if we can statically determine that the receiver set corresponding to set1 is
a subset of the receiver set corresponding to set2. This simplification can be done for the
example in Listing 3.22. The resulting permission trees at each point in the program are
indicated in comments. On line 4, we will be able to statically determine that the receiver
sets corresponding to the field accesses x.f on lines 4 and 5 both consist of the single element
x. Furthermore, write ¿ rdAmount. Therefore, we can simplify max(r == x ? write :

none, r == x ? rdAmount : none) to (r == x ? write : none). Listing 3.23 shows
the simplified example.
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1 method simplification(x: Ref, rdAmount: Perm) returns (res: Ref)
2 requires none < rdAmount && rdAmount < write
3 requires (forall r: Ref :: acc(r.f, max(r == x ? write : none, r == x ?

rdAmount : none)))
4 {
5 x.f := x // (x, write) onmax (x, read)
6 res := x.f // (x, read)
7 }

Listing 3.22: A simple field write followed by a field read.

1 method simplification(x: Ref) returns (res: Ref)
2 requires (forall r: Ref :: acc(r.f, (r == x ? write : none)))
3 {
4 x.f := x // (x, write) onmax (x, read)
5 res := x.f // (x, read)
6 }

Listing 3.23: The example from Listing 3.22 with the simplification applied.

3.8.3 Eliminating Duplicate Sets

Remember that we track one receiver set per field access (cf. Section 3.6.2). We then introduce
an additional set helper variable for every receiver set that is not finite and can therefore only
be expressed in terms of an additional helper set. Thus, in the worst case, we introduce one
helper set for every field access that occurs in the program.
However, in a lot of cases we infer multiple receiver sets that capture exactly the same heap
locations. For readability and especially to make the inferred contracts shorter and more concise,
it is be desirable to eliminate those duplicate sets and instead just use one set everywhere. The
main advantage will be a reduced amount of sets that we have to generate set descriptions for
and thus a simplifications of the generated specifications. An example of the effect of merging
sets can be seen in the method sumList for which we show both versions, the unoptimized one
in Listing 3.24 and the optimized one Listing 3.25. The two helper sets s_n and s_n0 in the
unoptimized version have the exact same specification and only differ by the name. Therefore,
the two sets can be merged.

3.9 Restrictions and current Limitations

We will shortly list in this section the most important limitations our current algorithm has. In
Chapter 5, we will discuss how some of these restrictions could be lifted in future work.
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1 method sumList(nd: Ref, rdAmount: Perm, s_n: Set[Ref], s_n0: Set[Ref])
returns (sum: Int)

2 requires none < rdAmount && rdAmount < write
3 requires forall _r: Ref :: acc(_r.next, _r in s_n ? rdAmount : none)
4 requires forall _r: Ref :: acc(_r.data, _r in s_n0 ? rdAmount : none)
5 requires nd != null ==> (nd in s_n)
6 requires (forall _r: Ref :: { (_r in s_n),_r.next } (_r in s_n) && (_r !=

null) && perm(_r.next) > none && _r.next != null ==> (_r.next in s_n))
7 requires nd != null ==> (nd in s_n0)
8 requires (forall _r: Ref :: { (_r in s_n0),_r.next } (_r in s_n0) && (_r

!= null) && perm(_r.next) > none && _r.next != null ==> (_r.next in
s_n0))

9 {
10 var node: Ref := nd
11 sum := 0
12 while (node != null)
13 invariant forall _r: Ref :: acc(_r.next, _r in s_n ? rdAmount : none)
14 invariant forall _r: Ref :: acc(_r.data, _r in s_n0 ? rdAmount : none)
15 invariant node != null ==> (node in s_n)
16 invariant (forall _r: Ref :: { (_r in s_n),_r.next } (_r in s_n) && (_r

!= null) && perm(_r.next) > none && _r.next != null ==> (_r.next in
s_n))

17 invariant node != null ==> (node in s_n0)
18 invariant (forall _r: Ref :: { (_r in s_n0),_r.next } (_r in s_n0) && (

_r != null) && perm(_r.next) > none && _r.next != null ==> (_r.next
in s_n0))

19 {
20 sum := sum + node.data
21 node := node.next
22 }
23 }

Listing 3.24: Summation over a list (unoptimized).

3.9.1 Heap Analysis: Assuming that Argument Heaps are Disjoint

The specific implementation of heap analysis we use assumes that for method arguments, all
the memory chunks reachable through any access path from each argument are disjoint with
respect to the memory chunks of the other arguments. We use this heap analysis as it is, hence
making the same assumption for our analysis. Of course we can always fall back to our general
rule for field assignments (cf. Section 3.2.4).

3.9.2 Changing permissions in Loops

In our analysis we over-approximate point-wise required permissions and receiver sets. For
inhales and exhales, we do not over-approximate the permission amount itself. Inside loops, we
assume that exhales and inhales always happen to distinct locations. This has the consequence
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1 method sumList(nd: Ref, rdAmount: Perm, s_n: Set[Ref])
2 returns (sum: Int)
3 requires none < rdAmount && rdAmount < write
4 requires forall r: Ref :: acc(r.next, (r in s_n) ? rdAmount : none)
5 requires forall r: Ref :: acc(r.data, (r in s_n) ? rdAmount : none)
6 requires nd != null ==> (nd in s_n)
7 requires (forall r: Ref :: { (r in s_n),r.next } (r in s_n) && (r != null

) && perm(r.next) > none && r.next != null ==> (r.next in s_n))
8 {
9 // ...

10 }

Listing 3.25: The optimized example from Listing 3.24. We only show the method declaration
together with the precondition, the invariant will be simplified accordingly as well.

that we are not able to handle multiple inhales or exhales to the same location if they occur
inside a loop. Consider Listing 3.26 where a permission amount of 1 / 10 is exhaled to index
0 in the loop body. In our permission tree, the exhale would be represented by a single leaf
(loc(arr, 0).val, 1 / 10). The generated permission expression for both the invariant
and the precondition would then provide a permission amount of 1 / 10 to index 0. This is
clearly unsound as the exhaled permission to index 0 will in total be 10 / 10 which is equal to
write.
There is one more problem with this example. If we would be able to over-approximate
permission amounts as well, a precondition equivalent to acc(loc(arr, 0).val, write)
would be sound. However, we would still have to come up with an invariant that expresses the
changing permission amount. However, we only infer invariants that express a fixed permission
amount for every single heap location. In order to express the invariant, we would have to
include i in our specification. A possible invariant for this example would be acc(loc(arr,
0).val, write - (i / 10).

1 method multiExhale(arr: Array)
2 requires acc(loc(arr, 0).val, write)
3 {
4 var i: Int := 0
5 while (i < 10)
6 invariant acc(loc(arr, 0).val, write - (i / 10))
7 {
8 exhale acc(loc(arr, 0).val, 1 / 10) // (loc(arr, 0).val, 1 / 10)
9 i := i + 1

10 }
11 }

Listing 3.26: Multiple exhales to the same location.
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3.9.3 No Support of Nested Quantifiers in Quantified Permissions

There is currently no support in Viper for nested quantifiers in quantified permission expressions.
This means, it is not possible to quantify over multiple variables when specifying permissions.
The consequence for us is that we cannot handle cases where the receiver function depends
on more than one changing integer argument. This would be interesting in many cases. For
example, we could be interested in modeling a matrix domain as in Listing 3.27. A memory
location in the matrix is uniquely determined by its column and row indexes and can be accessed
by the loc2 function. In order to express a quantified permissions for matrices, our permission
expression would in general look as follows:

forall i: Int, j: Int :: acc(loc2(mat, i, j).val, p(i, j))

The Viper verifiers currently cannot handle such permission expressions, but this restriction is
expected to be lifted in future.

1 domain Matrix {
2 function loc2(a: Matrix, i: Int, j: Int): Ref
3 function rows(a: Matrix): Int
4 function cols(a: Matrix): Int
5 function rToM(ref: Ref): Matrix
6 function rToR(ref: Ref): Int
7 function rToC(ref: Ref): Int
8
9 axiom allDiff {

10 forall m: Matrix, i: Int, j: Int :: {loc2(m, i, j)} rToM(loc2(m, i, j
)) == m && rToR(loc2(m, i, j)) == i && rToC(loc2(m, i, j)) == j

11 }
12
13 // Further axioms ...
14 }

Listing 3.27: A possible matrix domain.
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In the following, we present some concrete Viper programs on which we ran our algorithm.
We discuss the inferred specifications in terms of precision and readability and also do some
comparisons to specifications inferred using the algorithm of previous work [24]. For programs
with heap-dependent field accesses, the generated formula is very large even for small examples.
We therefore only consider basic examples and moved in some cases the specification for the
permission function p(q) to the appendix.

4.1 Simple List Traversal

The program in Listing 4.1 is a slightly adapted example from [24] and traverses a list. It sets
the is_marked flag of every node to true. At first sight, the specification looks very complex
compared to the actual program. However, there is only one helper set. On lines 5 and 6 we can
see the permission expressions generated for the fields is_marked and next as described in
Section 3.6.1, respectively. Lines 7 and 8 describe the specification of the set s_n according to
Section 3.6.2. Compared to [24] we have an imprecision due to our handling of branch and loop
conditions. In fact, we would only need to put consecutive nodes into the set until we encounter
the first node which has its is_marked field set to true. However, we actually put the whole
list into the set. This is attributable to our over-approximation of conditions to the maximum
of both branches in the widening step (cf. Section 3.3.2).
On the other side, what especially stands out in this example is that, despite there are three
field accesses in the whole program, we only need one receiver set. In the simplification phase,
our algorithm is able to merge all three receiver sets corresponding to the field accesses in the
program into one set. [24] on the other hand needed three helper sets in order to specify this
program.
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1 method traverse(nd: Ref, rdAmount: Perm, s_n: Set[Ref])
2 requires none < rdAmount && rdAmount < write
3 requires forall r: Ref :: acc(r.is_marked, (r in s_n) ? write : none)
4 requires forall r: Ref :: acc(r.next, (r in s_n) ? rdAmount : none)
5 requires nd != null ==> (nd in s_n)
6 requires (forall r: Ref :: { (r in s_n),r.next } (r in s_n) && (r != null

) && perm(r.next) > none && r.next != null ==> (r.next in s_n))
7 {
8 var node: Ref := nd
9 while (node != null && !node.is_marked)

10 invariant forall r: Ref :: acc(r.is_marked, (r in s_n) ? write : none)
11 invariant forall r: Ref :: acc(r.next, (r in s_n) ? rdAmount : none)
12 invariant node != null ==> (node in s_n)
13 invariant (forall r: Ref :: { (r in s_n),r.next } (r in s_n) && (r !=

null) && perm(r.next) > none && r.next != null ==> (r.next in s_n))
14 {
15 node.is_marked := true
16 node := node.next
17 }
18 }

Listing 4.1: Simple list traversal.

4.2 Simple Heap Manipulation

The example in Listing 4.2 shows how our field assignment rule works in practice. Let us
consider the field access to right on the right side of the assignment on line 10. The receiver
of this access is b.left.left. When we propagate over the field assignment on line 9, we have
to consider three cases:

Case 1: a aliases with b. Therefore, b.left.left has to be replaced with c.left.

Case 2: a aliases with b.left in which case b.left.left has to be replaced with c.

Case 3: a does not alias with b, nor with b.left in which case b.left.left remains
unchanged.

Note the interesting sub-case of case 1 in which a and b both alias with c as well. In that case,
the assignment of c to a.left effectively makes a.left, b.left and c.left all point to c.
In that case, b.left.left would have to be replaced by c. Our rule takes care of this as well.
Furthermore, note that we introduced an additional abstract helper function getLeft. We
cannot directly use field accesses in the permission expression on lines 5 and 6 because they
these expressions not self-framing: in order to mention, e.g., b.next, we first need permission
to b.next which we only get in the expression itself. Therefore, we use an inhale-exhale pair
which inhales that getLeft(r) returns r.next for all references r whenever it has required
permission.
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1 function getLeft(x: Ref): Ref
2
3 method fieldAssignment(a: Ref, b: Ref, c: Ref, rdAmount: Perm)
4 requires none < rdAmount && rdAmount < write
5 requires forall r: Ref :: acc(r.left, max(max(r == a ? write : none, r ==

b ? write : none), r == (b == a ? c : getLeft(b)) ? rdAmount : none))
6 requires forall r: Ref :: acc(r.right, r == ((b == a ? c : getLeft(b)) ==

a ? c : getLeft(b == a ? c : getLeft(b))) ? rdAmount : none)
7 requires [forall r: Ref :: perm(r.left) > none ==> getLeft(r) == r.left,

true]
8 {
9 a.left := c

10 b.left := b.left.left.right
11 }

Listing 4.2: Field assignments in straight line code which illustrate our field assignment rule.

4.3 Tree Traversal

The method traverseRandom in Listing 4.3 traverses a tree by taking two steps per loop
iteration. First, it follows the left subtree and then, depending on the iteration variable i, it
follows the left or the right subtree. This example is also taken from [24]. The main shortcoming
in our inferred specifications is that there is an imprecision compared to [24]. The field accesses
on lines 26 and 28 are not dominated by a null check. That means, that we will have to mark
those nodes to be potentially null in our analysis. However, if the program argument nd is
null, the loop will not be executed at all and therefore no field accesses happen. On line 5 we
see that we require nd to be in the set s_n, independently of whether or not nd is null. As
we require read permission to all elements in s_n, we will implicitly restrict nd to be non-null.
Thus, we unnecessarily restrict the possible input parameters which is imprecise.

1 method traverseRandom(nd: Ref, rdAmount: Perm, s_n: Set[Ref], s_n0: Set[
Ref])

2 requires none < rdAmount && rdAmount < write
3 requires forall r: Ref :: acc(r.right, (r in s_n) ? rdAmount : none)
4 requires forall r: Ref :: acc(r.left, (r in s_n) ? rdAmount : none)
5 requires (nd in s_n)
6 requires forall r: Ref :: { (r in s_n),r.left } (r in s_n) && r != null

&& perm(r.left) > none ==> (r.left in s_n)
7 requires forall r: Ref :: { (r in s_n),r.right } (r in s_n) && r != null

&& perm(r.right) > none ==> (r.right in s_n)
8 requires nd != null ==> (nd in s_n0)
9 requires forall r: Ref :: { (r in s_n0),r.left } (r in s_n0) && r != null

&& perm(r.left) > none && r.left != null ==> (r.left in s_n0)
10 requires forall r: Ref :: { (r in s_n0),r.right } (r in s_n0) && r !=

null && perm(r.right) > none && r.right != null ==> (r.right in s_n0))
11 {
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12 var i: Int := 0
13 var node: Ref := nd
14 while (node != null)
15 invariant forall r: Ref :: acc(r.right, (r in s_n) ? rdAmount : none)
16 invariant forall r: Ref :: acc(r.left, (r in s_n) ? rdAmount : none)
17 invariant (node in s_n)
18 invariant forall r: Ref :: { (r in s_n),r.left } (r in s_n) && r !=

null && perm(r.left) > none ==> (r.left in s_n)
19 invariant forall r: Ref :: { (r in s_n),r.right } (r in s_n) && r !=

null && perm(r.right) > none ==> (r.right in s_n)
20 invariant node != null ==> (node in s_n0)
21 invariant forall r: Ref :: { (r in s_n0),r.left } (r in s_n0) && r !=

null && perm(r.left) > none && r.left != null ==> (r.left in s_n0)
22 invariant forall r: Ref :: { (r in s_n0),r.right } (r in s_n0) && r !=

null && perm(r.right) > none && r.right != null ==> (r.right in s_n0)
23 {
24 node := node.left
25 if (i < 5 || i > 10) {
26 node := node.left
27 } else {
28 node := node.right
29 }
30 i := i + 1
31 }
32 }

Listing 4.3: Tree traversal.

4.4 Morris’ Tree Traversal

An interesting algorithm for traversing a binary tree in linear time with respect to the number
of nodes and using only a constant amount of additional space was described by Morris in
1979 [18]. An implementation of the original algorithm written in Java can be seen in Listing 4.4.
Note, that the only way to translate do { body } while(cond) to Viper without having to
use goto is using a loop unrolling body; while(cond) { body }. Since the number of fields
in this algorithm is 4 and the program contains 20 field accesses in total (8 writes and 12 reads),
we would expect the generated specification to be rather complex. However, we can see in
Listing 4.5 that thanks to our several simplifications (cf. Section 3.8) we are able to reduce the
number of sets to one. Quite surprisingly, there is also only one ternary condition operator in
every permission expression in the loop invariant (lines 26 to 29) as we are able to determine
statically that field reads and writes happen to the exact same set of references and therefore
can eliminate the maximums in our collected permissions completely by repeated application of
the rule presented in Section 3.8.2. However, in the precondition, we have an additional leaf in
every permission tree, which corresponds to the accesses to x in the first (unrolled) iteration.
We cannot merge root with the set s_x because s_x only contains root if root is not null.
Therefore, we end up at method entry having only 2 leaves per permission tree or 8 in total
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(two for every of the 4 fields), compared to the before mentioned total 20 field accesses in this
program.
For this example, we also observed a big positive impact of our custom triggers to the verification
runtime. We did not perform exact statistic measurements, but verification takes about half of
the time with our custom triggers than it would take with the generic ones.

1 void markTree(Tree root) {
2 Tree x, y;
3 x = root;
4 do {
5 x.mark = true;
6 if (x.left == null && x.right == null) {
7 y = x.parent;
8 } else {
9 y = x.left;

10 x.left = x.right;
11 x.right = x.parent;
12 x.parent = y;
13 }
14 x = y;
15 } while (x != null);
16 }

Listing 4.4: Morris’ tree traversal algorithm in Java.

1 field mark: Bool; field left: Ref; field right: Ref; field parent: Ref
2
3 method markTree(root: Ref, set_x: Set[Ref])
4 requires forall r: Ref :: acc(r.parent, max((r == root ? write : none), (

r in s_x ? write : none)))
5 requires (forall r: Ref :: acc(r.right, max((r == root ? write : none), (

r in s_x ? write : none))))
6 requires forall r: Ref :: acc(r.left, max((r == root ? write : none), (r

in s_x ? write : none)))
7 requires forall r: Ref :: acc(r.mark, max((r == root ? write : none), (r

in s_x ? write : none)))
8 requires root != null ==> (root in s_x)
9 requires forall r: Ref :: { (r in s_x),r.left } (r in s_x) && r != null

&& perm(r.left) > none && r.left != null ==> (r.left in s_x)
10 requires forall r: Ref :: { (r in s_x),r.parent } (r in s_x) && r != null

&& perm(r.parent) > none && r.parent != null ==> (r.parent in s_x)
11 requires forall r: Ref :: { (r in s_x),r.right } (r in s_x) && r != null

&& perm(r.right) > none && r.right != null ==> (r.right in s_x)
12 {
13 var x: Ref := root
14 var y: Ref
15 x.mark := true
16 if (x.left == null && x.right == null) {
17 y := x.parent
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18 } else {
19 y := x.left
20 x.left := x.right
21 x.right := x.parent
22 x.parent := y
23 }
24 x := y
25 while (x != null)
26 invariant forall r: Ref :: acc(r.parent, (r in s_x ? write : none))
27 invariant forall r: Ref :: acc(r.right, (r in s_x ? write : none))
28 invariant forall r: Ref :: acc(r.left, (r in s_x ? write : none))
29 invariant forall r: Ref :: acc(r.mark, (r in s_x ? write : none))
30 invariant x != null ==> (x in s_x)
31 invariant forall r: Ref :: { (r in s_x),r.parent } (r in s_x) && r !=

null && perm(r.parent) > none && r.parent != null ==> (r.parent in
s_x)

32 invariant forall r: Ref :: { (r in s_x),r.right } (r in s_x) && r !=
null && perm(r.right) > none && r.right != null ==> (r.right in s_x)

33 invariant forall r: Ref :: { (r in s_x),r.left } (r in s_x) && r !=
null && perm(r.left) > none && r.left != null ==> (r.left in s_x)

34 {
35 x.mark := true
36 if (x.left == null && x.right == null) {
37 y := x.parent
38 } else {
39 y := x.left
40 x.left := x.right
41 x.right := x.parent
42 x.parent := y
43 }
44 x := y
45 }
46 }

Listing 4.5: Morris’ tree traversal algorithm in Viper with inferred specifications.

4.5 Write to Single Index

The method writeSingleIndex in Listing 4.6 writes to a single location inside a loop. The
index expression is i + j where i and j are both changing variables. However, because we use
the polyhedra abstract domain for the numerical analysis, we are able to infer the loop invariant
i + j == bound. The generated specification then correctly requires read permission to index
bound of the array. This example demonstrates that the resulting formula from quantifier
elimination already expands a lot even for simplest examples. Note that we added by hand
two additional methods inferredImpliesHuman and humanImpliesInferred. With these
methods, we test whether or not the contract inferred by our algorithm implies the human-
written contract and vice versa, respectively, by inserting one of the assertions as precondition
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and the other as postcondition. A similar approach was also used by [24]. For this example the
human contract is just acc(loc(arr, bound).val). Both methods verify successfully which
means that the human contract implies our inferred specification and vice versa. In other words,
our inferred contract is both sound and precise with respect to the human specification.

1 function p(q: Int, bound: Int): Perm
2 ensures (bound >= 1 && ((q != bound || result == write) && (q == bound ||

result == none)) || (bound >= 1 && ((q != bound || result == write) &&
(q == bound || result == none)) || q + 1 == bound && bound >= 1 &&
result == none || q == bound && bound >= 1 && result == write) || q + 1
== bound && bound >= 1 && result == none || q == bound && bound >= 1
&& result == write) && ((bound < 1 || (q != bound || result >= write)
&& (q == bound || result >= none)) && ((bound < 1 || (q != bound ||
result >= write) && (q == bound || result >= none)) && (q != bound ||
bound < 1 || result >= write) && (q + 1 != bound || bound < 1 || result
>= none)) && (q != bound || bound < 1 || result >= write) && (q + 1 !=
bound || bound < 1 || result >= none))

3
4 method writeSingleIndex(arr: Array, bound: Int)
5 requires (forall q: Int :: acc(loc(arr, q).val, p(q, bound)))
6 {
7 var i: Int := 0
8 var j: Int := bound
9 while (i < bound)

10 invariant (forall q: Int :: acc(loc(arr, q).val, p(q, bound)))
11 invariant i + j == bound && i >= 0
12 {
13 loc(arr, i + j).val := i
14 i := i + 1
15 j := j - 1
16 }
17 }
18
19 method humanImpliesInferred(arr: Array, bound: Int)
20 requires acc(loc(arr, bound).val)
21 ensures forall q: Int :: acc(loc(arr, q).val, (q == bound ? write : none)

)
22 {
23 }
24
25 method inferredImpliesHuman(arr: Array, bound: Int)
26 requires forall q: Int :: acc(loc(arr, q).val, p(q, bound))
27 ensures acc(loc(arr, bound).val)
28 {
29 }

Listing 4.6: A loop example where the only index which is written to is bound.
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4.6 Array Maximum

The method maxArray in Listing 4.7 finds the maximum element by iterating two variables x
and y. This example is taken from [24]. Again, the inferred specification is precise. However, it
is not very difficult for a human to come up with a precise specification, given that he uses the
same variable rdAmount to denote read permission. Refer to Listing A.1 in the appendix for
the full specification of the function p.

1 method maxArray(arr: Array, lenA: Int, rdAmount: Perm) returns (x: Int)
2 requires none < rdAmount && rdAmount < write
3 requires forall q: Int :: acc(loc(arr, q).val, p(q, lenA, rdAmount))
4 {
5 var y: Int
6 if (lenA <= 0) {
7 x := -1
8 } else {
9 x := 0

10 y := lenA - 1
11 while (x != y)
12 invariant forall q: Int :: acc(loc(arr, q).val, p(q, lenA, rdAmount))
13 invariant lenA >= 1 + y && y >= x && x >= 0
14 {
15 if (loc(arr, x).val <= loc(arr, y).val) {
16 x := x + 1
17 } else {
18 y := y - 1
19 }
20 }
21 }
22 }
23
24 method humanImpliesInferred(arr: Array, lenA: Int, rdAmount: Perm)
25 requires none < rdAmount && rdAmount < write
26 requires forall q: Int :: q >= 0 && q < lenA ==> acc(loc(arr, q).val,

rdAmount)
27 ensures forall q: Int :: acc(loc(arr, q).val, p(q, lenA, rdAmount))
28 {
29 }
30
31 method inferredImpliesHuman(arr: Array, lenA: Int, rdAmount: Perm)
32 requires none < rdAmount && rdAmount < write
33 requires forall q: Int :: acc(loc(arr, q).val, p(q, lenA, rdAmount))
34 ensures forall q: Int :: q >= 0 && q < lenA ==> acc(loc(arr, q).val,

rdAmount)
35 {
36 }

Listing 4.7: An algorithm to find the maximum element inside an array.
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4.7 Array and List

Listing 4.8 shows an example which demonstrates that our algorithm is able to handle programs
containing arrays as well as graph-like data structures. Note that our single restriction is that
each field is only accessed by one type of receivers. Here, the val field as usual is accessed on
array locations and the next field on the list nodes.

1 function p(q: Int): Perm
2 ensures ((q != 0 || result == write) && (q == 0 || result == none) || q

<= 8 && q >= -1 && result == none || q <= 9 && q >= 0 && result ==
write) && ((q != 0 || result >= write) && (q == 0 || result >= none) &&
(q > 9 || q < 0 || result >= write) && (q > 8 || q < -1 || result >=
none))

3
4 method allInOne(arr: Array, head: Ref, rdAmount: Perm, s_x: Set[Ref])
5 requires none < rdAmount && rdAmount < write
6 requires forall r: Ref :: acc(r.next, ((r in s_x) ? rdAmount : none))
7 requires forall q: Int :: acc(loc(arr, q).val, p(q))
8 requires head != null ==> (head in s_x)
9 requires forall r: Ref :: { (r in s_x),r.next } (r in s_x) && r != null

&& perm(r.next) > none && r.next != null ==> (r.next in s_x)
10 {
11 var i: Int := 0
12 var x: Ref := head
13 while (i < 10 && x != null)
14 invariant forall r: Ref :: acc(r.next, ((r in s_x) ? rdAmount : none))
15 invariant forall q: Int :: acc(loc(arr, q).val, p(q))
16 invariant x != null ==> (x in s_x)
17 invariant forall r: Ref :: { (r in s_x),r.next } (r in s_x) && r !=

null && perm(r.next) > none && r.next != null ==> (r.next in s_x)
18 invariant i >= 0
19 {
20 loc(arr, i).val := i
21 x := x.next
22 i := i + 1
23 }
24 }

Listing 4.8: A program containing arrays as well as lists.

4.8 Inhale, Write and Exhale in a Loop

The method inhaleWriteExhale in Listing 4.9 traverses an array and on every iteration first
inhales write permission to index i, then writes to the same index and finally exhales write
permission again. For this program, we would expect the inferred specification to require no
permission at all. Indeed, the permission returned by p is none for all arguments. The human
contract would in this case be true (or no contract at all as true is the default). Refer to
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Listing A.2 in the appendix for the full specification of the function p. It can easily be seen that
the postcondition of p could be simplified to just result == none.

1 method inhaleWriteExhale(arr: Array)
2 requires (forall q: Int :: acc(loc(arr, q).val, p(q)))
3 {
4 var i: Int := 0
5 while (i < 10)
6 invariant (forall q: Int :: acc(loc(arr, q).val, p(q)))
7 invariant i >= 0
8 {
9 inhale acc(loc(arr, i).val, write)

10 loc(arr, i).val := i
11 exhale acc(loc(arr, i).val, write)
12 i := i + 1
13 }
14 }
15
16 method humanImpliesInferred(arr: Array)
17 requires true
18 ensures forall q: Int :: acc(loc(arr, q).val, p(q))
19 {
20 }
21
22 method inferredImpliesHuman(arr: Array)
23 requires forall q: Int :: acc(loc(arr, q).val, p(q))
24 ensures true
25 {
26 }

Listing 4.9: An inhale followed by a write and an exhale to the same location.

4.9 Access every second Index

Another array example can be seen in Listing 4.10. What is interesting here is that the condition
inside the loop is i % 2 == 0. Since formulas of this form can be handled by our quantifier
elimination, we expect the inferred contract to be rather precise. This is indeed the case as
it only requires write permission for even indexes and requires only read permission to odd
indexes. Unfortunately, the postcondition of q in this case spans about 2 pages which is why
we did not include its definition in the appendix. However, we added an additional method
preciseImpliesInferred which specificies the desired amount precisely and compares this
specification to the inferred one and indeed, this method verifies which means that our inferred
contract is precise. Also, we checked again the human specification and in this case, the
human specification implies the inferred one but not vice versa. That means, that the inferred
specification is more precise. To come up with a contract that is as precise as our inferred
one, a human would have to write a specification similar to inferredImpliesPrecise which
requires some effort.
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1 method secondIndex(arr: Array, rdAmount: Perm) returns (res: Int)
2 requires none < rdAmount && rdAmount < write
3 requires (forall q: Int :: acc(loc(arr, q).val, p(q, rdAmount)))
4 {
5 var i: Int := 0
6 while (i < 10)
7 invariant (forall q: Int :: acc(loc(arr, q).val, p(q, rdAmount)))
8 invariant i >= 0
9 {

10 if (i % 2 == 0) {
11 loc(arr, i).val := i
12 } else {
13 res := loc(arr, i).val
14 }
15 i := i + 1
16 }
17 }
18
19 method preciseImpliesInferred(arr: Array, rdAmount: Perm)
20 requires none < rdAmount && rdAmount < write
21 requires forall q: Int :: acc(loc(arr, q).val, (0 <= q && q <= 9 ? (q % 2

== 0 ? write : rdAmount) : none))
22 ensures forall q: Int :: acc(loc(arr, q).val, p(q, rdAmount))
23 {
24 }
25
26 method humanImpliesInferred(arr: Array, rdAmount: Perm)
27 requires none < rdAmount && rdAmount < write
28 requires forall q: Int :: 0 <= q && q <= 9 ==> acc(loc(arr, q).val,write)
29 ensures forall q: Int :: acc(loc(arr, q).val, p(q, rdAmount))
30 {
31 }

Listing 4.10: An array traversal which performs a write to every even index and a read to
every odd index.

Note, that with a slight modification (see Listing 4.11), our inference suffers from imprecision
caused by the numerical abstract interpretation. If we omit the conditional in the loop body
and instead just increase i by 2 in every iteration, we are no longer able to determine that only
every second index gets accessed because the invariant we get from the polyhedra analysis will
not reflect this fact.
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1 function p(q: Int): Perm
2 ensures ((q != 0 || result == write) && (q == 0 || result == none) || q

<= 8 && q >= -1 && result == none || q <= 9 && q >= 0 && result ==
write) && ((q != 0 || result >= write) && (q == 0 || result >= none) &&
(q > 9 || q < 0 || result >= write) && (q > 8 || q < -1 || result >=
none))

3
4
5 method secondIndex(arr: Array) returns (res: Int)
6 requires (forall q: Int :: acc(loc(arr, q).val, p(q)))
7 {
8 var i: Int
9 i := 0

10 while (i < 10)
11 invariant (forall q: Int :: acc(loc(arr, q).val, p(q)))
12 invariant i >= 0
13 {
14 loc(arr, i).val := i
15 i := i + 2
16 }
17 }

Listing 4.11: An array traversal which performs just one write to every even index.
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In this thesis, we addressed many aspects of the automatic inference of quantified permissions
for general programs. However, the presented approach is far from being a complete and final
specification inference. There is room for improvement and we will discuss the most important
points in this section.

5.1 Missing Implementations

There are some Viper language features we currently do not handle. Implementing support
for those constructs would further generalize our approach and extend the range of different
programs we can handle.

5.1.1 Quantified Inhales or Exhales

In Viper, it is possible to inhale from or exhale to multiple heap locations in one statement
using forall in inhale or exhale statements as in Listing 5.1. We do not currently handle
statements of this form. However, [24] provided support for these constructs and implementing
support for quantified inhales and exhales in our algorithm would not require much effort as
well.

1 method quantifiedExhale(arr: Array)
2 requires forall i: Int :: 0 <= i && i <= 10 ==> acc(loc(arr, i).val)
3 {
4 exhale forall i: Int :: 0 <= i && i <= 10 ==> acc(loc(arr, i).val)
5 }

Listing 5.1: A method containing a quantified exhale.

5.1.2 Gaining and Losing Permissions In Loops

As discussed in Section 3.9.2, our algorithm cannot track changing permissions in loops. A
question that might arise is whether programs that gain or lose permissions over loop iterations
could not be as well modeled by quantified inhales or exhales (cf. Section 5.1.1). But of course,
general programs may change the permission amount during loops. Therefore, it would be
desirable to track those changing permissions in the future.
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5.1.3 Tracking changing Domain-typed Expressions

The handling of changing domain values would further generalize our algorithm. Domain
values such as arrays can not occur as receivers in field accesses directly but indirectly through
field accesses that have function as a receiver, such as the loc function. In our examples, we
always assume that domain-typed values do not change their value throughout the program.
However, we expect implementing support for the tracking of changing domain expressions to
be straightforward as they can be handled similarly to references. We would mainly have to
add support for receiver sets to track domain values in addition to references.

5.2 More precise Sets

Due to lack of time, we only implemented a very basic and rather imprecise widening operator
for the abstract interpretation over receiver sets (cf. Section 3.3.2). This in turn leads to
imprecision in the generated sets. We have seen in Chapter 4 that for many interesting examples,
this imprecision does not have a big impact. However, the goal is to be as precise as possible
which is why devising a more precise widening operator is definitively worth investigating.
Another fact that reduces precision of our sets is that we only include conditions into our receiver
set definitions that talk about null (cf. Section 3.6.3). Listing 5.2 shows an example where
the loop condition contains a second conjunct besides x != null, namely x.val > 5. For
this example, we could include this condition as well into the specification of s_x. However,
this is not the case in general when the condition depends on a changing variable. It could
be worth investigating further under which circumstances we are allowed to incorporate such
conditions into the specifications. Developing a sound rule which incorporates conditions into
specifications could have a big impact on precision.

1 method unhandledCondition(head: Ref, rdAmount: Perm, s_x: Set[Ref])
2 requires none < rdAmount && rdAmount < write
3 requires head != null ==> head in s_x
4 requires forall r: Ref :: acc(r.next, (r in s_x) ? rdAmount : none)
5 requires (forall r: Ref :: { (r in s_x),r.next } (r in s_x) && r != null

&& perm(r.next) > none && r.next != null ==> (r.next in s_x))
6 {
7 var x: Ref := head
8 while (x != null && x.val > 5)
9 // Invariant omitted here

10 {
11 x := x.next
12 }
13 }

Listing 5.2: A loop with a condition we currently do not handle. The inferred contract will
therefore be imprecise.
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5.3 Improve Precision of Integer Analysis

There are many ways how to improve the precision of the numerical analysis. An interesting
approach could be to come up with a different, even more precise abstract domain than the
polyhedra abstract domain, although we have to find a good balance between precision and a
longer runtime of the algorithm. Another possible direction worth investigating could be the
combination of a numerical analysis with a heap analysis to also track numerical information on
the heap. There is already research about corresponding approaches [11].

5.4 Nested Quantifiers

Currently, Viper does not support quantification over more than one variable if the quantified
assertion contains the acc predicate. This in turn means that we cannot handle functions
with multiple changing integer-typed arguments (cf. Section 3.9.3). As soon as Viper provides
support for nested quantifiers in quantified permissions, the algorithm can be further generalized
to support functions with arbitrarily many arguments.

5.5 Inferring Postconditions

As discussed in Section 3.7, inferring postconditions would help to increase precision. An
under-approximating abstract interpretation would be beneficial to infer postconditions for loops.
Concepts for an under-approximating numerical backward analysis by abstract interpretation
have already been presented in recent work [16]. However, to the best of our knowledge, there
does not yet exist a similar approach for a forward analysis. Future research in this direction
could pave the way for a sound and precise forward analysis to infer postconditions.

5.6 Inter-procedural Analysis

General programs contain methods that call other methods. In our algorithm, we analyzed
methods isolated from each other and we did not allow method calls. In other words, we
conducted a purely intra-procedural analysis. It would be interesting to extend the algorithm
by also analyzing call sites. We expect the task of matching preconditions of a callee from the
call site to be rather tricky, considering the fact that we introduce helper sets that would have
to be specified accordingly in the caller. However, this would increase usability of the overall
approach a lot. Clearly, this extension is strongly connected to the inference of postconditions
(cf. Section 5.5) as we would also have to be able to return permissions from the callee.

5.7 Reducing Formula Expansion

In our implementation of quantifier elimination, there are mainly two sources of formula expan-
sion. First, the quantifier elimination procedure itself, in particular step 4.2 (cf. Section 3.5.5)
where new disjuncts are produced depending on δ and the B set which in turn are both deter-
mined by the integers occurring in the formula. This can be avoided at least for a certain subset
of formulas as described in [6]. The second source is our procedure of rewriting permission
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5 Future Work

trees to the actual permission expression (cf. Section 3.5.4). Recall the resulting formula which
expresses a permission tree t was

∃v1, ..., vn.

INV(v1, ..., vn) ∧
∧

(c,p)∈rewriteq(t)

(
c =⇒ p(q) = p

)∧
∀v1, ..., vn.

INV(v1, ..., vn) =⇒
∧

(c,p)∈rewriteq(t)

(
c =⇒ p(q) ≥ p

) (5.1)

Note that in the first conjunct, p(q) only occurs in equalities while in the second conjunct,
p(q) only occurs in inequalities. Thus, we can interpret the first conjunct as a specification
of a concrete permission amount of p(q) and the second conjunct as giving lower bounds for
p(q), i.e., expressing the least value of p(q). As we are only interested in inferring at least the
permissions that are required to successfully verify a program, we could just omit the first
conjunct. This reduces the complexity of the resulting formula significantly. On the other side,
we lose precision because then we do not have any information that p(q) actually is one of the
permission amounts. Here, we have to balance between precision and complexity of inferred
contracts. Finally, more advanced formula simplifications could be included into the algorithm
which would further reduce the effect of formula expansion after the quantifier elimination (cf.
Section 3.5.7).
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6 Conclusion

In this work, we presented an algorithm that can infer permissions for general Viper programs
using a backward program analysis. We proposed an approach that extended and generalized
two pre-existing separate algorithms to a unified framework which can handle graph-like data
structures and arrays likewise. In our approach, permissions are collected using weakest
precondition rules, and possible receivers of field accesses are over-approximated using abstract
interpretation. A sound rule for propagating permissions over heap modifications has been
presented. Furthermore, we explained in detail how to soundly incorporate the results of a
numerical analysis into our algorithm. We also described basic ideas for the development of
a forward analysis to infer postconditions. This turned out to be more delicate than initially
expected and we therefore did not further develop this approach in detail.
Our evaluation on real programs in Chapter 4 shows that our algorithm is indeed able to infer
specifications soundly and precisely for many interesting examples. Thanks to our various
built-in simplifications, the generated contracts can be made conciser and more readable to
some extent.
On the other side, we also showed that there are still a lot of opportunities for further en-
hancements. The presented approach could in future be extended to handle even more general
programs such as programs containing method calls or quantified inhales and exhales. More
advanced optimizations, especially with respect to quantifier elimination, could help to reduce
the complexity of the inferred contracts. Developing a more precise widening operator could
help to improve overall precision of the algorithm.
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61

https://people.mpi-sws.org/~piskac/teaching/decpro-ws12/slides/quantifierElimination.pdf
https://people.mpi-sws.org/~piskac/teaching/decpro-ws12/slides/quantifierElimination.pdf


A Appendix

A.1 Implementation Overview

In the following we will give a brief overview over the most important classes in our algorithm.
For each class we shortly describe what it does and to which part of the algorithm it corresponds.

Context
Various helper functions and storing context of current program, methods, variables etc.

Main
Main class. Contains algorithm work-flow as well as the logic for program extension. This is
where the conversion from our inference results to Viper specifications takes place.

NumericalAnalysis
Contains everything related to the numerical analysis in the polyhedra abstract domain (cf.
Section 3.5.1).

PermissionTree
Represents permission trees and contains the implementation of the nodes and leaves described
in Section 3.2.1

QuantifiedPermissionsParameters
An object defining various boolean flags which influence our analysis as well as the types for
the numerical analysis. At the moment, only polyhedra is functional but other integer abstract
domains can be easily plugged in.

QuantifiedPermissionsState
Represents the abstract state used for the over-approximation of receiver sets (cf. Section 3.3).

QuantifierElimination
Encapsulates the quantifier elimination algorithm, one method for each step

SetDescription
Represents the concept of receiver description sets and contains specializations for both reference
description sets as well as integer sets.

Utils
Various utils and helper functions that do not fit anywhere else such as expression simplifications
(cf. Section 3.8) and the injectivity check (cf. Section 3.5.2).
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A Appendix

A.2 Specification of Permission Functions

A.2.1 Array Maximum

1 function p(q: Int, lenA: Int, rdAmount: Perm): Perm
2 ensures (lenA >= 3 + q && q >= -1 && result == none || lenA >= 2 + q && q

>= 0 && result == rdAmount || lenA >= 2 && ((q == 0 || q == 1 ||
result == none) && (q != 0 || q != 1 || result == rdAmount) && (q != 0
|| q == 1 || result == rdAmount) && (q == 1 || q == 0 || result == none
) && (q != 1 || q != 0 || result == rdAmount) && (q != 1 || q == 0 ||
result == rdAmount)) || lenA >= 1 + q && q >= 1 && result == rdAmount
|| lenA >= 2 + q && q >= 0 && result == rdAmount || q >= 1 && lenA >= 1
+ q && ((q != 0 || result == rdAmount) && (q == 0 || result ==
rdAmount)) || (q >= 0 && lenA >= 2 + q && ((q == 0 || result == none)
&& (q != 0 || result == rdAmount) && (q == 0 || result == none)) ||
lenA >= 2 + q && q >= 0 && result == rdAmount)) && ((lenA < 3 + q || q
< -1 || result >= none) && (lenA < 2 + q || q < 0 || result >= rdAmount
) && (lenA < 2 || (q == 0 || q == 1 || result >= none) && (q != 0 || q
!= 1 || result >= rdAmount) && (q != 0 || q == 1 || result >= rdAmount)
&& (q == 1 || q == 0 || result >= none) && (q != 1 || q != 0 || result
>= rdAmount) && (q != 1 || q == 0 || result >= rdAmount)) && (lenA < 1
+ q || q < 1 || result >= rdAmount) && (lenA < 2 + q || q < 0 ||
result >= rdAmount) && ((q < 0 || lenA < 2 + q || (q == 0 || result >=
none) && (q != 0 || result >= rdAmount) && (q == 0 || result >= none))
&& (lenA < 2 + q || q < 0 || result >= rdAmount)) && (q < 1 || lenA < 1
+ q || (q != 0 || result >= rdAmount) && (q == 0 || result >= rdAmount
)))

Listing A.1: The specification of the permission function for Listing 4.7.
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A Appendix

A.2.2 Inhale, Write and Exhale in a Loop

1 function p(q: Int): Perm
2 ensures ((q != 0 || (q != 0 || q == 0) || result == none) && (q != 0 ||

result == none) && (q != 0 || q == 0 || result == none) && (q != 0 || (
q != 0 || q == 0) || result == none) && (q != 0 || result == none) && (
q == 0 || result == none) && (q == 0 || (q != 0 || q == 0) || result ==
write) && (q == 0 || q != 0 || result == write) && (q == 0 || (q != 0
|| q == 0) || result == write) && (q == 0 || q != 0 || result == write)
|| q <= 8 && q >= -1 && result == none || q <= 9 && q >= 0 && result
== none) && ((q != 0 || (q != 0 || q == 0) || result >= none) && (q !=
0 || result >= none) && (q != 0 || q == 0 || result >= none) && (q != 0
|| (q != 0 || q == 0) || result >= none) && (q != 0 || result >= none)
&& (q == 0 || result >= none) && (q == 0 || (q != 0 || q == 0) ||
result >= write) && (q == 0 || q != 0 || result >= write) && (q == 0 ||
(q != 0 || q == 0) || result >= write) && (q == 0 || q != 0 || result
>= write) && (q > 9 || q < 0 || result >= none) && (q > 8 || q < -1 ||
result >= none))

Listing A.2: The specification of the permission function for Listing 4.9
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