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1 Introduction

In the past years, the Python programming language and associated libraries became popular
for data science applications due to the simple syntax and broad integration with common data
science libraries. For quick data inspection, the dynamic nature of Python seems very attractive
but introduces some challenges for analysis tools. Current tools mainly aim at detecting pro-
gramming errors that lead to unhandled runtime exceptions. But programming errors that do
not trigger exceptions at all can still have serious consequences, since the erroneous treatment
or the omitting of data items can lead to false results while showing no indication of the faulty
derivation of those results.

Our goal is to analyse data usage properties with a static analysis of the program, so without
presuming concrete input data that exposes a faulty behaviour. We target a sound approach
that gives us mathematical guarantees of the specified properties about any syntactically correct
program and input data.

Consider the following Python program, which calculates the average over some body height
data read from a tab-separated file, annotated with the gender. For one input line the gender
information is missing and due to a bug, this data item is not included in the calculation.

from functools import reduce
import fileinput

def average(data):
values = data| 'm’] + data[’f’]
return reduce(lambda x, y: x + y, values) / len(values)

if __name__. — 7 __main__":

data = {}

for line in fileinput.input():
(name, gender, body_height) = line.strip ().split(’\t")
if not gender in data:
data[gender] = []
data[gender].append(int (body_height))

print (data) # {'f’: [153, 169, 166], 'm’: [188, 169], ’’: [178]}
print (average (data)) # 169.0
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To detect such problems we have to analyse the potential effect of all input data items and
report unexpected cases, such as no usage of some data items.

2 Assumptions

We assume that the programs
e are deterministic,
e are single-threaded,
e terminate on any correctly formatted input,

e have a single pair of an initial and a final control point (before the initial and after the
final statement, respectively),

come type annotated[ﬂ

3 Core Goals

We list the mandatory tasks (on the right side, a rough estimate for the time that we allocate
to the respective tasks):

e Define what is considered as an input data item to the analysed program. The (%)

simplest approach, without the need for user input, is to assume that every line

of input read from Python’s standard input sys.stdin is a data item. Or, as in

the example above, we could assume that the input has a tabular form and each

tab is a data item. This allows evaluating the analysis on programs with a more
structured input (e.g. relational).

The size of the input is assumed to be finite but its size is not statically known.

This adds a real challenge compared to related analysis, such as the truly-live
variable analysis (see Related Work), which assume that the number of items of
interest is statically known (e.g. all variables in the program).

!Type annotations are available in Python > 3.5, https://docs.python.org/3.5/1ibrary/typing.html



https://docs.python.org/3.5/library/typing.html

e Formalize the intuition of the property “An input data item is used/unused”.  (%*)
A definition for a fixed number of input data items is given here. Let X be the
finite set of program variables. Each variable X; € X has a (possibly infinite)
domain D; of valid values with an equivalence relation =. To ease explanation
we assume that the fixed number of inputs and outputs are stored in specific
variables YV C X and U C X, respectively.

Let X be the set of all program states. A program state s € X is a pair consisting
of a program label and an environment that defines the values of the variables
X at the program control point designated by the label. We use the shorthand
notation s(X;) to refer to the value of X; in the environment belonging to state
s. Let Z C X be the set of initial program states, which are the states with a label
designating the initial control point before the first statement of the program.
Analogously, 2 C . is the set of final program states with a label designating the
final control point after the final statement. The environments of initial states
must be valid in the operational semantics of the program. A state t is called
reachable from state s, denoted by the predicate reach(s,t), if there is a trace
from s to t.

The variable V; is considered used by a program if and only if there exist two
initial program states s, s’ € Z with equal values for all input variables except the
input value for V; and there are two final program states t,t’ € Q, reachable from
s,s', respectively, with unequal values for at least one of the output variables.
Formally,

used(V;) = 3s, 8’ € I,t,t' € Q: reach(s,t) A reach(s',t")
AVV; €V (s(V;) =8(Vj) < j#i) AU, €U : t(Uy) # ' (Uyg).

Similar properties have been stated and built analysis for in the context of secure
information flow [4].

e Design a static analysis within the framework of Abstract Interpretation [8] that — (H*x)

approximates the solution to the question: Does a data item fulfill the used
property defined above? In particular, this requires the design of an abstract
domain, transfer functions for the statements/expressions of Python programs
(or a subset of it) and also the finding of a suitable widening operator.
It must be figured out how far the Interprocedural Dataflow Analysis approach
[9] can be adapted. In the cited paper, a certain class of problems is solved, that
includes the problem of finding truly-live variables, which is closely related to
our problem.

e Implement the designed analysis (in Python) and evaluate the analysis on a  (%*)
bunch of example programs created manually and deducted, for instance, from
the Data Programming course at the University of Washington [I].



4 Extensions

We list the following tasks as possible extensions (on the right side, a rough estimate for the
time that we allocate to the respective tasks):

e Extend the class of analyzable programs. So far we required the programs to  (xxx)
have an certain structure of input. We could extend that to either let the user
specify the structure in some simple specification language or we could try to
derive the structure from the program itself.

e Support external data science libraries (the NumFOCUS nonprofit organisation (%)
lists some of them[2]). A possibility is to use appropriate annotations to library
function calls.

e Extend the analysis to more sophisticated properties. While the used/unused — (xxx)
property helps finding bugs where data items have no effect on the result, we
could be interested in a notion of “strength of effect” of data items. For instance,
this could allow us to formulate and check data usage properties such as “every
data point is weighted equally”.

e Use testing on concrete inputs to reduce the number of false positive alarms. (%)
Whenever our analysis reports an unused data item, we can potentially qualify
this as a false alarm by testing with (cleverly choosen) concrete input values that
show that the result indeed depends on the data item in question.

e Rigorously prove the existence of a hierarchy of Galois connections between — (kxxx)
the real program semantics and the choosen program abstraction following the
calculational approach of Abstract Interpretation [7].

5 Related Work

As mentioned already, the Interprocedural Dataflow Analysis [9] solves, among others, the truly-
live variable problem. In short, this is the problem of determining if a variable is transitively
live, that is, if the value written to a variable can flow to defined output statements. The
approach in [9] uses a graph reachability algorithm. By encoding the required property in a
graph, they heavily rely on the fact that the number of variables is known statically, which is
not the case for our problem.

A work with a similar goal is CheckCell [3] which analyses the data usage on Microsoft Excel
spreadsheets. While they also try to find anomalies in the effect of data input (cells), their
approach is different. CheckCell uses a probabilistic approach to estimate the impact of input
cells on result cells by looking at the changes occurring in the result cells when changing the
input cells. It does not find errors in the spreadsheet if the data does not expose them. Instead,
we will focus on the program rather than the data and prove data usage properties independently
from concrete data.

Another work [6] builds a static analysis for Excel spreadsheets that detects type-unsafe oper-
ations that are possible in Excel due to its weak type system. This focuses on the program,
but only on finding errors introduced by unintended run-time type-unsafe operations. Since we
assume that our programs come type annotated, we will assume those errors are already ruled



out. So the problems solved in the paper and our stated problem are orthogonal.

An only partial related paper [5] discusses a static analysis to determine if a program repre-
sents a continous function, or equivalently, if infinitesimal changes to its inputs can only cause
infinitesimal changes to its outputs. This is related in the sense that we also want to inspect
the effect of the inputs on the outputs, except that we are satisfied with any potential effect on
the output. In addition, their analysis is targeted at very restricted pseude code.
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