IDE Support for a Golang Verifier

Bachelor’s Thesis Project Description

Silas Walker
Supervised by Felix Wolf & Linard Arquint
under Prof. Dr. Peter Miiller
Department of Computer Science, ETH Zurich
Zurich, Switzerland

March 26, 2020

1 Introduction

Go [2] is a compiled and statically typed programming language targeting
high-performance networking and multiprocessing. It is used for web appli-
cations including Netflix, Uber, and Cloudflare [5, 3} [1].

Bugs in such systems lead to major consequences such as system crashes or
corruption of data. The deductive verification tool Gobra was developed by
the Programming Methodology Group at ETH Zurich to prove the absence
of bugs. In deductive verification, a program is annotated with contracts
specifying the functional behavior, and proof guiding annotations. Figure
shows an example of a Viper [6] contract formulated as precondition (requires
0 < n) and postcondition (ensures res <). These annotated programs are
verified regarding functional correctness, meaning that if the precondition of
a function holds before its invocation, then the postcondition holds after-
wards.

In further detail, Gobra translates Go programs with contracts and anno-
tations into the Viper intermediate verification language, which in turn is
verified by the Viper backend. In case of an unsuccessful verification at-
tempt, the part of the specification which could not be verified is reported.

Gobra is a new verification tool, which is actively under development.
Currently, Gobra is supported as a command-line tool without IDE integra-
tion. As explained in the motivation following afterwards, the lack of an

IDE Support for a Golang Verifier Silas WALKER

IDE integration results in limited productivity whilst working with the tool.
The main focus of this project is to develop a plugin for Microsoft Visual
Studio Code [10] allowing the user to verify code with Gobra within the IDE
directly.

func(n:)
@ <n
res =9

{
res := 42 % n;

}

Figure 1: Function with contract in Viper

2 Motivation

Currently, the Gobra verifier can be invoked using the command-line only.
This leads to the following workflow for verifying a Go program: Firstly, the
annotations and contracts are added to the Go program. Afterwards, the
command-line tool is separately run every time the programmer wants to
verify the program. If the verification does not succeed, the command-line
displays the verification error messages containing the identified reason and
location. In particular, those errors have to be manually located in the pro-
gram text. As an additional consequence of this workflow, Gobra lacks the
ability to cache any previous verification results.

As opposed to the aforementioned verification workflow, verifying a Go
program using IDE integration will be as follows: Gobra is run as a server
reacting to verification requests. As before, the specification has to be added
to the Go program. An IDE plugin creates verification requests at suitable
times and sends them to the server, which in turn verifies the annotated
Go programs using Gobra. Afterwards, the results are returned to the IDE
plugin, which either displays a success message or highlights the errors in the
Gobra program. The error highlighting will be done similarly to Viper IDE
[9], as shown in line 3 of Figure [1|for the postcondition (ensures res < 0). In
addition to the programmer not having to manually locate the verification
errors, the Gobra Server can be extended to support load balancing and
caching of verification results. We estimate that caching can speed up the
verification in various scenarios, especially when only minor code changes are
done in between verification runs.

IDE Support for a Golang Verifier Silas WALKER

3

3.1

Approach

Core Goals

. Basic Gobra IDE Integration:

The first goal is to implement a basic IDE integration for Gobra allow-
ing the user to invoke a command in VS Code in order to verify the
currently opened Gobra file. The verification errors are displayed in
a similar fashion to the Viper plugin. The integration consists of the
following two parts:

1.1. Gobra running as part of a server written in Scala [7], accepting
verification requests, invoking the current Gobra implementation,
and returning the verification results.

1.2. VS Code plugin, implemented in TypeScript [8], supporting the
core verification features mentioned above and communicating
with the server over the Language Server Protocol (LSP) [4]. The
LSP is a protocol standardizing the communication between an
IDE and a language server providing features for a language.

. Basic caching and load balancing at the Viper level:

The basic Gobra implementation communicates with a Viper backend
verifier via a standardized Scala interface, the verifier interface. This
interface defines as its main functionality a method taking an AST as
input and returning the verification results as output. Neither Gobra
nor the currently used backend verifier support any caching or load bal-
ancing, thus the basic implementation of the Gobra Server described
in the first core goal lacks the support for these features as well. Viper
Server, which is part of the IDE integration for Viper, already im-
plements caching and load balancing. Gobra Server can benefit from
adopting those features by using Viper Server as a backend verifier.

This requires modifying Viper Server because currently, Viper Server
accepts verification requests via HT'TP, specifying paths to files only.
We will isolate the caching and load balancing features of Viper Server
from the HTTP server components. In addition to accepting file paths,
the server should be extended to accept a Viper AST by implementing
the verifier interface. Then, Gobra can use Viper Server as a backend
verifier, directly reusing Viper Server’s caching and load balancing.

IDE Support for a Golang Verifier Silas WALKER

3.

4.

3.2

Advanced IDE Features:

In order to facilitate the development and verification of Go programs
using the Gobra plugin, features improving the user experience are
added to the basic IDE integration. Many features can potentially
improve the user experience. We will evaluate potential features, pri-
oritize them by their productivity gain, and add the most important
features. The current list of possible extension features is:

(1) Automatic Gobra Plugin Installation
In order to make the plugin more user-friendly, the installation of
the plugin and all its dependencies should be possible through the
VS Code Extension manager.

(2) Syntax Highlighting
Support syntax highlighting for Gobra.

(3) Goifying and Gobrafying

Since Gobra programs include annotations, tools for normal Go
programs such as a VS Code plugin for Go, and the Go compiler
cannot be used. To tackle this issue, Gobra programs could be
converted to Go programs by commenting out annotations and
vice versa putting annotations back again. Recovering annota-
tions should be robust to changes in the Go code. Additionally,
the commented out annotations should be reusable by a potential
future Gobra frontend implemented in Go. The transformation
between Gobra and Go programs enables verifying Go files with
commented out annotations. This functionality could be added
to an explicit Go plugin.

Evaluation:

The VS Code plugin for Gobra will be evaluated using different eval-
uation measures. Two possible measures could be performance and
scalability regarding verification project size.

Extension Goals

. Cross-Language Feature

Gobra internally translates annotated Go programs to different transla-
tion stages, in particular the final Viper code. During the development
of Gobra it would be of great use to have a feature in the IDE which
displays the output of the translation stages for a specific Gobra file or
function.

IDE Support for a Golang Verifier Silas WALKER

2. Verification Process Display
Use Visual Studio Code’s status bar to display information about the
current verification process. For example, a progress bar as seen in the
Viper IDE or a summary of the verification results.

3. Performance Improvement
To handle large projects with Gobra the performance of the plugin
is crucial. As described previously, load balancing and caching will
be adopted from the Viper level by using parts of Viper Server. For
further improvements in performance, one can attempt to implement
those concepts at the Gobra level as well.

4. Code Completion
Support code completion for annotations introduced by Gobra.

5. Code Navigation
Improve productivity by supporting code navigation in Visual Studio
Code. Code navigation includes features such as Go-to-Implementation,
and Go-to-Definition.

IDE Support for a Golang Verifier Silas WALKER

References

[1] Go at CloudFlare. URL: https://blog. cloudflare. com/go-at-
cloudflare/ (visited on Mar. 11, 2020).

[2] Go Programming Language. URL: https://golang . org (visited on
Mar. 4, 2020).

3] How We Built Uber Engineering’s Highest Query per Second Service
Using Go. URL: https://eng.uber.com/go-geofence-highest-
query-per-second-service/ (visited on Mar. 11, 2020).

[4] Language Server Protocol. URL: https ://microsoft . github. io/
language-server-protocol/ (visited on Mar. 9, 2020).

[5] Netflix Chaosmonkey. URL: https://github.com/netflix/chaosmonkey
(visited on Mar. 11, 2020).

6] Malte Schwerhoff Peter Miiller and Alexander J. Summers. “Viper:
A Verification Infrastructure for Permission-Based Reasoning”. In: In-
ternational Conference on Verification, Model Checking, and Abstract
Interpretation. 2016, pp. 41-62.

(7] Scala Programming Language. URL: https://scala-lang.org/ (vis-
ited on Mar. 4, 2020).

[8] TypeScript Programming Language. URL: https://www.typescriptlang.
org/ (visited on Mar. 4, 2020).

9] Viper Project. URL: https://bitbucket.org/viperproject/viper-
ide/src/default/| (visited on Mar. 4, 2020).

[10] Visual Studio Code. URL: https://code.visualstudio.com (visited

on Mar. 4, 2020).

https://blog.cloudflare.com/go-at-cloudflare/
https://blog.cloudflare.com/go-at-cloudflare/
https://golang.org
https://eng.uber.com/go-geofence-highest-query-per-second-service/
https://eng.uber.com/go-geofence-highest-query-per-second-service/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://github.com/netflix/chaosmonkey
https://scala-lang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://bitbucket.org/viperproject/viper-ide/src/default/
https://bitbucket.org/viperproject/viper-ide/src/default/
https://code.visualstudio.com

	Introduction
	Motivation
	Approach
	Core Goals
	Extension Goals

