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I. INTRODUCTION AND BACKGROUND

Program transformations are a common technique to im-
prove program properties such as speed and readability. A
program transformation takes a program represented by an
AST (abstract syntax tree) and applies a function to transform
it into another AST. Examples for widely used transformations
are: constant folding, common sub-expression elimination and
copy propagation. Details about such transformations can be
found in [2]

The Chair of Programming Methodology at ETH Zurich
wants to use such transformations for the Viper infrastructure
[1].
The Viper infrastructure is designed for modular verification
of high-level programming languages. Verification is achieved
in two steps:

• A front-end encodes a high-level program into the
Viper intermediate language

• A verifier verifies the Viper intermediate language
(back-end)

II. APPLICATIONS

A. Desugaring

Program transformations can be used for desugaring. This
means that we can offer a large set of language features for
the front-end, that is then transformed into a smaller set of
language features. Therefore, the back-ends only need to deal
with a reduced language.

var i:Int := 0

while (i < 5)
invariant i <= 5

{
i := i + 1

}

var i:Int := 0

assert i <= 5
if(!(i < 5))
goto skiploop

label whileloop
i := i + 1
assert i <= 5
if(i < 5)
goto whileloop

label skiploop

Fig. 1. Desugaring a while loop

Figure 1 provides an example and shows, how one would
express a loop by using if and goto.
The assertions on the right side correspond to the invariant

of the while loop and represent checks on entry and after the
execution of the loop body.

B. Property checks

Checks that the verifier had to do itself can be encoded
explicitly into the code via a transformation, making it easier
for the back-end programmers because they don’t need to
program those checks into each individual back-end anymore.

Examples of such checks are well-definedness checks such
as recognizing division by 0 (example in Figure 2) and
checks that detect inconsistent states during verification (smoke
checks).

var i:Int := 0

assert 5 >= 10 / i

var i:Int := 0

assert i != 0 &&
5 >= 10 / i

Fig. 2. A well-definedness check

C. Tree manipulation

We want to use the transformation framework also for
AST transformations that currently happen in the back-ends
of Viper. The complexity of such transformations could range
from simple examples such as renaming variables, to more
complex examples, such as the following:

∀i : e1(i) ‖ e2(j)→ [∗i ? e1(i) : e2(j), e1(i) ‖ e2(j)]

Fig. 3.

The left-hand side of the arrow is the expression we
want to replace with the right-hand side. There we see a
pair of expressions separated by a comma inside square
brackets [exp1, exp2]. This forms a composed expression
where exp1 is used inside assumptions and exp2 is used in
proof obligations.
The first expression contains a ∗ operation as the condition of
a ternary operator. The ∗ denotes a non-deterministic choice,
which has to depend on all variables that are quantified in
the expressions we chose from. Therefore, the ∗ in Figure 3
depends on i but not on , which is a local variable.

If we want to replace every disjunction with the cor-
responding right-hand side, we need a way to match on
every disjunction we encounter, when traversing the AST. We



also have to know which variables used in disjunctions are
quantified and which are not because the ∗ operator needs to
depend on the quantified variables. This means that we have
to provide a context for the transformation rule in which we
store the currently quantified variables.
For such tasks we want an efficient, yet expressive way
of specifying transformations. A sketch of the specification
language we propose is provided in Figure 4

(∀i)∗ >> e1(i) ‖ e2(j)→
[∗ (context) ? e1(i) : e2(j), e1(i) ‖ e2(j)]

Fig. 4. Sketch of a specification language

Figure 4 illustrates in which direction we want to go with
the encoding. The (∀i)∗ describes the context which is then
used in the right-hand side of the transformation. It is written
in the style of a regular expression and its intuitive semantics
is that we collect every quantified variable on the way to the
disjunction.
The disjunction e1(i) ‖ e2(j) is the expression we match on.
This will be transformed with our rule.
On the right side of the arrow we have the expression we want,
as described in Figure 3. Note that we can now use the context
to get information about the variables that are quantified and
provide them as arguments to the ∗ operator.
Further details about the transformation encoding can be found
in section IV.

III. ERROR REPORTING

A transformed program may look completely different
from the original program. The back-end uses the transformed
program for verification and every error message emitted by
the back-end refers to the transformed program. These error
messages could report problems that the user does not see,
because the program was changed by the transformation.
Therefore we need to find a way to map the error back into
the original program context.

A small example can be seen in Figure 5. The transformed
program is obtained by applying a transformation that performs
constant folding. The corresponding error messages are shown
in Figure 6.

assert 10 <= 5 assert false

Fig. 5. Constant folding

assert might fail.
10 <= 5 might fail.

assert might fail.
false might fail.

Fig. 6. Error messages

IV. TRANSFORMATION ENCODING

Our transformation encoding should on the one hand be
simple and easy to use but on the other hand be very expressive
such that complex transformations can be encoded as well.
Therefore, we decided that our encoding should have two
layers.

The first layer is an embedded DSL (domain specific
language) that allows the user to use arbitrary code of the
host language in the definition of the transformations to make
complex transformation possible.
The advantage of an embedded DSL over an external DSL is
that the embedded DSL can use the type system, IDE support
and other conveniences that the host language brings.
An external DSL, however, provides more flexibility regarding
the syntax as it is not bound to the host language. In our case
we value functionality over flexibility and we therefore chose
the embedded DSL.

The second layer will provide in particular a more user-
friendly syntax with regular expressions on trees for more
convenient matching that will then be translated and expressed
via the first layer.

V. CORE GOALS

During the course of this master’s thesis we want to achieve
the following goals:

• Collect ideas for the embedded DSL and regular
expressions on trees from projects such as tregex/tsur-
geon [3] as well as the master’s thesis of Leo Büttiker
[4]

• Collect potential use-cases

• Develop a mechanism to map error messages back into
the original program context

• Design and implement a convenient embedded DSL
for AST transformations

• Design and implement the second layer language for
a more user-friendly syntax

• Evaluation of the framework by providing a core set
of useful transformations ready to use

VI. EXTENDED GOALS

After the core goals have been achieved, a subset of the
following extended tasks can be tackled:

• Implement support for the Viper CFG

• Implement support for program transformations on
general ASTs or CFGs

• IDE support for applying selected transformations
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