
Development of a data collection
tool for the evaluation of a

deductive verifier

Bachelor Thesis

Simon Hostettler

February 20, 2024

Advisors: Prof. Dr. Peter Müller, Dionysios Spiliopoulos

Department of Computer Science, ETH Zürich

Acknowledgements

Foremost, I express my gratitude to my supervisor Dionysios Spiliopoulos
for his guidance and continued support throughout this thesis.

Furthermore, I would also like to thank my friends and family for their
support during my bachelor’s studies.

i

Abstract

Viper is a deductive program verification infrastructure and interme-
diate language. There are a variety of frontends using Viper to verify
programs in different programming languages. Its verification perfor-
mance can vary strongly depending on the programs it has to ver-
ify. The reduction of verification times is especially important for large
projects.

In this thesis, we develop a data collection tool for the Viper infrastruc-
ture and frontends with the goal of building a dataset of user-written
programs, their metadata, and verification benchmarks. This dataset
will facilitate future profiling of the tool stack to identify performance
bottlenecks. The tool consists of a database, a web server with a com-
plementary frontend to access the data, and a processing algorithm
that evaluates programs and filters submissions based on a program
similarity algorithm we develop. To collect the data, we expand the
frontends and verifiers of the tool stack with the capability to submit
programs upon verification.

ii

Contents

Contents iii

1 Introduction 1
1.1 Outline . 2

2 Background 3
2.1 Program Verification . 3
2.2 Viper Tool Stack . 4

2.2.1 Viper Intermediate Language 5
2.2.2 Silicon . 8
2.2.3 Carbon . 9
2.2.4 Frontends . 9

2.3 Source Code Similarity Detection 10

3 Development 13
3.1 Database Design . 13

3.1.1 Database Interaction in Scala 14
3.1.2 Schema Definition . 14

3.2 Duplicate Data Reduction . 17
3.2.1 Similarity Measurement 17
3.2.2 Fingerprinting Implementation 17

3.3 Features and Benchmarking . 22
3.4 Submission Processing . 23

3.4.1 Pipeline Overview . 23
3.5 Query Frontend . 26
3.6 Frontend Modifications . 27
3.7 Extensions . 28

3.7.1 Pattern Searching . 28
3.7.2 Version Benchmarking 29

iii

Contents

4 Evaluation 31
4.1 Performance Measurements . 31

4.1.1 Fingerprinting Performance 31
4.1.2 Processing Performance 33
4.1.3 Pattern Searching Performance 34

4.2 Similarity Detection Testing . 35

5 Conclusion 39
5.1 Future Work . 40

Bibliography 43

iv

Chapter 1

Introduction

Program verification, the task of proving a program’s correctness, has be-
come increasingly important but also more challenging due to the growing
complexity of software projects. Program verifiers, such as Viper[1], de-
veloped by the Programming Methodology group at ETH Zurich, are tools
designed to automate large parts of the verification process. More precisely,
Viper is a deductive verification infrastructure and intermediate language
that has realized adoption in both academic research and practical applica-
tions globally. It is based on two backends, one using verification condition
generation through an encoding to Boogie[2], and the other symbolic ex-
ecution, both of which depend on an SMT solver. There are a variety of
frontends that facilitate the compilation of annotated source code to Viper
code. For large-scale projects like VerifiedSCION[3], reliable verification per-
formance is essential. However due to the complexity and the various levels
of abstractions of this tool stack, its performance can vary strongly, and
finding bottlenecks can be challenging.

To get a proper understanding of these sources, a large dataset of programs
to profile the various stages of the infrastructure would be helpful. This
thesis addresses the creation of such a dataset through the development of
a data collection tool for the Viper infrastructure. This tool can be used to
collect and evaluate programs written by consenting users and is made up
of two core parts.

The first is a backend made up of three parts. First, a database to store the
programs, metadata and generated results. Second, a web server to query
information about the stored programs and submit programs, and third a
processing algorithm which verifies and benchmarks submitted programs.
To reduce data duplication, we developed a similarity algorithm based on
source code similarity to compare and filter submissions.

The second is a small tool implemented in the different frontends and veri-

1

1. Introduction

fiers which enables users to submit their programs.

Additionally, we also developed a lightweight query frontend as a comple-
ment to the web server to facilitate future evaluation of our data. It contains
methods to communicate with our web server and implementations of our
common data types.

1.1 Outline

Chapter 2 gives an introduction to the theoretical concepts used during this
thesis, by giving an overview of software verification, the Viper verification
infrastructure and intermediate language and the concept of source code
similarity detection.

Chapter 3 delves into the development of the collection tool and explains
the choices made during this process, covering everything from the design
of the database and the development of our code similarity algorithm to the
modifications made to the frontends.

In chapter 4 we evaluate the performance of our tool to demonstrate its capa-
bility in handling real-life workloads. Additionally, we present the approach
we used to define the behavior of the similarity algorithm.

In chapter 5 we conclude the thesis and provide insights into potential future
applications.

2

Chapter 2

Background

In this chapter, we will introduce theoretical and technical concepts used
in this thesis. First, we will give an overview of software verification tech-
niques, followed by an introduction to the Viper verification infrastructure.
Lastly, we will explore current research into source code similarity detection.

2.1 Program Verification

Proving the correctness and security of programs has become more relevant
than ever, with ever more complex software and large concurrent comput-
ing infrastructures. Program Verification is the subject of proving the cor-
rectness of programs given certain specifications. Generally, there are two
types of verification - dynamic and static. Dynamic verification is performed
by executing the software and trying to induce unwanted behavior, usually
known as software testing. Static verification or analysis on the other hand
tries to prove that a program has certain properties according to mathemati-
cal models. Analysis often results in either an under or over-approximation
of programs that fulfill a property, i.e. either only no false positives or no
false negatives can be guaranteed. There are multiple techniques commonly
used in static analysis.

Model checking[4] is a technique involving exhaustively checking a mathe-
matical model, either finite or infinite. Abstract interpretation is a common
model checking technique, in which the state is approximated by ordered
sets, and statements are used to transform the state with monotonic func-
tions. Approximations are however often too imprecise or the state search
too expensive.

Deductive Verification[5] is another commonly used technique. It consists of
the generation of proof obligations which imply the correctness of a pro-
gram in the given model and a search for proof of these obligations. Deduc-

3

2. Background

tive verifiers employ a variety of proof search strategies and often depend
on either interactive theorem provers or automatic solvers like satisfiability
modulo theories (SMT) solvers. The Viper infrastructure is based on deduc-
tive verification.

SMT solvers[6] are tools designed to solve satisfiability modulo theories prob-
lem, determining whether a formula in first-order logic is satisfiable over
some given theories such as arithmetic, arrays and bit vectors. As a gener-
alization of the boolean satisfiability problem, this task is also NP-complete.
The approach many solvers take is therefore to prune the search space as
efficiently as possible by employing various heuristics and learning tech-
niques. As such these procedures are rather variable in their efficiency of
finding a solution. Users often need to make informed decisions about the
approach based on the specific problems they are attempting to solve.

2.2 Viper Tool Stack

Figure 2.1: Viper tool stack, logo sourced from the official Viper homepage[7]

Viper[1] is a verification infrastructure natively supporting permission log-
ics like implicit dynamic frames. This can be used to reason about heap-
manipulating programs and thread interactions. It is intended for the de-
velopment of program verifiers and prototyping of verification techniques.
Viper is also the name of the provided intermediate language, which can

4

2.2. Viper Tool Stack

be used by the frontends. Verification is achieved through two backends:
Silicon[8], based on symbolic execution, and Carbon[9], based on verifica-
tion condition generation. Both backends ultimately depend on Z3[6], an
SMT solver developed by Microsoft Research.

2.2.1 Viper Intermediate Language

The Viper language is sequential, object-based and imperative[10]. Even
though originally developed as an intermediate language, it is also useful
for manual encoding and verification of verification problems, due to its
human-readability and high-level features.

Viper natively supports simple types such as Integers, Booleans and Refer-
ences, but also more complex data types such as Sequences, Sets and Maps,
and the usual unary and binary operators for these types. It also allows for
the definition of custom types.

Permission logic upon which Viper operates is based on implicit dynamic
frames, which is inspired by separation logic[11]. Separation logic itself is
an extension of Hoare logic and facilitates reasoning about the manipulation
of pointer data structures, concurrency, and ownership. Separation logic op-
erates on states consisting of stores and heaps. It can however not reason
about heap-dependent expressions in assertions, a problem which implicit
dynamic frames solve[12]. Compliance with these specifications can be re-
duced to first-order logic.

To reason about permission logic Viper uses the concept of permissions.
Permissions control access to the program heap, which simplifies framing,
i.e. proving that a heap modification does not violate an assertion or arguing
about concurrent heap accesses. They are defined by access predicates like
acc(x.f), which gives exclusive read and write access of the field f of the
object x to the current method. These permissions can also be fractional
and defined by a variable, i.e. one can hold a part of a permission p. For
0 < p < 1 this gives the holder read permissions only, for p = 1 read and
write permissions and for p = 0 no permissions. Permissions can be held
by method or loop executions. Accessing a heap location requires holding
the permission for this location. Permissions can be transferred between
executions using pre- and postconditions. Acquiring a permission is also
called inhaling and releasing exhaling.

A Viper program is generally made up of six top-level declaration types[10],
which we will shortly explain here. Listing 1 shows the basic syntax for
these declarations.

Fields represent a heap location and are global, each object in Viper has the
same fields.

5

2. Background

Methods are an abstraction over a sequence of statements. The method body
is opaque to callers, to the outside methods are exclusively defined by their
signature, preconditions and postconditions. Methods can have side effects,
i.e. modify the program state. To call a method, its precondition has to be
fulfilled and results in the caller obtaining the assertions of the postcondi-
tions.

Functions are an abstraction over a sequence of expressions. Function calls
result in a check of the precondition, then the result value is set to the expres-
sion in the function body, then its post-conditions are assumed. Functions
cannot have any side effects.

Predicates are an abstraction over assertions. They are often used to specify
recursive data structures. Predicate bodies are assertions, which are however
not automatically inlined. Calls to unfold and fold have to be made to
replace the predicate with its assertions and vice versa.

Domains are used to define new types and mathematical systems. They
contain abstract function and axiom definitions, which can be used to derive
assertions.

Macros are used to reduce code duplication. Before verification, they are
syntactically inlined into the program similar to C-style macros. A key dif-
ference however is that Viper macros must have a well-typed body.

Higher-level Features

In addition to these basic features, Viper also supports more advanced high-
level language features to increase its usefulness as an intermediate lan-
guage. This functionality can however also lead to performance degrada-
tion, which is not easy to pinpoint, as the backends can decide to use more
costly verification techniques to support these features. Here we introduce
some of these features, which we took a closer look at in our development.

Recursive predicates are a common way in separation logic to define recursive
data structures such as lists and trees. Like permissions, predicates can be
held by method and loop executions and transferred between them. The
ability to define recursive predicates, i.e. using the predicate in its own body
leads to the unfold and fold statements, which have to be called manually.
Otherwise, the prover might decide to indefinitely unfold a recursive predi-
cate.

Magic Wands are a binary operator in separation logic. A --* B intuitively
means that if the current heap is extended with a disjoint heap defined by
the assertion A, the resulting heap satisfies B. When reasoning about recur-
sive data structures, an assertion describing the already visited part of the
structure is often needed to get back an assertion about the entire structure

6

2.2. Viper Tool Stack

1 field val: Int

2

3 method m(x: Int) returns (y: Int)

4 requires ... // precondition

5 ensures ... // postcondition

6 {

7 // body (optional)

8 }

9

10 function f(x: Ref, a: Int): Int

11 requires ... // precondition

12 ensures ... // postcondition

13 {

14 ... // body (optional)

15 }

16

17 predicate p(this: Ref) {

18 ... // body (optional)

19 }

20

21 domain D[A, B] {

22 function getFirst(d: D[A, B]): A

23 // other functions

24

25 axiom ax_1 {

26 ... // axiom body

27 }

28 // other axioms

29 }

30

31 define plus(a, b) (a+b)

Listing 1: Syntax of the top-level declarations in Viper, shortened version of examples from the
Viper tutorial[10]

7

2. Background

in the future. This leads to the definition of auxiliary predicates, which in
turn require additional methods to permute between these different repre-
sentations. Magic wands simplify this reasoning. B could describe an asser-
tion defining the entire data structure and A the permissions to the left-over
part that we are currently traversing. By applying the magic wand, A and
the wand itself are given up to obtain B. Viper includes many heuristics to
verify assertions using magic wands.

Quantified Permissions represent another way to specify unbounded heap
structures. They use point-wise specifications, especially useful for data
structures that aren’t limited to being traversed in a single way such as
generic graphs or arrays. Quantified permissions consist of a quantified vari-
able and a resource assertion, i.e. forall x: Ref :: x in S ==> acc(x.f).
Additionally, Viper allows users to provide trigger expressions for quanti-
fiers to aid the verifiers in finding quick solutions by restricting the instantia-
tion of a quantifier to the provided expressions. The trigger forall i: Int

:: f(i) implies that the quantifier will only be instantiated for expressions
matching f(i), for some i: Int.

2.2.2 Silicon

Silicon[8], developed by Malte Schwerhoff, is one of the two verifiers used
by the Viper Infrastructure. Taking Viper programs as an input, it tries to
prove given assertions using symbolic execution.

Symbolic execution is a form of static analysis, i.e. reasoning about program
behavior without executing the program. Instead of assuming concrete val-
ues, symbolic execution keeps a symbolic state which describes possible val-
ues and path constraints, which are conditions necessary to reach a certain
point in a program execution.

Silicon’s symbolic state is made up of a symbolic store and heap. The store
maps local variables to their symbolic values, whereas the heap keeps track
of the currently accessible locations in the program and their labels. Dur-
ing execution, Silicon passes through the program and after each statement
updates its state according to its execution semantics. If a branch is en-
countered in the program, such as an if-else statement, all feasible paths are
executed and the path conditions are updated with the assumptions needed
to take this specific path.

Once an assertion is reached, Silicon queries Z3, an SMT solver, to check
whether the assertion holds given the current state and collected conditions.

If all possible paths have been executed and all assertions were confirmed
to hold, Silicon can assume program correctness.

8

2.2. Viper Tool Stack

2.2.3 Carbon

The second verifier used by the Viper infrastructure is Carbon[9]. Carbon
reasons about program correctness using verification condition generation.

Verification condition generation is another form of static analysis, utilizing
formal systems such as Hoare logic to reason about program correctness.
The goal is to compute a formula that if valid implies the correctness of the
entire program.

Carbon achieves this by encoding the permission-based logic into Boogie[2],
a verification language and tool for first-order logic verification. Boogie then
generates verification conditions and checks their satisfiability through Z3.
In general, Boogie calls Z3 far less often than Silicon, which has to check
all assertions in a program separately. Since first-order logic is undecidable
with the use of quantifiers and the generally more complex formulas pro-
duced by Carbon than Silicon, some programs that are verifiable through
Silicon are not verifiable by Carbon, at least in a reasonable timeframe. This
is also the case the other way around, as Carbon is for example better at
verifying programs using quantified permissions.

2.2.4 Frontends

Viper allows verification of programs through manual encoding in its inter-
mediate language due to its readability and high-level features. Users can
then verify the Viper program through Silicon or Carbon directly. However,
for end-users, it is often simpler and less arduous to simply annotate as-
sertions and conditions in the original program. This also avoids human
errors in translation between languages or missing language-specific quirks.
To solve this, the Programming Methodology group developed several fron-
tends for different programming languages, which compile programs and
their annotations down to Viper code. Here, we shortly introduce the most
relevant frontends, which we will also collect programs from.

Gobra

Gobra[13] is a frontend for verifying Go programs. It was developed for and
is mostly used to verify the correctness and security of the VerifiedSCION[3]
project. It is therefore often used to generate very large Viper programs,
which can strongly vary in performance, which is why the analysis of these
programs is very important.

Prusti

Prusti[14] is a frontend for verifying Rust programs. It is special in that it
uses the strong guarantees given by the Rust type and ownership system to

9

2. Background

simplify reasoning about the permission logic used by Viper.

Nagini

Nagini[15] is a frontend for the verification of Python programs. It supports
the verification of a large subset of statically typed Python. Nagini was also
originally developed for the VerifiedSCION project and was the basis for
2vyper, a verifier for Ethereum smart contracts.

ViperServer

ViperServer[16] is not a frontend in itself, it is however a server that mul-
tiplexes verification requests of tools to the Viper backends. It is foremost
used for Viper IDE[17], a Visual Studio Code extension that facilitates auto-
matic verification and caching of Viper programs written in VS Code. Most
end-user code is verified through Viper IDE instead of manual calls to Sili-
con or Carbon.

2.3 Source Code Similarity Detection

The measurement of source code similarity is a well-researched topic with
many applications such as plagiarism detection, malware analysis and code
duplication detection. A broad overview of the topic is given by the litera-
ture review paper by Morteza et. al[18]. There is no general definition for
similarity, however, it is usually associated with a similarity score s over two
programs c1 and c2, where the higher s is, the more similar c1 and c2 are. For
a given measurement, a similarity scope and threshold usually have to be
defined. The scope describes the granularity of elements that are compared
and the threshold describes a similarity point at which two programs are
near enough to count as clones. Similarity can be viewed from two different
angles, as in the similarity between the source code syntax and its behavior.
From this, there are four different types of widely accepted definitions of
code clones.

• Type I: The two program texts differ only in whitespace and comments.

• Type II: The program texts may additionally differ in identifier names
and types.

• Type III: Part of the program texts may additionally be removed, added,
or updated.

• Type IV: The program texts are entirely different but have the same
functionality.

There is a multitude of different similarity measurement techniques in use
today.

10

2.3. Source Code Similarity Detection

Text-based Techniques

The simplest form of similarity detection is treating the source code as sim-
ple text and using string comparison to find overlapping parts. An advan-
tage of this is the relative efficiency of string comparison and the fact that it
is language agnostic, thus simple to implement. There exist various imple-
mentations of this technique, some even implementing advanced features
such as lexical and AST analysis, however, they are mostly able to detect
type I and II clones, sometimes III, but not IV.

Token-based Techniques

A bit more advanced form of similarity detection is token-based. Here
programs are converted to streams of tokens which are then compared to
find common subsequences. This gives an advantage in being more ro-
bust against small changes, such as in identifiers, and is relatively efficient.
Token replacement analysis however increases the processing time signifi-
cantly. Token-based techniques are usually also good at identifying type I
and II clones, but type III only for larger edit distances.

Tree-based Techniques

In tree-based techniques, the source code is converted to an abstract syntax
tree using a language parser. The similarity problem is then reduced to the
problem of finding common subtrees. This can be computationally expen-
sive and a different parser has to be used for every programming language.
These techniques however are very good at detecting type I, II and III clones
accurately. They also allow for the abstraction over node types or groups of
nodes to reduce the granularity of the similarity comparison.

Graph-based Techniques

In graph-based techniques, the programs are usually converted to data and
control-flow dependency graphs. These techniques have the potential to de-
tect all four types of clones accurately, however, comparison boils down to
finding graph isomorphisms, which is an NP-complete problem and there-
fore difficult to implement efficiently.

11

Chapter 3

Development

The data collection tool developed during this thesis is made up of three core
parts. First, a database instance running in a Docker container, to simplify
its setup and potential restoration, to store our collected data. Second, a
web server which is used to submit programs or query information about
the dataset. Third, a processing script that converts submissions into entries
for the database. Figure 3.1 gives an overview of the interactions between
these parts. The tool is intended to run indefinitely on a dedicated server
and once correctly set up, will require no further user interaction. In this
chapter, we will explain the process of developing this tool and justify design
choices made along the way.

Figure 3.1: Overview of the data collection tool

3.1 Database Design

To construct our dataset, an efficient method for storing and retrieving pro-
grams, their associated metadata and benchmarking results is important.
The common approach to storing large amounts of data like this is to use
either a relational or non-relational database. We opted for a relational ap-

13

3. Development

proach due to its advantages for our use case. In a relational model, all our
data could be organized into predefined schemas with clear relationships
between the tables. Since our data representation is unlikely to vary much,
this gives us a consistent view of our data and greatly simplifies the Object-
Relational mapping (ORM) between the stored data and its representation in
our code heap. Schemas also facilitate more complex queries, enabling easy
joining and aggregation between entries. For the specific database manage-
ment system (DBMS), we selected PostgreSQL for several reasons. Firstly,
being open-source, it incurs no licensing costs. PostgreSQL also supports
advanced data types such as JSON and arrays, offering versatility compared
to what is commonly available in other larger DBMSs like MySQL. The large
and active community surrounding PostgreSQL was also a compelling rea-
son for its choice, making it easier to find solutions to common problems
during development

3.1.1 Database Interaction in Scala

To facilitate data storage and retrieval within our codebase, we chose Slick[19],
a database access library. Being built on top of the Java Database Connec-
tivity (JDBC) library, Slick abstracts away many of its low-level intricacies.
It provides a type-safe and composable Domain Specific Language (DSL)
in Scala for writing queries. Slick automatically manages ORM, compiling
queries into SQL statements at compile-time. This design enables treating
the database like any other collection type in Scala. Due to its DBMS imple-
mentation agnosticism, Slick also allows changing out the underlying DBMS
in the future, without having to modify any significant parts of our code-
base. The combination of these features makes Slick an attractive solution
for handling database operations in our codebase.

3.1.2 Schema Definition

Each database table requires a corresponding case class in Scala, allowing
us to easily store and retrieve instances of these classes. In the following
subsections, we show the layout and implementation of our tables and their
uses. We will explain some of the fields, however, most should be self-
explanatory. Figure 3.2 shows an overview of our schema.

UserSubmissions

This table contains submissions sent in by users from either frontends or one
of the verifiers (see section 3.6). This table is used as an input queue where
we store submissions until they can be processed to be stored in the dataset.
In Scala, these rows are represented by the case class UserSubmission.

14

3.1. Database Design

ProgramPrintEntry

pprintId programEntryId . . .

ProgramEntries

programEntryId . . .

SiliconResults

silResId programEntryId . . .

CarbonResults

carbResId programEntryId . . .

UserSubmissions

submissionId . . .

ConstFeatureEntries

constFeatureEntryId programEntryId featureName . . .

SiliconFeatureEntries

silFeatureEntryId resultId featureName . . .

CarbonFeatureEntries

carbFeatureEntryId resultId featureName . . .

Features

name

Figure 3.2: Relational diagram of our database schema. Arrows represent a foreign key rela-
tionship and underlined fields primary keys.

ProgramEntries

This table contains submitted programs and some of the original metadata
gathered during the submission. These entries are created after processing
the submission.

UserSubmissions
submissionID
submissionDate
program
loc
frontend
args
originalVerifier
success
runtime

ProgramEntries

programEntryId
submissionDate
program
loc
frontend
originalVerifier
args
originalRuntime
parseSuccess

Figure 3.3: UserSubmissions and ProgramEntries table layouts.

15

3. Development

SiliconResults and CarbonResults

The SiliconResults and CarbonResults tables are both defined by the same
layout. They contain the results of the local verification and benchmarking
of the submitted program. The field phaseRuntimes contains more detailed
runtimes of the different phases of the verifier, which are currently Parsing,
Semantic Analysis, Translation, Consistency Checking and Verification. In
Scala, these rows are represented by the case class VerResult.

ProgramPrintEntries

This table contains the binary serialized program fingerprint described in
subsection 3.2.2. This allows us to efficiently load program prints back into
memory to compare against a new submission, without having to recom-
pute the fingerprints for all programs. In Scala, these rows are represented
by the case class ProgramPrintEntry.

VerifierResults
resId
creationDate
verifierHash
programEntryId
success
didTimeout
runtime
errors
phaseRuntimes

ProgramPrintEntry

pprintId
programEntryId
programPrint

Figure 3.4: SiliconResults, CarbonResults and ProgramPrintEntry table layouts.

Features

We want to be able to store various features obtained during the verification
of our programs. The Features table contains the names of all measured fea-
tures. The ConstFeatureEntries, SilFeatureEntries and CarbFeatureEntries
tables are all based on a FeatureEntry, where an entry is associated with
either a verification run of a program where this feature was measured or
a row in ProgramEntries if the feature is not verification-dependent. Fea-
ture values are stored as strings since we cannot predict what type a feature
would have.

16

3.2. Duplicate Data Reduction

FeatureEntries
featureEntryId
featureName
referenceId
value

Figure 3.5: FeatureEntries table layout

3.2 Duplicate Data Reduction

One of the core goals of this thesis is to reduce duplicate data in our dataset.
To solve this problem, we developed a way to measure similarity between
programs to avoid storing nearly identical ones. Furthermore, we took into
account some results of the evaluation to keep similar programs with very
different behavior. In subsection 2.3 we introduced contemporary research
of source code similarity detection, which we will use in this section to
explain the development of our similarity algorithm.

3.2.1 Similarity Measurement

For our use case, we wanted a measurement technique that would perform
efficiently, since every new program needs to be compared to all existing
ones in the database, that can detect code clones up to type III reliably and
that can store an intermediate representation to reduce processing time in
the future. We therefore decided to go with a tree-based approach. This also
gave us the freedom to abstract over node types.

In the paper ”Syntax tree fingerprinting for source code similarity detection”[20],
Chilowicz et. al. propose an algorithm that fulfills our prerequisites and was
used as the base for our fingerprinting algorithm. Although not explicitly
mentioned, their core data structure seems to be based on a Merkle tree.
The basic idea of the algorithm is to parse a program to obtain its abstract
syntax tree and convert this to a tree of fingerprint nodes. A fingerprint
node is made up of its subtree weight and a hash value, indicating its struc-
tural properties. This allows finding exact subtree matches rather efficiently.
The authors additionally store a pointer to the relevant AST node to cross-
reference the two trees, however, for our purposes, this was not needed.

3.2.2 Fingerprinting Implementation

Data Structure

To store information about the structural properties of a program, we use
fingerprint nodes, called FPNode which store a fingerprint Fingerprint and
a list of the node’s children. A fingerprint is made up of the weight of the

17

3. Development

1 case class Fingerprint(weight: Int, hashVal: String)

2

3 case class FPNode(

4 fp: Fingerprint,

5 children: Seq[FPNode]

6)

7

8 case class ProgramPrint(

9 domainTree: FPNode,

10 fieldTree: FPNode,

11 functionTree: FPNode,

12 predicateTree: FPNode,

13 methodTree: FPNode,

14 extensionTree: FPNode,

15 numMethods: Int,

16 numFunctions: Int

17)

Listing 2: Case class signatures of the fingerprinting datastructure

node’s subtree and its structural hash value. A fingerprint of a program,
represented by the case class ProgramPrint, is split into multiple trees rep-
resenting the top-level declarations of a Viper program, such as custom do-
mains, fields, functions, methods, predicates and extensions. This allows us
to only compare relevant parts of a program to each other, speeding up the
comparison.

Building the Fingerprint Tree

To build the program fingerprint the algorithm proceeds as follows: As
an input, it receives the program’s AST. The AST is then split into the
above-mentioned trees, each of which is fingerprinted individually. First,
the fingerprinting method is applied to the node’s sub-nodes recursively.
The fingerprint hash value of the current node is then obtained by hash-
ing the node’s type-hash, taken from a lookup table, concatenated with the
children’s hash values. Lastly, the children’s weights are summed up and
increased by 1 to obtain the weight of the current subtree. Figure 3.6 shows
a simplified version of this process.

Structural Hash Function

The hash function used for this algorithm should represent the tree’s struc-
tural properties and to guarantee scalability should be calculated incremen-

18

3.2. Duplicate Data Reduction

Figure 3.6: Simplified process of the fingerprinting algorithm applied on the statement k := 3

+ 4. The first tree is the AST produced by the Viper parser. In the last tree, W denotes the
weight of the subtree and H the fingerprint node’s hash value.

tally, to avoid having to go through each node’s entire subtree every time the
hash is calculated. Chilowicz et. al. propose multiple different ways such a
hash function could be built.

• Sum hashing: This method consists of counting the number of node
types in a given subtree, resulting in a vector where the i-th entry is
the count of nodes of type i. This allows comparison by the Euclidean
distance of two vectors, however, ignores a lot of structural properties

19

3. Development

of a tree, resulting in irrelevant matches.

• Dyck word hashing: For this method, a Dyck word is built for each
node, a serialized form of the subtree obtained from depth traversals.
This word is then processed using a Karp-Rabin hash function, which
can be incrementally computed.

• Cryptographic hashing: For this method, nodes are indexed bottom-
up. The hash value of a node is the hash of the concatenation of the
node type hash with its children’s hash values. This process is linear
in the number of nodes in the tree and is completely incremental.

For our implementation, we went with cryptographic hashing, due to its
strong performance and simplicity. To get the hash value for a node type, we
created a lookup table with a random string for each Viper node type. For
some node types, such as identifiers or binary operations, the type identifier
or the binary operator is added to the hash such that nodes with the same
type but different behavior can be differentiated. To hash a node, the node’s
type-hash is concatenated with the children’s hash values. An MD5-hash of
this string is then created and the resulting value is shrunken by selecting
the first 16 hexadecimal digits. According to the author’s experiments, this
should be more than enough information to make the chances of accidental
collisions infinitesimal. We end up with the following hash function:

H(n) = MD5(h(n) ∥ H(c0) ∥ . . . ∥ H(cn))[0:15]

where ci is the i-th child of the node n and h is the lookup table for the
random string for n’s node type. Accidental collisions should not pose a
large problem using this function. After the trimming described in 3.2.2
even larger programs in the order of 105 lines of code have a fingerprint tree
containing less than 106 nodes. Since the hash values consist of 16 hexadec-
imal digits, each value contains 64 bits of information. We can approximate
the chance p(n) of at least one collision between any two nodes out of n
nodes for a hash function with an output space of size H with

p(n) ≈ n2

2H
=⇒ p(106) ≈ 1012

265 ≈ 2.71 ∗ 10−8

In the unlikely event that two structurally different nodes accidentally have
the same hash value that would result in a vastly different matching score,
we still account for differing metadata and features of the programs, as
described in 3.4.1.

Optimizations

This basic implementation is decently accurate, however, in some outlier
cases, the matching results were unexpected or rather slow. These are some
of the optimizations we added to the fingerprinting algorithm.

20

3.2. Duplicate Data Reduction

• Trimming: Leaf nodes make up a significant portion of the tree, in-
creasing the storage size and all have their base hash value from the
lookup-table. These lead to a lot of accidental matches due to pro-
grams containing the same nodes, but not in any structurally similar
way. Therefore, all nodes in trees with a weight smaller than 4 are
dropped, drastically increasing the accuracy of our matches.

• Exploiting commutativity: Some node types are semantically equiva-
lent when their sub-nodes are in a different order, such as binary op-
erations with commutative operators. A node’s sub-nodes are there-
fore split into commutative and non-commutative parts, the former
of which are sorted before concatenation to receive the same hash no
matter the order of the sub-nodes.

• Condition flattening: The && operator in Viper corresponds to the *-
operator in separation logic, not purely a logical and and is as such
not commutative. However for our purposes, pre- and postconditions
that contain several anded clauses are almost semantically equivalent
to conditions that list these clauses as multiple assertions. We there-
fore flattened any conditions with anded clauses into multiple separate
clauses.

Matching

To determine an overall match percentage given two program fingerprints,
we need to find exact matches across subtrees. Due to the fingerprint node’s
immutability, a new fingerprint node implementation was needed, a compa-
rable fingerprint node. This additionally stores a boolean indicating whether
it was already matched to a node in the other tree. To match two programs, a
matching method is applied to all the program trees separately. This method
goes through the tree in a depth-first-search order. For every node, the other
programs’ respective tree is searched, also in a depth-first search order. To
speed up matching, the search of a given subtree is aborted if its weight
is lower than the nodes, or if that subtree was already matched. If a node
with the same fingerprint is found, that node is marked as matched and
the weight of the current node is returned. At the end, the weights of all
matched nodes are summed up. The return value is a tuple of the amount
of matched nodes and the total nodes in the tree. This operation is therefore
not commutative between two trees, as one program could be entirely con-
tained in another, but not the other way around. The match percentage we
use from here on is the ratio between the matched and total nodes.

21

3. Development

3.3 Features and Benchmarking

Certain Viper features can cause drastic changes in verifier behavior and per-
formance by changing solver approaches. We deemed it important to store
which of these are used by a program. For this, we added the FeatureEn-
try tables, one each for Silicon, Carbon and constant features. Silicon and
Carbon features are unique to the verifiers and can change across verifica-
tion runs, constant features however should never change and are therefore
only stored once. These tables store the name of a feature and any value
associated with it as a string. Many of the chosen features are binary, either
a program uses them or not. For those, the strings "true" and "false"

are used as placeholders for booleans. To generate these feature entries, we
implemented a FeatureGenerator, which is invoked during each verifier
run and returns a list of tuples with the name and value for each feature.
Splitting the table into the three categories and storing values as strings was
decided on for flexibility and future-proofing. If any additional metadata or
features of programs should be tracked in the future, the FeatureGenerator

can simply be extended with this behavior. Here we briefly explain some of
the features we are currently tracking.

• Whether the program uses any collection types. That is sets, sequences,
maps, or multisets.

• Whether the program uses magic wands. These can be very costly if
the verifier’s heuristics fail.

• Whether the program uses any permissions. There are multiple key-
words indicating permissions, two of which are added as separate
features due to their potential performance impact. The first one
are wildcards, which specify any positive permission amount. Wild-
card amounts are randomly chosen each time the keyword is encoun-
tered. Successive exhaling and inhaling of wildcard permissions might
therefore not restore the original permissions and behave in a non-
deterministic way. The second are for-permissions. These indicate a
quantifier over all objects of which the current method has access to
the specified field.

• Whether the program uses recursive predicates or functions.

• Whether there are quantifiers with missing triggers in the program.
Not restricting possible quantifiable expressions can result in signifi-
cantly more work for the verifier.

• Whether the program might use quantified permissions. Since this is
up to the verifier, there is no simple and guaranteed way to determine
this, therefore this feature is an overestimation. It simply expresses

22

3.4. Submission Processing

whether the program contains a quantifier with an access predicate in
its expression.

• Whether the program type-checks.

• More detailed information about the time spent at each stage in Sili-
con compared to the simple measurements stored in a SiliconResult.
Arquint Linard developed a tool SymbExLogger which can be used to
output information about a Silicon verification run upon the visit of
each member of a program. Members can be any part of a program,
such as methods, predicates, or functions. This logger is the basis of
a benchmarker which outputs this more detailed runtime breakdown.
Once it is officially merged into Silicon, we have the capability of stor-
ing this output as a feature.

Most of these features are of a syntactic nature and constant, which allows
us to use the RegEx matcher we developed in subsection 3.7.1 to quickly
determine their presence. Others can be found by a simple analysis of the
program’s AST. Any additional features that should prove useful in the fu-
ture can be tracked very easily due to the way we designed the tables and
FeatureGenerator.

3.4 Submission Processing

When a user submits a program to our backend, several steps have to be
taken to prepare the data to be entered into our dataset. In this section, we
will explain the pipeline submissions go through until they are stored step
by step.

Figure 3.7: Submission processing overview

3.4.1 Pipeline Overview

When a submission is sent, it is automatically inserted into the UserSubmis-
sions table of our database. A script is invoked on a regular interval to check
for new submissions and to process them for insertion into the database. To
avoid taking up resources and spin-locking when no submissions are avail-
able, the script goes to sleep for a few seconds in case there is nothing to

23

3. Development

do. If a new submission is found, it goes through several stages, which
will be explained in the following subsections. To guarantee consistency in
measurements, a global lock is acquired at the beginning of the processing
to avoid sharing resources with multiple instances of the pipeline. If any
stage fails, local temporary data is removed and the submission is deleted,
to avoid getting stuck on an invalid submission.

Entry creation and Fingerprinting

The submission is first removed from the UserSubmissions table. It is then
converted into a ProgramEntry, which is stored locally for the moment. The
program is then fingerprinted using our fingerprinting method and the re-
sulting ProgramPrint stored in a ProgramPrintEntry.

Verification and Benchmarking

Verifier performance is a key aspect for any future evaluation of our pro-
grams. To double-check the submission results and measure performance
reliably, any submission is therefore verified locally. This gives a relative
consistency in our measurements, since local resources are relatively stable
compared to the vastly different hardware users verify the programs with.
Programs are verified through both Silicon and Carbon since we are inter-
ested in the performance and capabilities of both backends. This is done
through two custom frontends, which measure runtime for each phase of
the verifier and implement a FeatureGenerator which measures and gener-
ates the feature values described in section 3.3. The verifiers use caching for
program parts they have already seen, which is rather difficult to completely
disable. For consistency, the verifiers are therefore run through new JVM in-
stances to guarantee an identical initial state. This increases the verification
time by a few seconds generally but is needed. To ensure identical verifi-
cation behavior, the arguments passed to the original verifier by the user
are also passed to the corresponding local verifier, excluding a few flags ref-
erencing local files. The other verifier is executed without any additional
arguments, as there is no direct correspondence between most of Silicon’s
and Carbon’s flags. Since it is not possible to know whether the verification
of a program will terminate, as the submission might have time-outed or
been manually terminated, all programs are run with a timeout estimated
as a multiple of the original runtime. Upon completion of the verifications,
the measured results and features are stored locally in a SiliconResult,
CarbonResult and multiple FeatureEntry instances.

Filtering and Insertion

In this stage, programs are checked to determine whether they are worth
including in the dataset. For this, the previously generated case classes are

24

3.4. Submission Processing

compared against any possible matches in the entire dataset. If a program
is determined to be too similar to any existing entry it will be discarded.
To be defined as too similar, we defined multiple criteria which all have
to be fulfilled. Due to the amount of criteria, it is relatively easy for any
submission to pass these checks, as they only have to differ in one aspect to
all other programs. This was decided on since we predict that programs that
are similar in most aspects yet have a few glaring differences, such as with
respect to performance, would be valuable to keep for any future evaluation.
Here we give a short explanation of these criteria.

• Two ProgramEntry instances are similar iff

– The length in lines of the programs are within 20% of each other.

– They were verified using the same verifier.

– They were generated by the same frontend or both handwritten.

– They both succeed or fail to parse.

• Two SiliconResult or CarbonResult instances are similar iff

– Verification succeeded for both or both generated the same error
types.

– Their runtimes are within 50% or a small constant amount of each
other.

• Two ProgramPrint instances are similar to each other iff

– One program is a subset of the other, i.e. a 100% match of nodes.

or

– They have the same amount of methods and functions.

– If the programs are handwritten, both match each other in at least
70% of all nodes.

– If the programs are generated by a frontend, one of the two
matches the other in at least 70% of the method and function
nodes. Other nodes are ignored since many frontends generate
large preambles containing the same domains and fields, which
would inflate the match percentage between vastly different pro-
grams.

If no entry is found that is determined to be too similar, all the generated
case classes are inserted into the database and the processing script starts
from the beginning.

25

3. Development

Store Only

A config flag called STORE ONLY can be enabled in case constant resources
can’t be guaranteed by the server. If this flag is set to true, the verification
and part of the filtering stages are skipped. Only the ProgramEntry and
ProgramPrintEntry are created. Similarity checking is then reduced to only
those two tables. If this is passed those two case classes are again inserted
into the database.

3.5 Query Frontend

For future evaluation of the collected data, a simple way to request specific
information is a necessity. Collection of the data also requires some way to
address our backend from the user frontend instances.

To address this, we implemented a web server using Cask[21], a Scala HTTP
framework. This server provides a set of end-points that can be queried for
information or start specific jobs on our backend. Queried and response data
is serialized and deserialized through JSON. Here we give a non-exhaustive
overview of some of the queries and services the server provides.

• Request a list of ProgramEntries, filtered by metadata such as program
length, the frontend used to generate the program, whether it has any
parse errors and more.

• Request a list of IDs for programs that fulfill different conditions, such
as programs that have a SiliconResult / CarbonResult with specific
verification results, errors, runtimes, or programs that have a specific
feature value. For any list of IDs, the corresponding ProgramEntries
can also be requested.

• Request more information about specific ProgramEntries, such as their
VerResults, or feature values.

• Request a summary of differences between two verifier versions (more
detailed explanation in subsection 3.7.2) or invoke benchmarking of
specific verifier versions.

• Match a RegEx string on all programs in the database (more detailed
explanation in subsection 3.7.1)

• Submit a new program to the database. This end-point is used by all
submitters referenced in section 3.6

JSON deserialization of the requested data requires some effort on the side
of the end-user and leads to code duplication. To solve this, we implemented
a query frontend.

26

3.6. Frontend Modifications

This is a lightweight project intended to be included in any future project
analyzing our data. Instead of writing their own serializers and query func-
tions or downloading the larger backend, users can simply add this frontend
as a dependency. It contains pre-written request functions that query the
corresponding end-points and handle data serialization and deserialization.
Any relevant custom datatypes used in our backend are also made available.

3.6 Frontend Modifications

To collect user programs and metadata from the various frontends to pop-
ulate our database, we needed to modify the frontends with the capability
of collecting and submitting this information. For this, we developed a trait
ProgramSubmitter with multiple implementations, whose job it is to collect
the information required for a submission query during and after the run of
a verification. This code is implemented in Silver, the project for the Viper
intermediate language, since it is a dependency of all other projects. These
implementations can be called directly in most of the frontends and veri-
fiers. Here we explain some of the changes we made to the frontends to
enable submissions.

User consent is vital and no data should be collected without the explicit
agreement of the program author. No identifying information apart from
the plain program text is stored either. We therefore added a flag called
--submitForEvaluation (exact name depending on the respective program-
ming language naming conventions) to all frontends and verifiers, without
which no submission occurs.

Silicon has a frontend SiliconRunnerInstance which is invoked when a
Viper file is manually verified. Carbon has a corresponding frontend called
Carbon. The only modification taken was the addition of a ProgramSubmitter

instance to their main methods, which utilizes the frontend’s utility func-
tions to collect the necessary metadata.

ViperServer has its own backend implementation which invokes a custom
SiliconFrontend or CarbonFrontend respectively on each verification re-
quest. The only modification is the addition of a ProgramSubmitter to this
backend, which gathers its information from the custom frontends.

In Gobra, verification is commonly invoked on multiple packages, i.e. mul-
tiple Gobra files. The verifier starts a job to verify each package, all of which
are run in parallel. For each job, a ProgramSubmitter instance is added
to a global map, identified by the package identifier. Once results are re-
turned, the submitter is updated, sends a submission and is removed. Gobra
supports chopping, a verification method where each Viper file is split into
multiple parts. Due to the asynchronous way Gobra operates, there is no

27

3. Development

single synchronization point during verification where all necessary infor-
mation for our submitter, such as verification results for each chopped file,
is available. If chopping is enabled, submissions are therefore disabled.

Nagini, although written in Python, provides access to a JVM instance through
a compatibility layer, through which it invokes Silicon or Carbon. This gives
us the ability to directly call a ProgramSubmitter instance in Python, remov-
ing the need for further modifications.

In Prusti JVM access is also supported, however a bit more involved. For
simplicity, we therefore implemented an equivalent ProgramSubmitter in
Rust itself. This is invoked on each verification request unless the result was
cached to reduce load on our backend, since a cached program would most
likely be declared as a duplicate anyway.

3.7 Extensions

After completion of the core goals, we further implemented two extensions
for the collection tool, which we describe in this section.

3.7.1 Pattern Searching

One of the extension goals aims to develop a tool to search for specific code
patterns in the programs in our database, providing summarized informa-
tion about the identified programs. The primary purpose of this tool would
be identifying specific code generation patterns from the various frontends
or finding potential computationally expensive statements in programs. To
develop this tool we mainly considered two approaches, which we will
shortly explain here.

Fingerprinting

Our first idea was to repurpose the fingerprinting algorithm from subsec-
tion 3.2.2. We could sanitize the program ASTs by removing nodes that do
not represent structural properties and only keep nodes like control-flow
statements or declarations. One could then submit a pseudo-Viper program
also only containing these node types, which would then be compared to all
stored programs as before. An advantage to this approach is that we could
reuse a large portion of our code, however, there are also several drawbacks.
Due to the low number of remaining nodes, our comparisons could report a
lot of false positives. Choosing exactly which nodes are relevant for pattern
detection was also difficult at this point in time, since we did not have any
explicit examples yet that we could conform to. Furthermore, this would re-
quire storing an additional fingerprint, increasing the size of our database.

28

3.7. Extensions

Regular Expressions

Our second idea and the approach we implemented in the end was RegEx.
Matching regular expressions on our stored plaintext programs posed sev-
eral advantages. Regular expressions are more powerful than simple node
matching, since any pattern that could be expressed as a regular language
(or even a non-regular language using backtracking) could be searched for.
Due to the fact that regular expressions can be pre-compiled to state ma-
chines using the standard Java RegEx library, matching is also incredibly ef-
ficient and requires no additional storage space. This approach also requires
no further processing of the programs on our side. The only downside of
regular expressions is the unintuitiveness of their syntax, requiring more
effort from the users writing the requests.

To access this tool, we added end-points to our web server, allowing users
to query a RegEx string and options. Upon reception of such a request, a
state-machine is compiled from the RegEx string which all programs in the
database are matched on. Then either a list of IDs of programs contain-
ing matches or a more detailed summary containing all match indices per
program is returned.

3.7.2 Version Benchmarking

The second extension goal aimed to measure performance differences result-
ing from changes made to the Viper source code. This could give insights
into whether changes or additions to the verifiers resulted in performance
improvement or degradation.

To implement this feature we added another end-point to our web server,
which allows a user to submit a specific Git version hash for either Silicon or
Carbon. Upon reception, the local verifier is switched to the specified ver-
sion and recompiled. All programs for which no SiliconResult or CarbonRe-
sult with this hash is present in the database then go through the verification
stage again. The generated VerResults and Features are then inserted into
the database. At the end, the verifier is switched back to the previous ver-
sion. Since we want to benchmark submissions using the newest verifier
versions, any further submission processing is stopped during this process.

For comparison, users can request version difference summaries from the
web server, given two specific verifier versions. The summary is generated
for programs that have VerResult entries in the database for both version
hashes. Summaries contain the following information:

• A list of IDs of programs that have a different verification result across
versions.

• A list of IDs of programs whose runtimes vary by more than 50%.

29

3. Development

• A list of IDs of programs with different verification errors.

• The average runtime of programs per version.

• The average runtime variance per version.

30

Chapter 4

Evaluation

Given the planned continuous operation of our tool, ensuring its capability
to deal with incoming tasks in a timely manner is vital. In this chapter, we
first take a look at parts of the tool prone to creating bottlenecks by measur-
ing their performance under a probably slightly overestimated anticipated
workload. Afterward, given the inherently subjective nature of deciding
similarity between programs, we take a look at the process we used to en-
sure the correctness and define the behavior of our fingerprinting algorithm
developed in section 3.2.

4.1 Performance Measurements

Our data collection tool is designed for uninterrupted use over an indefinite
period. As such it is important to ensure a sufficient throughput to han-
dle incoming submissions without creating a large backlog of tasks. Since
certain aspects like the speed of database operations or the time taken by
the verifiers are beyond our control, it is even more important to minimize
the overhead introduced by our code. In this section we will analyze the
performance of some components we suspect are most likely to create per-
formance bottlenecks. All measurements were generated on a base-model
MacBook Pro (16-inch, 2023) with the following specifications: M2 Pro chip
with a 12-core CPU and 19-core GPU, 16GB unified LPDDR5 memory and
a 512GB SSD. Performance on a dedicated server will likely be better or at
least match these results.

4.1.1 Fingerprinting Performance

Before a processed submission will be inserted into the database it has to
be matched against all potential similar entries. This process is linear in
the size of the dataset and as such it is of importance that this check can
still be performed in a reasonable timeframe when the dataset grows to tens

31

4. Evaluation

of thousands of entries. The most resource-intensive part of the similarity
check is the ProgramPrint comparison. To measure the performance of our
implementation, we built two datasets. The first one, referred to as Viper,
consists of 500 handwritten Viper programs, collected from a web instance
provided by ETH of the Viper tool stack. The second one, referred to as
Frontend, consists of 100 programs generated by different frontends, taken
from the Silicon test set. For reference, the average file in Viper has a length
of 37 lines and 1435 in Frontend.

First, we measured the time to generate a ProgramPrint for each program in
the datasets. Figure 4.1 shows a histogram of the measured runtimes. The
median runtime for the Viper dataset is 0.522ms and 7.019ms for Frontend.
Some outliers took up to half a second, however, since the ProgramPrint

only has to be created once, this is a non-factor.

Figure 4.1: Histogram of the runtime taken to create a ProgramPrint of 500 handwritten Viper
programs and 100 frontend generated programs. Vertical lines represent the dataset median.

Second, we measured the time to match all programs in a dataset to ev-
ery other program. This does not include the generation of the respec-
tive ProgramPrints, these were pre-generated and stored locally. Figure 4.2
shows a histogram of the measured runtimes. The median runtime for the
Viper dataset is 0.004ms and 0.147ms for Frontend. Extrapolating from this, if
an average frontend-generated program would have to be compared against
10’000 programs of similar size, the ProgramPrint matching part of this op-
eration would take around 1.5 seconds. In practice, this number is probably
far lower, as potential matches are filtered by multiple criteria before any
comparison even begins.

32

4.1. Performance Measurements

Figure 4.2: Histogram of the runtime taken to all-to-all compare ProgramPrints of 500 hand-
written Viper programs and 100 frontend generated programs. Vertical lines represent the dataset
median.

4.1.2 Processing Performance

A low overhead of the entire processing pipeline is key to preventing ac-
cumulation of submissions. The time taken to verify the program through
Silicon and Carbon is inevitable, therefore the overhead introduced by the
first and last stage is of special interest.

To measure this, we devised a test using the Viper dataset. Any overhead
is most likely to disproportionately show up during the processing of these
programs since they are very short with an average length of 37 lines. To
measure performance we selected 10 programs that are verifiable through
both Viper and Carbon. The other 490 were then inserted into the database
manually to create entries to compare against during the filtering stage. The
10 programs were then submitted to a local instance of the web server and
the time spent in each stage was measured. Figure 4.3 shows the measured
results. On average the verification stages took up 77.2% of the time, far
more than the other two stages. Since the Viper dataset was created by users
and not manually curated it contains a lot of duplicate programs. This re-
sults in the filtering stage being very short, since a duplicate can be found
rather quickly. However, even if this was not the case, the previous subsec-
tion shows that the runtime of this stage would not increase by more than a
few seconds. The entry and fingerprinting stage is deceivingly long, as over
95% of that stage is spent on setting up a connection to the database, query-
ing the submission and its deletion. This duration stays almost constant for
programs of any size and should therefore not be of significance. This leads
us to the conclusion that even in the worst case of a very small program, the
overhead introduced by our processing pipeline is more than acceptable.

33

4. Evaluation

Figure 4.3: Time spent in the processing stages for 10 different handwritten Viper programs.

4.1.3 Pattern Searching Performance

For the web server it is key to minimize response times. Most queries are
limited by the speed of database operations since they are simple wrappers
around an SQL query. The only further processing taken is the JSON seri-
alization of the data, which is linear in the amount of memory used by the
data.

The queries introduced in subsection 3.7.1 however perform a local search of
the RegEx pattern against the entire database. Since RegEx with extensions
such as backtracking is theoretically unbounded in its temporal complexity,
we can give no guaranteed upper bound for response times. Nevertheless, a
simple pattern should still return a response in a reasonable timeframe. To
check this, we performed two tests on 50 copies of the Frontend dataset, i.e.
5000 programs with an average length of 1435 lines.

The first test was performed on the dataset alone. "{.*\\(.*\\).*}", an
expression that matches any substring containing parentheses enclosed in
curly brackets, was matched on the entire dataset. This operation resulted
in 241’500 matches and took 3.156 seconds or 0.631ms per program, aver-
aged over 10 runs. Since this process is parallelized, measuring runtime per
program is not possible without affecting the overall performance. There-
fore we cannot create a histogram of singular programs here.

The second test was performed as an integration test. The 5000 programs
were inserted into an instance of the database and the actual query end-
point was used to perform the matching operation using the same RegEx as
before. This operation took 7.450 seconds or 1.490ms per program, averaged
over 10 runs, indicating that database operations are responsible for around

34

4.2. Similarity Detection Testing

57.7% of the runtime. Since we do not expect this pattern searching query
to be used with a high frequency, this response time should be acceptable.

4.2 Similarity Detection Testing

During the development of the tool we continuously wrote unit tests to en-
sure the correct behavior of our code. Most of these are basic and not worth
showcasing on their own. To ensure correct behavior of our fingerprinting
and over-arching similarity algorithm however, we designed a more exten-
sive ”specification” of behavior it should display. This is in the form of a
collection of 30 program pairs, each of which was marked as either matching
or non-matching, which describes the output expected by applying the sim-
ilarity rules for ProgramPrints described in subsection 3.4.1. These pairs
are further split into code that was generated by frontends, usually multiple
thousand lines long, and shorter handwritten Viper programs. The former
will from here on be referred to as Frontend in labels and the latter as Viper.
Apart from correctness, this collection was also used to pick subjective val-
ues in the algorithm, such as the minimum matching percentage of 70%. The
algorithm currently classifies all programs correctly and table 4.1 shows the
average minimum results of matching the ProgramPrints of all pairs. We
choose to show the minimum of the two match percentages since to count
as a match, both percentages have to be above the threshold.

Frontend Viper

Amount Mean SD Amount Mean SD

Matching 6 82.4 18.5 9 86.1 18.1
Non-Matching 6 43.6 27.2 9 30.4 23.1

Table 4.1: For each combination of test-cases this table shows the amount of program pairs we
defined, the minimum mean matching percentage given by the fingerprinting algorithm and the
standard deviation.

Each program pair was constructed to reflect a change in syntax and be-
havior which we either deem to be too similar or different enough that it
shouldn’t be marked as a match. Here we show some of these pairs to give
an idea of the properties we deemed important. Programs generated by
frontends are too long to be displayed here. Figure 4.4 shows that our fin-
gerprinting technique is completely indifferent to syntactic changes in iden-
tifiers or whitespace. Figure 4.5 shows a program pair used to test the con-
dition flattening described in subsection 3.2.2. Further matching program
pairs include changes such as subsets, reordering of commutative nodes,
line deletions, line insertions and more.

35

4. Evaluation

Figure 4.6 shows a pair that we do not want to match. Even though they
look similar at a glance, they operate on different types with different binary
operators. Further non-matching program pairs include changes such as
code repetition, keeping the same domain but changing methods, variable
type changes and more.

1 method sum(n: Int) returns (res: Int)

2 requires 0 <= n

3 ensures res == n * (n + 1) / 2

4 {

5 res := 0

6 var i: Int := 0;

7 while(i <= n)

8 invariant i <= (n + 1)

9 invariant res == (i - 1) * i / 2

10 {

11 res := res + i

12 i := i + 1

13 }

14 }

1 method x(z: Int) returns (y: Int)

2 requires 0<=z

3
4 ensures y==z*(z+1)/2

5 {

6 y := 0

7 var w: Int := 0;

8
9 while(w<=z)

10
11 invariant w<=(z+1)

12 invariant y==(w-1)* w/2

13 {

14 y := y+w

15 w := w+1

16 }

17 }

Figure 4.4: Two programs that should be a match. The second program is semantically identical,
only whitespace and identifier names were changed. According to the fingerprinting algorithm,
the programs are 100% identical

1 field f: Int

2
3 method inc(x: Ref, i: Int)

4 ...

5 {

6 ...

7 }

8
9 method client(a: Ref, b: Ref) {

10 ...

11 }

12
13 method copyAndInc(x: Ref, y: Ref)

14 requires acc(x.f)

15 requires (x != y ==> acc(y.f))

16 ensures acc(x.f)

17 ensures (x != y ==> acc(y.f))

18 ensures x.f == old(y.f) + 1

19 ensures y.f == old(y.f)

20 {

21 x.f := y.f + 1

22 }

1 field f: Int

2
3 method inc(x: Ref, i: Int)

4 ...

5 {

6 ...

7 }

8
9 method client(a: Ref, b: Ref) {

10 ...

11 }

12
13 method copyAndInc(x: Ref, y: Ref)

14 requires acc(x.f) && (x != y ==> acc(y.f))

15 ensures acc(x.f) && (x != y ==> acc(y.f))

16 ensures x.f == old(y.f) + 1 && y.f == old(y.f)

17 {

18 x.f := y.f + 1

19 }

Figure 4.5: Two programs that should be a match. Pre- and postconditions that are anded in
the second program are listed separately in the first. According to the fingerprinting algorithm,
the programs are a 89.8% match. Triple dots ”. . . ” represent lines left out for brevity.

36

4.2. Similarity Detection Testing

1 method intOp(a: Int, b: Int) returns (c: Int)

2 requires b >= 0;

3 requires a > 0;

4 {

5 c:= b == 0 ? 1 : a * a * (b-1)

6 }

1 method boolOp(a: Bool, b: Bool) returns (c: Bool)

2 requires b != false;

3 requires a == true;

4 {

5 c:= b == false ? true : !a || a && !b

6 }

Figure 4.6: Two programs that should not be a match. Although structurally similar, they
operate on different types and use different binary operators. According to the fingerprinting
algorithm, the programs are a 0% match.

37

Chapter 5

Conclusion

At the beginning of this thesis, we set ourselves five core goals to strive
after during the development of the data collection tool. In this chapter,
we will address whether we achieved these objectives and summarize the
contributions made during this thesis. After that, we will provide some
potential future applications of this tool and data.

The first goal was the reduction of duplicate data in our dataset. We achieved
this through the development of our similarity algorithm, which takes into
account the programs’ structural properties as well as verification results
and metadata to decide on whether a submission is worth keeping or filter-
ing.

The second core goal was to ensure the variety and usefulness of the dataset.
We originally planned to achieve this by filtering out programs based on the
relative prevalence of their features in the dataset and by excluding pro-
grams that do not parse or type-check. However during the development
and upon request from group members, we decided on keeping these sub-
missions as they might still provide utility in the future. Through the fea-
tures and metadata we collect, undesirable programs are still easy to filter
out in case they will not be needed for a certain application.

The third core goal was to improve the usefulness of our data by keeping
track of additional features of the programs that might impact verification
performance. Here we focused mostly on syntactic features as described
in section 3.3. We also implemented code to track more detailed Silicon
benchmarks once the benchmarker is ready. Through the design of our
database tables and the FeatureGenerator, tracking additional features in
the future is very simple.

The fourth and fifth core goals focused on the implementation of the back-
end and a frontend to submit programs. The backend we implemented con-
sists of a docker container hosting our database, the web server for querying

39

5. Conclusion

data and submitting programs, and the processing pipeline. For the fron-
tend, we added a ProgramSubmitter class to Silver, which we implemented
in both verifiers and the Gobra, Nagini and Prusti frontends. In addition,
we also developed a query frontend to facilitate searching and filtering the
data which will be collected.

After completion of the core goals, we additionally implemented two exten-
sion goals.

The first was to make the programs searchable for code patterns. We achieved
this by adding a RegEx matching functionality to the backend, which can be
queried through the web server.

The second was to find a way to measure performance differences across
Viper versions. For this, we extended the backend with a version bench-
marker which can be invoked through a query to the web server. This
verifies and benchmarks all programs with a specific verifier version. A
difference summary in verifier versions can then be requested from the web
server.

5.1 Future Work

In this section, we will address ways to expand the functionality of the tool
developed in this thesis in future work and potential uses for the data that
will be collected.

The features measured and generated by the FeatureGenerator are cur-
rently mostly focused on the syntactic properties of a program. For Silicon,
only the benchmarking results are additionally collected. Although proba-
bly not the primary focus, these tracked features can be expanded in future
work in case more information about the behavior of a specific backend is
needed. The SymbExLogger mentioned in section 3.3 should be of great use
for extracting more information about the Silicon verification process.

Another use case and the main reason for the development of this tool is
the identification of performance bottlenecks in the Viper infrastructure. We
can currently imagine a number of approaches for which our data would be
helpful to achieve this.

• Looking at badly performing programs, analysis of the generated fea-
tures could be used to find such sources. One might especially want
to look at correlations between different features and the overall run-
time, as certain combinations of these could disproportionately affect
verification performance.

• One could use the data generated by the benchmarker to find a corre-
lation between the performance of specific verification stages and the

40

5.1. Future Work

rest of the data stored about a program.

• The pattern searcher could be used to find common code patterns gen-
erated by specific frontends that might be non-optimized and which
introduce performance degradations.

41

Bibliography

[1] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A
verification infrastructure for permission-based reasoning. In Barbara
Jobstmann and K. Rustan M. Leino, editors, Verification, Model Checking,
and Abstract Interpretation - 17th International Conference, VMCAI 2016,
St. Petersburg, FL, USA, January 17-19, 2016. Proceedings, volume 9583 of
Lecture Notes in Computer Science, pages 41–62. Springer, 2016.

[2] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Frank S. de Boer, Marcello M. Bonsangue, Su-
sanne Graf, and Willem P. de Roever, editors, Formal Methods for Compo-
nents and Objects, 4th International Symposium, FMCO 2005, Amsterdam,
The Netherlands, November 1-4, 2005, Revised Lectures, volume 4111 of
Lecture Notes in Computer Science, pages 364–387. Springer, 2005.

[3] VerifiedSCION. https://www.pm.inf.ethz.ch/research/

verifiedscion.html. Accessed: 2024-02-06.

[4] Peter Müller. Lecture slides 5: Modeling - formal methods and func-
tional programming, 2022.

[5] Peter Müller. Building deductive program verifiers, December 2018.
Accessed: 2024–01-29.

[6] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient
SMT solver. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March
29-April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

43

https://www.pm.inf.ethz.ch/research/verifiedscion.html
https://www.pm.inf.ethz.ch/research/verifiedscion.html

Bibliography

[7] Viper Logo. https://www.pm.inf.ethz.ch/research/viper/

_jcr_content/pageimages/imageCarousel.imageformat.lightbox.

883770256.png. Accessed 2024-02-12.

[8] Malte Schwerhoff. Advancing Automated, Permission-Based Program Ver-
ification Using Symbolic Execution. PhD thesis, ETH Zurich, Zürich,
Switzerland, 2016.

[9] Stefan Heule. Verification condition generation for the intermediate
verification language sil. Master’s thesis, ETH Zurich, Zürich, Switzer-
land, 2013.

[10] Viper Tutorial. http://viper.ethz.ch/tutorial/. Accessed 2024-02-
12.

[11] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In 17th IEEE Symposium on Logic in Computer Science (LICS
2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, pages 55–74.
IEEE Computer Society, 2002.

[12] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames.
ACM Trans. Program. Lang. Syst., 34(1):2:1–2:58, 2012.

[13] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn,
João Carlos Pereira, and Peter Müller. Gobra: Modular specification
and verification of go programs. In Alexandra Silva and K. Rustan M.
Leino, editors, Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, volume
12759 of Lecture Notes in Computer Science, pages 367–379. Springer,
2021.

[14] Vytautas Astrauskas, Aurel Bı́lý, Jonás Fiala, Zachary Grannan,
Christoph Matheja, Peter Müller, Federico Poli, and Alexander J. Sum-
mers. The prusti project: Formal verification for rust. In Jyotirmoy V.
Deshmukh, Klaus Havelund, and Ivan Perez, editors, NASA Formal
Methods - 14th International Symposium, NFM 2022, Pasadena, CA, USA,
May 24-27, 2022, Proceedings, volume 13260 of Lecture Notes in Computer
Science, pages 88–108. Springer, 2022.

[15] Marco Eilers and Peter Müller. Nagini: A static verifier for python.
In Hana Chockler and Georg Weissenbacher, editors, Computer Aided
Verification - 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Pro-
ceedings, Part I, volume 10981 of Lecture Notes in Computer Science, pages
596–603. Springer, 2018.

44

https://www.pm.inf.ethz.ch/research/viper/_jcr_content/pageimages/imageCarousel.imageformat.lightbox.883770256.png
https://www.pm.inf.ethz.ch/research/viper/_jcr_content/pageimages/imageCarousel.imageformat.lightbox.883770256.png
https://www.pm.inf.ethz.ch/research/viper/_jcr_content/pageimages/imageCarousel.imageformat.lightbox.883770256.png
http://viper.ethz.ch/tutorial/

Bibliography

[16] ViperServer. https://github.com/viperproject/viperserver. Ac-
cessed: 2024-02-19.

[17] Viper IDE. https://github.com/viperproject/viper-ide. Accessed:
2024-02-19.

[18] Morteza Zakeri Nasrabadi, Saeed Parsa, Mohammad Ramezani, Chan-
chal Roy, and Masoud Ekhtiarzadeh. A systematic literature review on
source code similarity measurement and clone detection: Techniques,
applications, and challenges. J. Syst. Softw., 204:111796, 2023.

[19] Slick. https://scala-slick.org. Accessed: 2024-02-06.

[20] Michel Chilowicz, Étienne Duris, and Gilles Roussel. Syntax tree fin-
gerprinting for source code similarity detection. In The 17th IEEE In-
ternational Conference on Program Comprehension, ICPC 2009, Vancouver,
British Columbia, Canada, May 17-19, 2009, pages 243–247. IEEE Com-
puter Society, 2009.

[21] Cask. https://com-lihaoyi.github.io/cask/. Accessed: 2024-02-06.

45

https://github.com/viperproject/viperserver
https://github.com/viperproject/viper-ide
https://scala-slick.org
https://com-lihaoyi.github.io/cask/

Declaration of originality
The signed declaration of originality is a component of every written paper or thesis authored during the
course of studies. In consultation with the supervisor, one of the following three options must be selected:

Title of paper or thesis:

Authored by:
If the work was compiled in a group, the names of all authors are required.

Last name(s): First name(s):

With my signature I confirm the following:
− I have adhered to the rules set out in the Citation Guide.
− I have documented all methods, data and processes truthfully and fully.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for originality.

Place, date Signature(s)

If the work was compiled in a group, the names of all authors
are required. Through their signatures they vouch jointly for the
entire content of the written work.

1 E.g. ChatGPT, DALL E 2, Google Bard
2 E.g. ChatGPT, DALL E 2, Google Bard
3 E.g. ChatGPT, DALL E 2, Google Bard

I confirm that I authored the work in question independently and in my own words, i.e. that no one
helped me to author it. Suggestions from the supervisor regarding language and content are
excepted. I used no generative artificial intelligence technologies1.

I confirm that I authored the work in question independently and in my own words, i.e. that no one
helped me to author it. Suggestions from the supervisor regarding language and content are
excepted. I used and cited generative artificial intelligence technologies�.

I confirm that I authored the work in question independently and in my own words, i.e. that no one
helped me to author it. Suggestions from the supervisor regarding language and content are
excepted. I used generative artificial intelligence technologies�. In consultation with the supervisor, I
did not cite them.

Development of a data collection tool for the evaluation of a deductive verifier

Hostettler Simon

8046 Zürich, 20.02.2024

G Hoskin

	Contents
	Introduction
	Outline

	Background
	Program Verification
	Viper Tool Stack
	Viper Intermediate Language
	Silicon
	Carbon
	Frontends

	Source Code Similarity Detection

	Development
	Database Design
	Database Interaction in Scala
	Schema Definition

	Duplicate Data Reduction
	Similarity Measurement
	Fingerprinting Implementation

	Features and Benchmarking
	Submission Processing
	Pipeline Overview

	Query Frontend
	Frontend Modifications
	Extensions
	Pattern Searching
	Version Benchmarking

	Evaluation
	Performance Measurements
	Fingerprinting Performance
	Processing Performance
	Pattern Searching Performance

	Similarity Detection Testing

	Conclusion
	Future Work

	Bibliography

