Code Reachability and Soundness Verification Using
Refute in Prusti

Practical Work Project Description

Simon Hrabec

February 10, 2023

1 Introduction

Prusti and Viper Prusti[1] is a Rust verifier built on top of the Viper [4] verification infrastructure.
Besides Prusti there exist front-ends for other languages such as Gobra [5] (Go language) and Nagini [2]
(Python). The Viper infrastructure uses one of two verification back-ends - Silicon (based on symbolic
execution) or Carbon (based on verification condition generation). The back-end operates on the Viper
intermediate verification language that is generated by Prusti.

Adding refute statements to Prusti One of the basic features of the Viper intermediate verifica-
tion language (IVL) is the assert statement. Viper also supports its counterpart - the refute statement.
The assert statement ensures that this condition holds in any program trace. The refute statement
shows that the condition is not valid for all execution paths - It fails if the condition holds for all
possible traces. This project proposes to use the Viper refute statement in pursuit of two goals -
locating dead (unreachable) code and detecting unsound reasoning.

Refute implementation Viper internally converts refute statements into assert statements and
then inverts the results - it treats errors as correct behavior and issues an error for passing assert
statements. This approach is taken because the refute statement and a simple negation of the assert
condition are not equivalent.

2 Project goals

2.1 Detecting unreachable code

Unreachable code is not desirable for multiple reasons. It can unnecessarily enlarge the target binary
and possibly reduce performance (due to an increase in instruction cache misses). It muddies the
program (having no function, programmers might still read it) and most importantly the code might
have a function but its unreachability is caused by mistake. In case of the presence of a dead code, it
is desirable that the developer is notified with a warning. Modern compilers already have mechanisms
to do so and the following code snippets would generate a warning:

1 pub fn square(num: i32) -> i32 {
2 return O;

3 let result = num * num;

4 return result;

5

}

However, there are many examples where the compiler fails to detect the issue. The previous
example had code after a return statement, which does not require any reasoning. Another way
to get unreachable code is to have a branch that gets executed based on a condition that is not



satisfiable. The next example shows a sign function where the accidental use of non-strict comparisons
leads to incorrect behavior. This bug also manifests itself by making the third branch unreachable.
However, compilers are generally limited in their abilities to detect cases of unreachable code that
require condition satisfiability check and the Rust compiler does not issue a warning for this function.

1 fn sign(val: i32) -> 132 {
2 if val <= 0 {

3 -1

4 } else if val >= 0 {

5 1

6 } else {

7 0

8 }

9

The convenient implementation of pattern matching in Rust is also a way of branching. When also
used with match guards (added if condition) the compiler might fail to flag an arm as unreachable for
the same reasons.

Perhaps the simplest way to write code that is not reachable is to have an outright contradictory
condition.

1 pub fn square(num: i32, cond: bool) -> i32 {
2 if cond && 'cond {

3 let result = num * num;

4 return result;

5 }

6 return O;

7 }

This project proposes to use the refute statement to detect unreachable code. Placing a refute false
statement into a dead code will lead to a verification failure - if the code is not reachable then there is
no trace passing through this branch. In this case false can be proven which makes the refute statement
fail and issue an error. The general approach might be to place this statement at the beginning of
every basic block that corresponds to a user code.

2.2 Detecting unsoundness

The verification process relies on Prusti-generated axioms and on user-provided preconditions, post-
conditions, assumptions, and invariants. Mistakes in this part can introduce unsoundness and the code
will verify regardless of its correctness. It is rather simple to achieve such a state. It can be done in
several ways:

1. Assume statement - By inserting a contradiction such as an incorrect formulation of Fermat’s
last theorem: assume x*x*x + yxyxy != zxzxz

2. Abstract methods - Viper allows the use of a method without a body. In this case, the specifi-
cations are not checked and for some input, the postconditions might be contradictory.

3. Axioms - Similarly to abstract methods, unsoundness can be introduced by improper axioms.

Unsoundness can be detected by manually inserting assert false into the Viper code, which
should fail the verification under normal circumstances. Successful verification then shows the pres-
ence of unsound reasoning (invalid axiom, assumption, or abstract method postcondition). However,
this approach is tedious and not systematic. Hence, it is desirable to perform a similar action without
the user’s random trials. Inserting refute false statements into the code can then verify the absence
of unsoundness.

An issue arises as we try to use the same construct to detect different things - we need a way to



distinguish when are we dealing with unreachable code and when with unsoundness. The proposed
solution of the two features intends to place the refute false statements in different locations. In
case of an unreachable code the refute statement will fail at the beginning of the branch, but it should
pass in places before it. Similarly for unsoundness the refute statement should pass before the place
of interest (assume statement or abstract method call) but fail right after it. If we write an incorrect
assume statement at the beginning of a function all the refute statements inside branches will fail, but
we should not interpret those failures as unreachable code.

3 Tasks

e Add support to Prusti for prusti_refute! macro. Prusti already has support for prusti_assert!
and prusti_assume! macros [3]. This allows users to write Viper statements (assume/assert)
directly into Rust code that only exist in Viper for verification purposes and do not affect the
final binary. Implement a prusti_refute! macro that works analogously for the Viper refute
statement.

e Propose a way how to incorporate dead code checking into Prusti and implement it.
e Analogously do the same for unsoundness checking.

e Investigate how the dead code detection can interfere with unsoundness checking and propose a
solution to make these two optional features coexist.

References

[1] Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J Summers. Leveraging rust types
for modular specification and verification. Proceedings of the ACM on Programming Languages,
3(0O0OPSLA):1-30, 2019.

[2] Marco Eilers and Peter Miiller. Nagini: a static verifier for python. In International Conference
on Computer Aided Verification, pages 596—603. Springer, 2018.

[3] Jonas Maier. Towards verifying real-world rust programs. 2022.

[4] Peter Miiller, Malte Schwerhoff, and Alexander J Summers. Viper: A verification infrastructure
for permission-based reasoning. In International conference on verification, model checking, and
abstract interpretation, pages 41-62. Springer, 2016.

[5] Felix A Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, Jodo C Pereira, and Peter Miiller.
Gobra: Modular specification and verification of go programs. In International Conference on
Computer Aided Verification, pages 367—-379. Springer, 2021.



	Introduction
	Project goals
	Detecting unreachable code
	Detecting unsoundness

	Tasks

