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1 Introduction

1 Introduction

Software correctness is a major problem in computer science and many approaches exist. One
of them is static veri�cation, where the correctness of a certain piece of software is proven
under any circumstances, that is regardless of the programs input or the behaviour of other
software components that use it.

Proving correctness of sequential programs is already hard, and the veri�cation of concur-
rent software is considerably more di�cult. But with today's clear trend towards multi-core
processors, the challenge to verify concurrent software becomes more and more important.

Chalice [LM09] is both a research language and static veri�er for concurrent programs. It is
a collaboration of Peter Müller, Rustan Leino from Microsoft Research and Jan Smans from
Katholieke Universiteit Leuven, and this Bachelor thesis is concerned with improvements to
its veri�cation methodology.

Chapter 2 gives an introduction to Chalice and Boogie, such that people who are not familiar
with these tools can still follow the rest of this report. Chapter 3 then presents the new
permission model developed as the core of this Bachelor thesis, while Chapter 4 talks about
an extension that further enhances Chalice's expressiveness. We evaluate the new permission
model in Chapter 5, mention additional work of this Bachelor thesis in Chapter 6 and conclude
in Chapter 7.
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2 Background

2 Background

Chalice and Boogie are two veri�cation tools that this project is related to. Therefore we give
a very brief overview to them in this section. We only give information su�cient to follow
the rest of the report; full details can be found in [LM09, LMS09] and [ByECD+06, Lei08] for
Chalice and Boogie, respectively.

2.1 Chalice

Chalice is an object-based language which allows the developer to specify the intended be-
haviour of the code. In particular, Chalice supports contracts such as pre- and postconditions
or loop invariants. These annotations are then checked statically by the veri�er to ensure that
they can never be violated.

Chalice translates its input program to the intermediate veri�cation language Boogie [ByECD+06]
for which veri�cation conditions in �rst-order logic can be generated. These veri�cation con-
ditions can then be solved by an SMT solver such as Z3 [dMB08]. The veri�cation process is
depicted in Figure 1.

Chalice Program 
Verifier

VC Generator 
(Boogie)

SMT Solver (Z3)

Input Program
in Chalice

Boogie Verification 
Conditions

Verification 
Result

Figure 1: Veri�cation process of Chalice.

This section describes Chalice as it existed before this project. In particular, none of the
modi�cations that we applied as part of this project will be discussed here.

This description of some of the features of Chalice is loosely based on [LMS09, LM09].

2.1.1 Classes, Methods and Speci�cations

Let us look at a simple, sequential program to introduce the basic concepts of Chalice. A
program in Chalice consists of one or several classes, which can contain �elds and methods.
For instance, we can write a class Math that provides a method div to compute the result of the
division of two integers a and b and returns the result as c (which is not very interesting from
a programming point of view, but will illustrate how Chalice works). As shown in Listing 1,
we can use a precondition to indicate that the method may only be called for values of b other
than 0. Furthermore, we can specify what method div computes.

We can also write a more speci�c method div2 that divides an integer value by 2, and uses the
more general method internally. Clearly, in this case we do not need a precondition any more,
and our postcondition can be more speci�c. In the implementation, we can call the method
div. At this point, we need to satisfy the precondition (which we do, as 2 6= 0), and we can
assume the postcondition afterwards. This method is also shown in Listing 1.

2.1.2 Permissions

Permissions are the central component in the veri�cation methodology of Chalice. They are
used to determine whether a piece of code can read or write to a memory location, and these
permissions are held by a particular invocation of a method, also called an activation record.
We denote a full permission to the �eld f of an object o by acc(o.f), which indicates exclusive
access to this location.

5



2 Background

class Math {
method div(a: int, b: int) returns (c: int)

requires b != 0
ensures c == a / b

{
c := a / b

}

method div2(a: int) returns (c: int)
ensures c == a / 2

{
call c := div(a, 2)

}
}

Listing 1: A simple, sequential program in Chalice.

An activation record can also hold less than a full permission, which only allows read access.
We can think of a full permission as representing 100%, in which case any percentage less than
100 indicates a read permission. Such a permission, e.g., one corresponding to 15%, is denoted
by acc(o.f,15).

Consider the example shown in Listing 2: The execution starts with a single activation record
for method main, which does not hold any permission. Then, a new object c of type Cell is
created, which transfers full permission to the current activation record. This allows us to
write to location c.f on the next line. We can also call method increment, as we are able to
ful�l its precondition, which requires us to have acc(c.f).

The postcondition of increment then transfers the permission to c.f back. Note that the
postcondition also guarantees us some functional properties of the method. In particular, it
ensures that the value of f is exactly one greater than before. This is expressed using the old
construct, where old(e) denotes the value of expression e in the pre-state of the method.

The method square that is called next demonstrates how read permissions can be used. Since
square only read the value c.f, it is enough to have a read permission to that location. In the
example we use 5%, but this amount is chosen rather arbitrarily. In fact, any positive amount
would be enough for the method to verify.

We can use Chalice to prove that there are no errors in our example, and indeed the veri�cation
successfully �nishes with the following output:

Boogie program verifier finished with 7 verified, 0 errors
Chalice translated our example to seven Boogie methods, three corresponding to the methods
of Cell, and four additional methods generated internally to ensure the well-formedness of our
contracts.

More permissions. Besides the already mentioned permissions that correspond to a per-
centage, there is another type of permission available in Chalice. It is denoted by rd(o.f) and
we can think of it as one ε of the locations permissions for some in�nitesimal ε. Similar to
the percentages, we can denote multiple such epsilon permissions by rd(o.f,n), denoting n · ε.
Such an epsilon permission cannot be split further; it denotes the smallest possible amount of
permission in the system.

The interaction with the previously mentioned percentage permissions works as follows: As
an epsilon permission is an arbitrarily small yet positive amount, it is clearly smaller than
any percentage, in particular less than 1%. In fact, any (�nite) number of epsilon permissions
is smaller than 1%. This makes it possible to call a method that requires rd(o.f,n) (i.e., n
epsilon permissions) if we hold at least one percent of the permission to that location, or m
epsilon permissions with m ≥ n. In summary, the following permissions are available in Chalice

6



2 Background

class Cell {
var f: int;

method main () {
var f2: int;
var c: Cell := new Cell;

c.f := 0;

call c.increment();
call f2 := c.square();

}

method increment()
requires acc(this.f);
ensures acc(this.f) && this.f == old(this.f)+1;

{ this.f := this.f + 1; }

method square() returns (f2: int)
requires acc(this.f,5);
ensures acc(this.f,5) && f2 == this.f*this.f;

{ f2 := this.f*this.f; }
}

Listing 2: Illustrative example of Chalice's use of permissions.

(all referencing the �eld f of object o):

• Percentage permissions, denoted by acc(o.f,p) with parameter p between 1 and 100
inclusive. The often used full permission acc(o.f,100) can be abbreviated by acc(o.f).

• Epsilon permissions, denoted by rd(o.f,n) with positive parameter n. Corresponds to a
permission of n · ε. A permission denoting a single epsilon can also be written as rd(o.f)
for short.

Interpretation of permissions. It is important to understand that permissions are used for
the veri�cation only and are part of the so-called ghost state. In the �nal compiled program,
permissions do not play any role and in fact can be removed altogether.

We have seen that only a full permission acc(o.f) allows us to write to a location, while any
other positive amount of permission allows us to read the location, but not modify it. As
permissions cannot be duplicated or forged, the sum over all activation records of all permis-
sions to a particular memory location can never exceed 100%. Also, whenever more than one
activation record holds permissions to the same location (e.g., using threads, as seen next),
both can only have a read permission. This prevents data races.

Permission encoding. Permissions are represented as a pair (p, n) of two integers p and
n. The �rst part, p, corresponds to the percentage of a permission, and can have any value
between 0 and 100. The second part then stores the number of epsilon permissions, and can
have any integer value. Intuitively, such a pair corresponds to p%+n ·ε, and this value must be
greater or equal than 0 for the permission to be valid.For instance, the permission in Chalice
are encoded as follows

• acc(o.f): (100, 0)

• acc(o.f,p) for a percentage p between 1 and 100: (p, 0)

• rd(o.f): (0, 1)

7



2 Background

• rd(o.f,n) for a positive number n: (0, n)

Of course during veri�cation di�erent amounts of permission can also occur. In particular, it
is possible that the number of epsilon permissions is negative. For instance, if we start with
a full permission, which is encoded as (100, 0), and give away one epsilon, we are left with
(100,−1), which corresponds to 100%− ε. However, for the permission to be valid we require
(p > 0) ∨ (p = 0 ∧ n ≥ 0). Only permissions that ful�l this property represent a non-negative
amount.

Theoretical background of permissions. The permissions used in Chalice are base on
Boyland's fractional permissions [Boy03]. Boyland proposed linear capabilities (which he called
permissions) for checking programs for interference, and in particular he introduced �fractional�
permissions. Any fraction of a permission can be used to read a location, while only the full
permission permits write access. Chalice uses this idea, but does not allow the full complexity
of rational numbers. Chalice rather uses percentages, which are integer and can be between 0
and 100.

2.1.3 Threads

Chalice allows a program to work concurrently by using multiple threads. Creating threads is
possible with the well-known fork-join mechanism. To start a possibly long-running computa-
tion in another thread, we can fork a method m on object o as follows:

fork o.m(arg1, ..., argn)

This statement starts a new thread that runs method m on object o, possibly using some
arguments argi. The statement is non-blocking, that is the current thread does not wait for
the newly started thread to complete. The statement also transfers all permission mentioned
in the precondition of m to the new thread.

From a veri�cation point of view this statement requires us to ful�l the precondition of m, and
since m might not have �nished before we execute the next statement, we cannot assume the
postcondition afterwards. However, we can join the other thread again later during execution.
To identify the new thread, fork optionally returns a token, which allows us to join this
particular thread. At that point, method m has �nally �nished, and returns its result1, and we
can assume the postcondition. In particular, any permission mentioned in the postcondition
is transferred back. The following lines illustrate this:

fork tk := o.m(arg1, ..., argn)
/* ... */
join res1, ..., resn := tk;

Note that the usual method call introduced earlier can be seen as a fork immediately followed
by the corresponding join statement. These two statements have the same e�ect as a regular
method call. The only di�erence possible is a di�erent performance behaviour at runtime.

2.1.4 Monitors

Similar to Java or C#, every object in Chalice can be used as a monitor to control access to
data structures in possibly sophisticated ways. To allow threads to give up their permission to
certain locations in order that other threads can work on that location, a monitor in Chalice
can hold permission. When the monitor is acquired, the permission is transferred from the
monitor to the acquiring thread, and on releasing the lock the permission goes back to the
monitor. This allows di�erent threads to compete for resources and work on these resources

1Note that Chalice allows a method to have any number of output parameters.
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in parallel. While the fork/join mechanism introduced so far allowed to transfer permission
only when threads are forked or joined, monitors are much more �exible and allow to threads
to exchange permissions while they are running. This enables programs to use shared data
structures such as a shared bu�er.

Object life-cycle. An object in Chalice is in one of three possible states: not-a-monitor,
available or held. The object life-cycle starts in the state not-a-monitor, where the object
cannot be used as a monitor yet. However, the statement share o transitions the object o
from not-a-monitor to the available state. Now, the statement acquire o can be used to
transition o from available to held and release o to go back to held. Finally, unshare o can
be used to transition o from held to not-a-monitor.

Monitor invariants. The permissions held by a monitor are speci�ed by its monitor invariant.
Just like other speci�cations, monitor invariants can contain access assertions (i.e., permissions)
and pure assertions (properties about variables). The monitor invariant has to hold whenever
the object is in the state available, but not in the other two.

Therefore, when we share an object, we have to make sure that the monitor invariant holds
and that we have the required permissions. These permissions are then stored in the monitor,
and the object is ready to be used as a monitor. When a thread actually acquires the monitor,
it may assume the monitor invariant. When the thread releases the monitor again, it has to
provide the necessary permission, and make sure that the monitor invariant holds.

Example. Consider the example shown in Listing 3. We have a class Cell that holds an
integer. Its monitor invariant contains the full permission to that integer, and speci�es that
the value of f must be larger than 1. In the client code (method main) we �rst create a cell c
and set c.f to 4. This allows us to share the object, as we can provide the necessary permission,
and the monitor invariant holds (since f = 4 > 1).

class Application {
method main () {

var c: Cell := new Cell { f := 4 };
share c;
acquire c;
c.f := 0; // it is ok to break the monitor invariant here
c.f := c.f+100; // monitor invariant re-established
release c;

c.f := 3; // ERROR: insufficient permission to write to c.f
}

}
class Cell {

var f: int;
invariant acc(this.f) && this.f > 1;

}

Listing 3: Monitors in Chalice can contain permission.

Note that the permission to c.f has been transferred to c, and therefore we cannot read or
write that location any more, as we are left with 0%. However, we can acquire the object,
which transfers the permission back to us. This allows us to update the location, even in ways
that break the monitor invariant (we set c.f to 0). However, when we release the object again,
the invariant has to hold, and we lose the permission to the �eld f again.

When we try to write to c.f after releasing the object, this fails as we do not hold enough
permission. In fact, we do not hold any permission at all to c.f, as the full permission is stored
in the monitor.

9
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2.1.5 Data Abstraction

Chalice provides two kinds of abstraction in speci�cations; predicates can be used to abstract
over pure and access assertions, while functions provide abstraction over pure assertions only.

Let us look at functions �rst. They allow us to specify behaviour without exposing a class'
internal representation. That is, we can abstract over the values of memory locations. In
Listing 4 we use a function getCredit to abstract over the value of the �eld credit. Functions
can have preconditions, in particular to get the necessary permissions. However, functions
cannot change the program state (but only read it). This is also why permissions required by
a function need not be explicitly returned to the caller via a postcondition, but rather they are
transferred back automatically.

class BankAccount {
var credit: int;

function getCredit()
requires rd(this.credit);

{ this.credit }

method withdraw(amount: int)
requires acc(this.credit) && 0 < amount && amount < getCredit()
ensures acc(this.credit) && getCredit() == old(getCredit()) - amount

{
this.credit := this.credit - amount

}
}

Listing 4: Using functions to abstract over values of memory locations.

Note that the internal representation of a bank account in Listing 4 is not yet completely
hidden, as the precondition still mentions the �eld credit. This can be changed by using
predicates.

Predicates abstract both over permissions and the values of memory locations. For instance,
if we look at the bank account example again, but also using predicates this time, we can
introduce a predicate valid. This predicate is the abbreviation of the permission to credit
and the fact that credit contains a non-negative value, as shown in Listing 5.

There are two possible views on a predicate, the abstract (or folded) and the concrete (or
unfolded) view. While the abstract view is independent of the predicates de�nition, this
de�nition is expanded in the concrete view. We can switch between those two views by using
the statements fold and unfold. For instance, in method withdraw we expand the predicate
valid to its concrete view and thus get access to credit. This allows us to update the location,
and then we fold the predicate again. Folding the predicate requires us to have access to
credit, and we need to show that credit holds a non-negative value. That is, we can think
of fold valid being a method call with precondition acc(this.credit) && credit > 0 and
postcondition valid.

Note that also in the precondition of the function getCredit we now can replace the access
permission by the predicate. To temporarily unfold the predicate and peek at the value of
credit, we can use the unfolding statement.

2.1.6 Loops

Loops in Chalice are denoted by the while keyword and it is possible to specify a loop invariant.
The loop invariant needs to hold immediately before the loop, and the loop body must preserve

10



2 Background

class BankAccount {
var credit: int;

function getCredit()
requires valid;

{ unfolding valid in this.credit }

predicate valid { acc(this.credit) && this.credit > 0 }

method withdraw(amount: int)
requires valid && 0 <= amount && amount <= getCredit();
ensures valid && getCredit() == old(getCredit()) - amount;

{
unfold valid
this.credit := this.credit - amount
fold valid

}
}

Listing 5: Predicates bring even more abstraction than functions.

this invariant. An example of a program using a loop is shown in Listing 6.

class Application {
method main () {

var c: Cell := new Cell { f := 4 };
var i: int := 2;

while (i < c.f)
invariant acc(c.f);
invariant i > 0;

{
c.f := c.f*i;
i := i+1;

}
}

}
class Cell {
var f: int;

}

Listing 6: Loops and loop invariants.

2.1.7 Modelling Permission Transfer

Permissions are transferred between activation records, thread and monitors at various places
in Chalice. For instance, method calls, acquire and release statements, and forks transfer
permission. We model all of these with two operations called Inhale and Exhale.

Intuitively, to inhale an expression E means that we get the permission mentioned in E, and
we can assume the pure assertions in E. Furthermore, we lose all information about a location,
if we gained permission to a location we didn't have permission to before. This models the
fact that another thread might have changed the location, and is modelled with the havoc
command of Boogie (for a description of havoc, see Section 2.2.1). Exhaling an expression E,
on the other hand, means to assert that we have at least the amount of permission mentioned
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in E, and then removing these permissions. Furthermore, we assert the pure assertions in E.

Next, we introduce two shorthand notations to check whether we have enough permission.
CanWrite(o,f) can be used to indicate full access to �eld f of object o, and CanRead(o,f)
similarly for read access. Knowing how permissions are encoded, we can easily give the
de�nitions for CanRead and CanWrite as follows:

CanWrite(o,f) ≡ let (p, n) be the permission to o.f in p = 100 ∧ n = 0
CanRead(o,f) ≡ let (p, n) be the permission to o.f in p > 0 ∨ n > 0

With these de�nitions, we can now rather easily express the veri�cation conditions in Chalice.
When we verify a method m, we can assume its precondition pre(m), verify its body and then
check that the postcondition post(m) holds. Using the new terminology from above we �rst
inhale the precondition (and thus also get all the permissions mentioned there), then verify
the body and exhale the postcondition in the end. This exhaling corresponds to checking
that the postcondition holds, and that we have the necessary permissions (as speci�ed by the
postcondition).

In this manner, we can also give the precise veri�cation semantics of all statements. For
instance, a method call call m() corresponds to the following sequence

Exhale [pre(m)];
Inhale [post(m)]

Intuitively, we need to check that the precondition holds (including that the necessary permis-
sions are available) before the call (which is done by exhaling pre(m)) and then can assume the
postcondition (and gain any permissions mentioned in post(m)) afterwards.

For all other statements, similar veri�cation conditions are necessary. The full semantics can
be found in [LM09].

2.1.8 Other Features

Chalice comes with many more features than the ones presented here. For instance, it supports
deadlock prevention, dynamic lock reordering and inference of certain annotations. However,
these are not relevant for the rest of the report and are therefore omitted. Again, we refer the
interested reader to [LM09] or [LMS09].

2.2 Boogie

Boogie is an intermediate veri�cation language and is used by various static veri�ers. It also
abstracts over the interfaces of several theorem provers. It is an imperative language that
allows the easy encoding of veri�cation conditions.

In this section we describe a very small subset of the features of Boogie. The full documentation
can be found in [ByECD+06], but the description here will su�ce to follow the rest of this
report.

2.2.1 Assumptions and Assertions: Encoding Veri�cation Conditions

Assertions are used to prescribe properties that need to be proven. For instance, a method call
b.m() might result in an assertion that the receiver is not null, i.e., assert b 6= null;.

On the other hand, an assume statement is used to introduce an assumption, that is information
that the prover can use. It has the e�ect of rendering traces where the assumption would not
hold infeasible. For instance, assumptions can be used to constrain the range of values of a
variable at a given program point. Boogie allows one to assign an arbitrary value to a variable
using the havoc statement. An assumption can then be used to limit the range of possible
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values that this variable can take. For example, we can assign an arbitrary value between 0
and 200 to the variable i using the statements havoc i; assume 0 ≤ i ∧ i ≤ 200;.

2.2.2 Maps

Boogie supports polymorphic map types to denote updateable maps. Such a map type consists
of a number of domain types, and a single range type. Furthermore it is possible to have one
or more polymorphic type arguments. The domain types are written comma-separated inside
square brackets followed by the range type. For instance [int]bool denotes a map from integers
to boolean values. For instance, a typical use of such maps is to encode the heap as a map
from object references and �eld names to values.

Chalice uses maps for several things, including to encode the permission mask, which is used to
keep track of the amount of permission we have at any particular point in time. For instance,
if we want to use the mask to keep track of the percentage of permission (let us ignore epsilon
permissions here for a moment) that is currently available, we can use a map as shown in
Listing 7. We �rst de�ne a type ref for references and a polymorphic type Field a for �elds

type ref;
type Field a;
type MaskType = <a>[ref,Field a]int;
var Mask: MaskType;

Listing 7: A permission mask to keep track of percentages.

of type a. Then, our mask is a map from references and �elds to an integer. These maps can
be read and modi�ed, as is shown in Listing 8.

const unique field.f: Field (int);
var obj: ref;
/* .. */

// read permission to obj.f
var i: int;
i := Mask[obj, field.f];

// set permission to obj.f to 0
Mask[obj, field.f] := 0;

Listing 8: The permission mask can be updated.

13
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3 The New Permission Model

In this section we present the new permission model. We �rst motivate why the current model
needs to be changed at all, and then present our new permission model. An evaluation of this
new model follows, along with a description of several steps towards the �nal version of the
model, including the problems we encountered.

3.1 Motivation

We identi�ed two main problems with the old permission model of Chalice. Both of these
issues are addressed by our new permission model.

3.1.1 Permission Splitting

The old encoding does not allow permissions to be split arbitrarily many times (a single epsilon
permission was not splittable at all). The fact that any percentage permission can be split in
an arbitrary (�nite) number of epsilon permissions is useful and allows the veri�cation of many
examples. However, this is not always enough, as the following example illustrates.

Consider a program that works on a large binary tree of unknown size. At every node, the
program creates two additional threads that will process the child nodes. Furthermore, we
assume that there is some global data that all of those threads need access to. The thread on
the root has a full permission to this global data, and needs to split this permission in some
way to give its child threads the possibility to perform their work. However, if we don't know
the size of the tree, we have to be prepared that the child threads require a permission that can
be further split arbitrarily often. However, this is exactly what Chalice cannot provide: if we
give some number of epsilons to one of our children, we cannot make sure that the child thread
does not (recursively) spawn more threads than it has epsilon permissions. On the other hand,
giving a percentage permission does not work either, as we can split such a permission in at
most 100 pieces before we are left with only 1%. At that point, we would have to split into
epsilons, which again leads to the same problem.

Such an example with a binary tree is shown in Listing 9. We pass an object data to the method
work, where data is the global data that every thread needs read access to. The problem is
now to write the precondition of this method work, where we want to require some kind of read
permission to data.f. But no matter what permission we put there, this does not allow us to
(always) recursively call work on our children.

3.1.2 Permissions and Information Hiding

If we specify a method, the programmer has to decide whether the method requires read or
write access to the relevant memory locations. This should already be enough, as it does not
matter how much the method exactly gets in case of the read permission. Any positive amount
of permission will do and allow us to access the memory location.

In contrast, the old permission model of Chalice required us to specify the precise amount for
every permission, for instance an epsilon permission, or 2%. The speci�cation of a method
contains more information than would actually be needed.

To illustrate the problem, consider a method m that performs two subtasks, both requiring
read access to a certain location o.f. If we execute the two subtasks sequentially (shown as
m1 in Listing 10), one epsilon of the permission to o.f is enough for method m. However, if we
later decide that the two task should be executed in parallel using two threads (as shown in
Listing 10, method m2), we cannot change the implementation without changing the contract
of m as well, even though we still only require read access.
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class Node {
var l: Node; var r: Node;
method work(data: Data)

requires valid;
requires /* read access to data.f */;

{
unfold valid;
if (this.l != null) { fork this.l.work(data) }
if (this.r != null) { fork this.r.work(data) }
/* perform work on this node, using data.f */

}
predicate valid {
rd(this.l) && rd(this.r) && (this.l != null ==> this.l.valid)

&& (this.r != null ==> this.r.valid)
}

}
class Main {
method main(tree: Node)

requires tree != null && tree.valid;
{
var data: Data := new Data { data.f := 1 }
fork tree.work(data);

}
}
class Data { var f: int; }

Listing 9: Working on a binary tree with arbitrary permission splitting.

On the other hand, it is also not a good idea to just require large amounts of permission in
the �rst place, such that a later change in the implementation (hopefully) is possible without
changing the speci�cation. If we did this, clients that only have a small amount of permission
cannot call such a method any more.

When specifying a method in the old permission model of Chalice, we have to give some infor-
mation on how we use the permission away through the speci�cation. This violates information
hiding and makes the process of specifying methods non-modular: In general we cannot decide
how much permission we require for a method m without knowing the amount of permission
the other methods in our system require. This additional work of choosing the precise amounts
of read permissions is only imposed by the methodology.

3.2 The New Permission Model

To overcome the shortcomings of the old permission model identi�ed in Section 3.1.2, we recall
Boyland's fractional permissions [Boy03]. There, a permission corresponds to a rational number
between 0 and 1, where 1 indicates exclusive access, and any other positive value corresponds
to a read permission. Such fractions have the beautiful mathematical property that they can
be split arbitrarily often into two positive amounts.

A major problem with fractional permissions is that the user has to pick appropriate values in
the speci�cation. This can be very tedious and for the programmer it would su�ce to think
more abstractly only in terms of read or write permissions. Intuitively it is not important
what precise fractions are used, only the di�erence between full permission, read permission
and no permission matters to the programmer. This commitment to speci�c fractional in the
speci�cation also leads to the information hiding problems mentioned before.

To enable a more abstract view, we use two permissions in our methodology: By acc(o.f)
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class Worker {
var f: int;

method m1()
require rd(this.f,1);

{
call subtask_1();
call subtask_2();

}

method m2()
require rd(this.f,1);

{
fork tk1 := subtask_1();
fork tk2 := subtask_2(); // ERROR: we have no permission left to start

subtask 2
join tk1; join tk2;

}

method subtask_1/2()
requires rd(this.f,1);
ensures rd(this.f,1);

{ /* perform some computation involving f ... */ }
}

Listing 10: Information hiding problem in the old permission model.

we denote the full permission to �eld f of object o, and similarly we use rd(o.f) as a read
permission to that location, which we call abstract read permission. Clearly, the full permission
corresponds to the fraction 1 and we interpret rd(o.f) for some location o.f as an unknown,
positive fraction. Even though in the previous model rd(o.f) was also used to denote read
permission, there is no further relation. In particular, the abstract read permission is not an
epsilon permission.

Note that every read permission rd(o.f) can in principle correspond to a di�erent fraction,
even if the referred memory location is the same. An important question when designing
this new permission model was, in which situations these fractions should not be completely
arbitrary, but rather correspond to the same fraction in order to give useful properties.

One common example is that a method requires read access to some location o.f and then
returns this permission again via the postcondition. That is, both the pre- and postcondition
mention rd(o.f). In this case, it is often convenient that those two permissions correspond to
the same fraction. For instance, if we start with full permission to o.f and call such a method,
we would like to still be able to write to o.f after the call. That is, two instances of a read
permission to the same location in the contracts of a method should correspond to the same
amount.

However, a method might return permission to a certain location not via the same reference it
got the permission. For instance, if the precondition of the method mentions rd(a.f) and the
postcondition rd(b.f), we usually cannot decide whether these two abstract read permissions
should be interpreted as representing the same amount. In general, we do not know full
aliasing information statically. For this reason, we adopt the following rule: If a method
speci�cation mentions abstract read permission in the pre- or postcondition for any location,
then the amounts of all these abstract read permission are identical.

We will later see, why this restriction of having the same fraction for all abstract read permis-
sions does not limit our model in practice.
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3.2.1 Veri�cation of Methods

To verify a method, we have to give some meaning to the abstract read permission that might
be mentioned in its speci�cation. To this end, we introduce a variable πmethod that corresponds
to the amount of any abstract read permission. By design, we do not know this value. However,
we can give the following underspeci�cation that will su�ce to verify the method:

0 < πmethod ≤ 1

Because we do not choose a speci�c value for πmethod, a successful veri�cation proves that the
method is correct for any value of πmethod in (0, 1].

This allows us to then use the same technique as in the old version of Chalice; we inhale the
precondition, verify the method's body and then exhale its postcondition. If the postcondition
mentions a read permission rd(o.f), then we need to ensure that we have at least fraction
πmethod of the permission to o.f.

Let us look at an example. Listing 11 shows a simple Chalice program which we use to
illustrate how the veri�cation works with the new model. When we verify method m, we �rst
�x the fraction pi_method using the havoc statement and a simple assumption. Then we inhale
the precondition, verify the method body (which we don't consider yet) and then exhale the
postcondition. A high-level Boogie-like encoding of those steps can be seen in Listing 12. For
brevity we only show the parts relevant for the new permission model and we will do so in all
the following examples as well.

class A {
var f: int;
var g: int;

method m()
requires rd(this.f) && acc(this.g);
ensures rd(this.f);

{
this.g := this.f;
call n();

}

method n()
requires rd(this.f);
ensures rd(this.f);

{ /* ... */}
}

Listing 11: Verifying methods in the new permission model.

Looking more closely at Listing 12, we can see that we use the map Mask as our permission
mask. As permissions correspond to fractions, this mask has rational numbers as its range type.
When we inhale the precondition of m, the permission is transferred to the current activation
record and thus we increment our mask. We increment the permission to this.f by pi_method,
and the permission to this.g by 1, as 1 corresponds to the full permission. At then end of the
method, we exhale the postcondition and therefore have to provide the necessary permission.
For the location this.f this means to check that we have at least fraction pi_method in our
mask. Note that we use the same fraction pi_method for both inhaling the precondition as well
as exhaling the postcondition.
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// fix fraction pi_method
var pi_method: int;
havoc pi_method;
assume 0 < pi_method ≤ 1;

// inhale precondition of m
Mask[this,f] := Mask[this,f] + pi_method;
Mask[this,g] := Mask[this,g] + 1;

// verification of the methods body
/* ... */

// exhale postcondition of m
assert Mask[this,f] ≥ pi_method; // check permission to fulfil postcondition
Mask[this,f] := Mask[this,f] - pi_method;

Listing 12: Boogie proof obligations related to permissions for the example shown in Listing 11.

3.2.2 Veri�cation of Synchronous Method Calls

If the method body calls another method n, then the speci�cation of n might also mention
abstract read permissions. Since we verify method n for any fraction in (0, 1], the caller is free
to interpret the abstract read permissions of n with any positive value.

Therefore, if method n requires an abstract read permission to some location o.f, we only
need to check that we currently hold a positive amount of permission to o.f. If we do, we can
always �nd a fraction that is smaller and still positive, and we can give this fraction to the
method.

We achieve this by again using an underspeci�ed variable πcall that stands for the amount of
permission corresponding to abstract read permissions in the speci�cation of the called method.
When we exhale the precondition (and thus go through all permissions), we �rst check that we
have a positive amount of permission to the necessary location. Then, if we do, we just assume
πcall to be smaller than the amount we currently hold, and subtract πcall from our permission
mask.

As we have seen in Section 3.2.1, when we exhale the postcondition at the end of the veri�cation
of a method, we check that we precisely have some �xed amount of permission, namely πmethod.
The necessary checks for exhaling the precondition at a method call are rather di�erent: here,
it su�ces to only assert that some positive amount of permission is available. To emphasize the
di�erence, we call this version InexactExhale. Note however, that we still do the usual checks
for a full permission: In this case, clearly just checking for some permission is not enough, but
we rather check that our mask contains at least fraction 1.

When we inhale the postcondition after the call, we just increment the mask again for any
abstract read permission by πcall. Again all read permissions in the speci�cation of the method
we call are interpreted by the same fraction. However, di�erent calls possibly use di�erent
fractions, even if the same method is called multiple times.

To illustrate the semantics of InexactExhale, we look again at Listing 11 and consider the
veri�cation of the method body of m. The �rst line is an assignment, and we thus have to check
that g is writable, and f is readable. The next statement is the method call to n, a method
which requires and ensures read access to f. Thus, we �rst check that we have some permission
left to f, and if so, constrain the fraction pi_call to be smaller than what we currently have.
Note that we pick the fraction to be strictly smaller, which means that the caller gives some
permission away, but also keeps some of the permission for himself. This allows the caller
to preserve all the knowledge about a location o.f across a method call, even if the method
requires an abstract read permission to that location.

If the method precondition mentions other read permissions as well, then we would just further
constrain the range of pi_call, even if the permissions all refer to possibly di�erent locations.
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Now we can also see why the fact that we interpret all rd-expressions of a speci�cation with
the same fraction does not cause any problems: we just constrain that fraction to be smaller
than the amounts we currently hold to all locations mentioned in abstract read permissions.
Listing 13 shows the pseudo code of the veri�cation of the method body.

// fix fraction pi_method and inhale precondition of m
/* ... */

// statement: g := f;
assert Mask[this,g] ≥ 1; // g must be writable
assert Mask[this,f] > 0; // f must be readable

// statement: call n();
var pi_call: int;
havoc pi_call;
assume 0 < pi_call;
// inexactly exhale precondition of n
assert Mask[this,f] > 0; // we need some permission to f
assume pi_call < Mask[this,f];
Mask[this,f] := Mask[this,f] - pi_call;
// inhale postcondition of n
Mask[this,f] := Mask[this,f] + pi_call;

// exhale postcondition of m
/* ... */

Listing 13: Boogie proof obligations related to permissions for the example shown in Listing 11.

3.2.3 Veri�cation of Asynchronous Method Calls

Asynchronous method calls are handled by the fork-join mechanism, and their veri�cation is
similar to that of synchronous method calls. However, when we fork a method, we only exhale
its precondition, and only at the corresponding join we inhale the postcondition.

More precisely, when we encounter a fork statement, we use a variable πfork to refer to the
amount of any abstract read permission in the speci�cation of the forked method. Then,
we inexactly exhale the precondition of the method. These are exactly the steps we also
took for the �rst part of the call statement. The second part, namely inhaling the methods
postcondition, is only done at the join statement. Again, we would like to do the analogous
steps as for regular method calls. In particular, we would like to use the same fraction πfork
to interpret any abstract read permission that might occur in the postcondition. However, in
general this is not possible, as the fork and join statement can be arbitrarily far apart, e.g.,
they can appear in di�erent methods. If they appear not in a scoped manner, but rather in
di�erent methods, we cannot use πfork at the join statement as well.

Therefore, we use another underspeci�ed variable πjoin to refer to the amount of abstract read
permissions in the postcondition. At this point, we can only provide the following bounds for
this variable:

0 < πjoin ≤ 1

In cases where the fork and join statements are in fact scoped, and don't appear in di�erent
methods for instance, we would like to get the knowledge that πjoin = πfork. This is useful for
the same reason we decided to interpret all read permissions in the speci�cation of a method in
the same way; when we start with a full permission, fork and later join a method that requires
read access to this location, we would like to regain all the permission we gave away.

This missing information can be provided rather easily. When we constrain the fraction πfork,
we additionally store this fraction in a ghost �eld fraction of the corresponding token. Then,
when we verify the join statement, we add the assumption that πjoin is equal to this ghost
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�eld. If the prover is able to relate the fork and join statements of a token, then we actually
get the knowledge that πjoin = πfork. Otherwise (e.g., if joining happens in a di�erent method),
we just don't gain any additional (useful) information for the veri�cation.

3.2.4 Losing Permission

We argued in the beginning of Section 3.2 that the read permissions in the pre- and postcondi-
tion of a method should match. That is, when we require a read permission to o.f and return
a read permission to the same location, we actually have to return the same amount we got.

However, this is not always wanted as not all methods return the same amount of permission
they got initially. Even if no permission is destroyed, the method might start a new thread
that requires some permission and which has not yet �nished. Or the method might store some
permission in a monitor, transfer permission via a channel or fold it into a predicate.

In such cases we can just require a permission and then don't return anything via the post-
condition, but rather give this permission away. However, this is not always what we want, as
the example in Listing 14 illustrates: if we get a read permission to o.f and only fork another
method n (that also requires a read permission), then we can't return the same amount of
permission we got. But just returning no permission at all is not precise: in the end we still
have some permission left that we can return, it is just less than what we got initially via the
precondition.

To solve this issue, we introduce the special permission rd*(o.f) which we call starred read
permission. This version of a read permission also grants read access, but gives no guarantees
about the associated amount. In particular the amount is not guaranteed to match with the
amount any other permission.

class A {
var f: int;

method m()
requires rd(this.f);
ensures rd*(this.f);

{
fork n();

}
method n()

requires rd(this.f);
ensures rd(this.f);

{ /* ... */ }
}

Listing 14: The starred read permission allows the return of less permission than the amount
received initially.

Listing 14 also shows how we use this new concept to solve the problem. By putting rd*(
this.f) in the postcondition, we make explicit that we do not give any guarantees about the
returned permission. It will be some positive fraction, but it does not have to be the same
amount that we got in the precondition.

Note that the starred read permission does not make much sense in the precondition of a
method. It does not provide more �exibility than the standard read permission, as the fraction
corresponding to rd(this.f) is constrained dynamically depending on the amount available at
the call site anyway. Similarly, using rd(this.f) in the postcondition is not in all cases sensible.
More precisely, rd(this.f) is only useful in a postcondition if a abstract read permission also
appears in the precondition of the same method. However, even if the usefulness of these cases
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is debatable, the semantics are precisely de�ned in those cases as well, which is why we do not
exclude these border cases.

3.2.5 Veri�cation of While Loops

The veri�cation of a while loop is rather straight forward. The veri�cation of a while loop
corresponds to checking that the loop invariant holds before the loop and that the loop body
preserves this invariant. More precisely, the loop invariant is exhaled �rst to check that it holds
before the loop. Then, to check that the invariant is preserved, the invariant is inhaled before
the loop body, followed by the veri�cation of the loop body and then in the end the invariant
is exhaled again.

The same veri�cation procedure was also used by the previous version of Chalice. However,
a few things are need to be considered additionally. We use a variable πloop to refer to the
amount of any abstract read permission of in the loop invariant. Analogous to a methods
speci�cation, all abstract read permissions are interpreted as the same fraction.

First, it is checked that the loop invariant holds before the loop by inexactly exhaling the
invariant. This asserts that we have some permission to the required memory locations and
it constraints πloop to be smaller than the amount of permission we currently hold to these
locations. The exhaling after the loop body however is still a normal exhale. This means that
a loop that mentions a abstract read permission in its invariant has to ensure that it does not
leak permission, but that the same amount is available after the loop body as well.

Again, we can use a starred abstract read permission to express the fact that we do not care
about the exact amount of permission. This allows us for instance to verify the example shown
in Listing 15. Even though in every iteration of the loop we give away some fraction of our
permission to x, we still have a positive amount left over at the end of the loop body.

class A {
var f: int;

method m(count: int)
requires rd(this.f);
ensures rd*(this.f);

{
var i: int := 0;

while (i < count)
invariant rd*(this.f);

{
fork n();
i := i + 1;

}
}
method n()

requires rd(this.f);
ensures rd(this.f);

{ /* ... */ }
}

Listing 15: Using a starred read permission in a loop invariant.
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3.2.6 Veri�cation of Monitors

When we share an object, the monitor invariant is exhaled and we need to provide the necessary
permission as speci�ed by the monitor invariant. The same is true when we release a monitor.
At the time we unshare or acquire a monitor we then get this permission back by inhaling the
monitor invariant.

A natural but naïve idea is to take an analogous approach as for the asynchronous method
calls: we constrain a fraction at the time we give away the permission, that is when we
store permission inside the monitor via a share or release statement. Then, when we regain
permission, we try to recall the fraction we �xed by looking at some ghost �eld in the heap.
However, even though this approach seems reasonable, it is not sound. Consider two threads
T1 and T2, that concurrently operate on the monitor lck, and suppose the variable lck is some
global variable of type Lock, as is shown in Listing 16. The monitor invariant of Lock mentions
a read permission to �eld x.

We now consider one particular execution and show where the problem arises. Thread 1 �rst
releases the monitor and, following this initial naïve idea, at this point we pick a fraction π1.
Then, some time later, the thread acquires the lock again, and we expect to get the same
fraction π1 back. After all, from the point of view of T1 the two statements release and
acquire are used in a scoped way.

On the other hand, after thread 1 has released the lock, another thread T2 might acquire the
monitor in between. At that point, this thread gets some (statically unknown) fraction π′

1

from the monitor (in our particular execution this would be fraction π1). Then, when thread 2
releases the monitor later on again, by our idea we can �x again a fraction π2, and this fraction
need not be the same as π1. In particular, it might be the case that π2 < π1. However, then it
is no longer correct for thread T1 to assume that it got back the same fraction that it put inside
the monitor earlier. This particular execution of the two threads is depicted in Listing 16.

class Lock {
var f: int;
invariant rd(this.f) && this.f > 0;

}
var lck: Lock
________________________________________________________________________________

|
// Thread 1 | // Thread 2
release lck; /* put π1 in monitor */ |

| acquire lck; /* get π′
1 */

/* ... */ | /* ... */
| release lck; /* put π2 in monitor */

acquire lck; /* get π1 back */ |

Listing 16: Execution to illustrate the unsoundness of the naïve approach of dynamically
constraining the fraction at the release statement.

A very similar line of reasoning can be used to show that �xing the fraction at the point of the
share statement is not sound either.

As we can see, the problem is really that at any point in time another thread might use the
monitor as well. If we want to assume that we get the same permission back by a call to
acquire than what we stored inside the monitor when releasing or sharing the object, we
have to make sure that the fraction used to interpret any rd-expression stays the same for the
complete execution of the program.

Therefore, we need to �x the fraction at latest at the point where two or more threads can
access the monitor concurrently. This point in time is when the monitor is �rst leaked or
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shared. However, between object creation and the �rst time the monitor is leaked or shared,
the object is not used anyway. Therefore, we �x the fraction πmonitor that corresponds to a
particular monitor already at object creation. Unfortunately, at this point we do not have
any useful information about how to �x the fraction other than 0 < πmonitor ≤ 1. This is
very di�erent to a method call where we could �x the fraction to be smaller than the amount
of permission we hold at the point of the call. That dynamic constraint on the fraction was
very convenient, as it allows one to call the method whenever there is some permission to the
necessary locations available, no matter how little. The problem with the monitors is that the
point where we �x the fraction is di�erent from where we need to show that we have at least
this amount of permission available.

Consequences. The fact that we need to �x the fraction for a monitor very early has the
consequence that we lose �exibility. Consider for instance the program shown in Listing 17.
Method m simple releases the monitor monitor and therefore needs to provide the necessary
permission. The monitor invariant contains an abstract read permission, and thus when we
exhale this monitor invariant, we must prove that there is at least fraction πmonitor of permission
available to monitor.f. The method m itself gets a abstract read permission to this location,
which we interpret as πmethod. However, at this point the only information we have is

0 < πmethod ≤ 1 ∧ 0 < πmonitor ≤ 1

Clearly, this does not imply that πmonitor ≤ πmethod, which would be needed for the example
to verify.

class Application {
method m(monitor: Lock)

requires rd(monitor.f) && holds(monitor);
lockchange monitor;

{
// error, we cannot be sure that we have enough permission to monitor.f
release monitor;

}
}
class Lock {

var f: int;
invariant rd(this.f);

}

Listing 17: Monitors are less �exible than method calls.

We can use the starred read permission to partly regain the lost �exibility. If we use rd*(o.f)
in a monitor invariant, we express the fact that we do not need the guarantees about the
amount of permission. In particular, when we release (or share) a lock and need to put a read
permission in this monitor, it su�ces to have any positive fraction to the required location.
Such an example is shown in Listing 18.

However, while we increase the �exibility of sharing and releasing monitors, we lose some of
the guarantees. In particular, we cannot expect to get the same permission back if we acquired
the lock monitor in Listing 18 again. We will show in Section 4.5 how this issue can be solved
by an extension we de�ned for the new permission model.

One fraction for all monitors. The fraction that is stored in a monitor has to be �xed at
the time where we create the monitor object. Two di�erent monitors of course do not have
to use the same fraction and so in principle it would be possible to use a di�erent fraction for
every monitor. However, we can increase the �exibility of our methodology by using the same
fraction for all monitors in the system. First of all, this is sound, as the only requirement for
these fractions is that per object they do not change during the lifetime of this object. This
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class Application {
method m(monitor: Lock)

requires rd(monitor.f) && holds(monitor);
lockchange monitor;

{
release monitor; // succeeds, we have some permission to monitor.f

}
}
class Lock {

var f: int;
invariant rd*(this.f);

}

Listing 18: The starred read permission can be used in monitor invariants to increase �exibility.

clearly can still be guaranteed if every object in the system uses the same fraction and this
fraction is globally �xed.

Furthermore, this allows us to verify more examples. For instance, this enables the veri�cation
of permission transfer between two monitors: if two di�erent monitors store an abstract read
permission to the same location, then we can acquire one monitor and release the other. If the
two fractions could be di�erent, then we could of course not prove such an example. Therefore
we use a global constant πmonitor for all monitors where we know that

0 < πmonitor ∧ πmonitor <= 1

This uniform treatment of all monitors also removes the need to reason about aliasing; all
abstract read permissions correspond to the same amount in a monitor, regardless of the
monitor used.

3.2.7 Veri�cation of Predicates

The situation for predicates is similar as for the monitors. We need to ensure that the fraction
associated with a predicate is the same during the complete execution. Otherwise it would
be possible to unfold a predicate (thereby getting some fraction of permission) and then later,
possibly in a di�erent method, fold the predicate again using another amount of permission.
Therefore we use the same approach and �x a fraction πpredicate for every predicate for the
complete execution of the program. This introduces the same �exibility problems as with
monitors and of course we can use the same solution: It is possible to use a starred read
permission in a predicate to express the fact that the amount stored in the predicate is not
important. This then also allows us to fold such a predicate, no matter how much permission
we currently have, as long as it is some positive amount.

For the abstract read permissions, we use the same fraction for all predicates to allow unfolding
one predicate and folding another seamlessly if the two contain the same location. Even more,
we use the same fraction for both the predicates and the monitors, for the same reason. This
allows us to transfer permission from a monitor to a predicate and vice versa without problems.
Therefore we have πpredicate = πmonitor.

Permission scaling. In Chalice it is possible to obtain a read permission to a predicate, which
e�ectively means scaling the permissions of the predicate's de�nition by the read permissions.
For instance, consider a predicate valid with the following de�nition.

valid ≡ acc(this.f) && this.f > 0

With this de�nitions, it is possible to write expressions like acc(valid,10) or rd(valid,2).
Intuitively, this expresses that only part of the predicates is held, e.g., 10% as in the �rst case,
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or two epsilons as in the second case (using the syntax and semantics of the previous version
of Chalice, with percentage and epsilon permissions). When such a (partial) predicate is
unfolded, the de�nition of the predicate is multiplied by the speci�ed permission. For instance,
if an epsilon of a predicate that contains full access to some memory location is unfolded, we
don't get a full permission, but rather one epsilon. A normal predicate like valid can now be
seen as an abbreviation for the full access to this predicate, i.e., acc(valid).

In the previous version of Chalice, it was essentially only possible to take a non-full part of a
predicate if the de�nition of this predicate only contained full permissions2. In this case the
permission multiplication is trivial, as at least one operand is the full permission, which means
that the result is just the other operand. However, theoretically it would be possible to support
more combinations. For instance, taking 10% of a predicate that stores 50% of the permission
to some location is also well-de�ned. Such examples were not supported, however.

The new permission model uses fractions as permissions, and therefore we can easily support
the multiplication of arbitrary permissions. In particular it is also possible to support the
multiplication of two read permissions, something which was not possible before. To scale a
permission by another permission in the new model, we can just multiply the two corresponding
fractions. However, even if it is conceptually simple to multiply two fractions, we encountered
some performance problems in this case. This will be explained in more detail in Section 5.3.2.

3.2.8 Veri�cation of Channels

In Chalice, channels can be used to transfer messages and these messages can also contain
permissions. Just like with monitors and predicates, we have the same issue of �xing the
fraction with which we interpret any abstract read permission of a channel: if we want to
assume that the permission we receive is the same as the permission we give away when sending
a message, we have to �x the fraction for the complete lifetime of the channel. Therefore, we
use the same ideas as for monitors or predicates, and we thus don't describe them here again.

3.2.9 Encoding Fractions as Integers

The use of fractions as permissions is very nice from a conceptual standpoint. However, Boogie
currently does not support rational numbers, even though many SMT solvers (in particular,
Z3) are capable of handling fractions. For this reason, we use an encoding that only relies on
integers, without sacri�cing any of the useful properties of fractions.

We represent all fractions π in our system using an integer k, such that

π =
k

D

where D is a suitably large constant. This constant D is used to represent all permissions that
we are interested in during the veri�cation of a particular example. Similar to various previous
variables such as πmethod, we do not explicitly de�ne the value of D, but rather give the only
the following underspeci�cation: D > 0. Such a constant D can be found to represent any
(�nite) number of permissions, and this is already enough for our purposes.

Note that D is really the same for all permissions, that is D is �xed for the veri�cation of
the whole program. Therefore, a permission can be represented solely by the integer k, where
k = D indicates full access (since D/D = 1, that is the full permission), and any other k with
0 < k < D corresponds to a permission that only grants read access. k = 0 indicates the
absence of any access right.

Permission multiplication with integers. If we have a fractional permission a and scale it
by another fraction b, this corresponds to the multiplication of a with b. In our encoding, a is

2Actually, it was also possible to have other combinations. However, those cases were not sound.
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represented by an integer
[
a
]
such that a =

[
a
]
/D, and similarly for b (we use

[
x
]
to denote

the integer encoding of a fraction x). In our encoding, multiplication can therefore be de�ned
as

a · b ∼=
[
a
]

D
·
[
b
]
D

=

[
a
]
·
[
b
]

D2
=

[
c
]
D

∼= c

Without using division (often, the support for division is limited in SMT solver), we cannot
express c in terms of a and b, but we can use havoc and an assumption in Boogie to express
the desired property:

havoc
[
c
]
; assume

[
c
]
*D =

[
a
]
*
[
b
]

3.2.10 Epsilon Permission

Even though the epsilon permissions are less �exible and can violate information hiding (as
shown in Section 3.1.2), counting permissions such as the epsilons can still be useful. The
problem with the fractional permissions of our model is that uniform splitting between a
number of entities is not possible. This can make the book-keeping rather di�cult.

For instance, consider a method m that requires and ensures a read permission. If we fork
multiple threads to execute m and join them later on to regain all permissions, we cannot easily
express a suitable loop invariant that allows us to regain a full permission in the end. Such
an example is shown in Listing 19 for the case when we use epsilon permissions. We fork n
threads in method work in a while loop, and join all threads in a second loop afterwards.

The problem of this example is that we have to provide a loop invariant for the two main
loops. Intuitively this invariant should (among other things) say, that we have already forked i
threads, and therefore given away the corresponding amount of permission (or, for the second
loop, that i threads have been joined, and that we regained the corresponding permission).

If we use the fractional permissions as we have introduced them so far, this example cannot
be veri�ed. In our model, every call to method m gives rise to a new corresponding fraction
πfork which can be di�erent every time. Therefore, the loop invariant would essential require a
summation, and we would need to have a way of referring to the amount that has been given
away to a particular thread.

On the other hand, if we use counting permissions such as shown in Listing 193, the problem
becomes simpler. Method m requires one epsilon permission now, which means that the per-
mission given away at the fork statement is the same, regardless of which thread is forked.
Therefore, the loop invariant can be speci�ed rather easily. Note however, that this particular
example can only be encoded because we use a helper method work and do not have the loop
directly in method main. The reason is, that in the main loop we would have to express in
the �rst loop invariant, that we have �100% minus i epsilon permissions�. An extension to the
permission model presented in Chapter 4 will also allow this.

Summarizing, the example shown in Listing 19 can be encoded in a relatively simple way using
counting permissions, and currently cannot be expressed with fractional permissions. For that,
we would need summation over permission amounts, and a way to refer to the permission that
has been given away in a fork. The latter will be provided by an extension to the permission
model presented in Chapter 4, but not the former. However, even if summation is available,
such an encoding would be signi�cantly more di�cult and would likely be more di�cult to
prove for an automated theorem prover.

Various such examples exist that can be written more easily when using counting permissions
rather than fractional permissions. Therefore, it would hurt the expressiveness and simplicity
of the veri�cation methodology, if the epsilon permissions would be removed altogether.

3Counting permissions have not yet been introduced to the new model, but Listing 19 can be seen as a

program from the previous version of Chalice. We will show in Section 3.2.11 how counting permissions can be

reintroduced to the new model as well, in which case Listing 19 works with both the new and previous version

of Chalice.
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3.2.11 Reintroducing Counting Permissions

For the reason shown in Section 3.2.10, we reintroduce epsilon permissions essentially without
modi�cation. Syntactically, we cannot use rd(o.f) any more to represent one epsilon, since
this expression already has a di�erent meaning in the new model. However, rd(o.f,n) can still
be used to refer to n epsilons and thus, rd(o.f,1) stands for a single epsilon.

As in the old version of Chalice, a permission is again encoded as a pair of integers (k, n),
where the �rst component corresponds to the fractional part (that is the integer k we use to
encode the fraction as k/D) and the second component counts the number of epsilons. The
�rst component has integer values in the range [0, D], while the second component can take
arbitrary integer values. The de�nitions of CanRead and CanWrite are very similar to their old
versions:

CanWrite(o,f) ≡ let (p, n) be the permission to o.f in p = D ∧ n = 0
CanRead(o,f) ≡ let (p, n) be the permission to o.f in p > 0 ∨ n > 0

Other than the change of valid values for the fractional part of a permission from [0, 100] to
[0, D] and the resulting change in the de�nition of CanWrite, the encoding, compared with the
old version of Chalice is completely unchanged. In particular, we can use the same mechanism
for the interaction of epsilons and fractional permissions: any positive fraction is larger than
any amount of epsilon permission. Therefore, we can split of any �nite number of epsilons o�
any fractional permission.

3.2.12 Backwards Compatibility: Percentage Permissions

In the previous implementation of Chalice, percentage permissions were supported. They
are denoted by acc(o.f,p) for a percentage p between 1 and 100. To allow the veri�cation
of programs written previously to this project, we reintroduce these permissions in the new
permission model as follows.

A percentage permission of p% corresponds to a fraction p
100 . Therefore, in our encoding, we

can easily support such percentage permissions. They correspond to the integer p
100 · D, as

p
100 · D
D

=
p

100

To guarantee that p
100 · D indeed is an integer and not a fraction, D must be divisible by 100.

One simple way to ensure this property is to replace the constant D by 100 · d for another
constant d. Now p percent can be simply encodes as p · d. Another nice consequence of this
is that we do not need a division, something which is often not very well supported by many
automatic theorem provers.

To improve the integration with the new abstract read permission, we slightly change the way
we constrain the fraction πmethod. The bounds on πmethod are chosen as follows

0 < πmethod ≤ d

This means that the permission with which we interpret a abstract read permission is smaller
than one percent. This allows us to give away a abstract read permission if we have one percent
of permission to that location. This is not particularly important, but it allows us to verify a
method that requires one percent of permission and ensures a abstract read permission. We
can even go one step further and make πmethod even smaller. This will also allow us to return
multiple abstract read permissions. We use the following bounds, where the constant 1000 is
chosen rather arbitrarily:

0 < 1000 · πmethod ≤ d
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3.3 Steps Towards the Final Permission Model

In this section we describe several intermediate stages of the project, most of which are limited
in some way. The purpose of this is �rst of all to document our work. But also, and maybe
more importantly, these intermediate stages and the conclusions we drew from them are helpful
in understanding how we arrived at the �nal version and why earlier attempts did not work.

3.3.1 Initial Idea

The initial idea for this project is due to Peter Müller and Rustan Leino, and was more
simplistic. The permission model was designed from scratch, completely removing the notion
of counting permissions. Rather, acc(o.f) was used to denote a full permission, and rd(o.f),
similar to the model presented in this report, denotes an abstract read permission. However, the
semantics of rd(o.f) were di�erent from our abstract read permissions. For the synchronous
or asynchronous method calls, there is no di�erence, but for monitors, the initial idea for the
abstract read permissions was that the amount corresponding to the permission can be di�erent
every time the monitor is used. Essentially, this is the behaviour that our model supports using
rd*(o.f). This approach is less precise and, as we have seen in 3.2.6, cannot guarantee that a
permission that is taken out of a monitor corresponds to the same amount as the permission
that has been put into the monitor. We have also seen that this guarantee is useful, for instance
to allow recombining permissions to obtain a full permission again eventually.

Furthermore, the initial idea did not include permission expression and it was not yet clear,
how predicates or channels would be handled.

3.3.2 Combining Fractions and Epsilons

Early on we were already looking for a way to support the epsilon permissions in the new
model. As we have argued in Section 3.2.10, they can be used to verify some examples more
easily. Also, existing programs often use epsilon permissions, which means that removing the
epsilon permissions from the model would damage backward compatibility.

An epsilon permission can be seen as some in�nitesimal small amount of permission to a certain
location. In particular, it is not possible to split such a permission into two or more parts. We
had already decided to represent all fractions f in our system in the following way:

f =
k

D

for some appropriate constant D. Therefore, an intuitive idea is to de�ne an epsilon permission
as 1/D. This is in some sense the smallest amount of permission we can represent in our
encoding, and it certainly cannot be split without changing the representation.

However, Peter Müller soon pointed out that this idea is highly problematic at best. The
problem is that we now cannot easily determine whether we have some fraction of permission,
or only a bounded number of epsilons. In the latter case we are only allowed to split such
a permission into a �nite number of pieces (if at all). More precisely, the problem manifests
itself as follows: When we call a method that requires an abstract read permission to some
location, we check that we have some positive amount, and then we �x πcall to be smaller what
we currently have. Listing 20 shows a Boogie encoding of this.

The second assumption in this listing is not justi�ed any more. Previously we knew that Mask[
o,f] corresponds to a fraction if it contains a positive value, even if this fraction was encoded as
an integer. In contrast it is now possible that Mask[o,f] has the value 1, and really represents
an amount of permission for which we cannot �nd a smaller, but still positive amount.

The solution to this problem is to separate the two concepts of fractions and epsilons and keep
track of them separately. This can actually be done in a very similar way as in the previous
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version of Chalice by representing permissions as a pair of integers: one for the fractional part,
and another for the number of epsilons.

3.3.3 Splitting Permissions and the Meaning of rd*(o.f)

We explained in Section 3.2.4 that not all methods return the same amount of permission
that they got via their precondition. One idea that we explored was to introduce syntax to
precisely specify how much permission is returned. For instance a speci�cation could say that
the method returns half of the permission it got via the precondition, or one third, etc. It
seemed that this would increase the expressiveness of our methodology.

However, the possibility of having such speci�c relations between various amounts of permission
goes against the intuition behind the new model of providing a more abstract way of reasoning
about permission, without the need to pick concrete values. Furthermore it is not clear why a
method should return half the permission it required. Why not a third, or 99 percent of the
initial amount?

Nevertheless, there are cases where we want to express more precisely how much permission a
method returns. For instance, if a method returns part of its permission via the postcondition,
and passes the rest on to another thread (whose token is returned by the method), then the
caller might want to recombine the permission by joining the new thread. This is not possible
with rd* predicates. However, Chapter 4 will present a solution for this problem.
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class C {

var f: int;

method main(n: int)
requires n > 0 && acc(this.f)
ensures acc(this.f)

{
// fork all threads, and join them afterwards
call work(n);

this.f := 100; // we want a full permission in the end
}

method work(n: int)
requires rd(this.f,n)
ensures rd(this.f,n)

{
var tks:seq<token<C.m>> := nil<token<C.m>>;

// first loop; fork all threads
var i := 0;
while (i < n)

invariant i <= n && |tks| == i;
invariant i < n ==> rd(this.f,n-i);
invariant acc(tks[*].joinable);
invariant forall k in [0..|tks|] :: tks[k] != null && tks[k].joinable;
invariant forall k in [0..|tks|] :: eval(tks[k].fork this.m(), true);
invariant forall k,j in [0..|tks|] :: k < j ==> tks[k] != tks[j];

{
fork tk := m();
tks := tks ++ [tk];
i := i+1;

}

// second loop; join all threads
i := n;
while (i > 0)

invariant i >= 0 && |tks| == i;
invariant i < n ==> rd(this.f,n-i);
invariant acc(tks[*].joinable);
invariant forall k in [0..|tks|] :: tks[k] != null && tks[k].joinable;
invariant forall k in [0..|tks|] :: eval(tks[k].fork this.m(), true);
invariant forall k,j in [0..|tks|] :: k < j ==> tks[k] != tks[j];

{
var tk: token<C.m>;
tk := tks[i-1];
join tk;
i := i-1;
tks := tks[0..i];

}
}

method m()
requires rd(this.f,1);
ensures rd(this.f,1);

{ /* do some computation */ }

}

Listing 19: Counting permissions can be useful to uniformly split permissions.
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var pi_call: int;
havoc pi_call;
assume pi_call > 0;

// check that rd(o.f) holds
assert Mask[o,f] > 0;
assume pi_call < Mask[o,f]; // might be problematic
Mask[o,f] := Mask[o,f] - pi_call;

Listing 20: If the permission mask can store 1 to indicate one epsilon, the assumption that
there is always a smaller πcall is not justi�ed any more.
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4 Extension

In previous chapters we have already identi�ed various examples that cannot be supported by
the new permission model so far. A partial solution to many of them were rd* expressions.
However, starred read permissions always result in the loss of preciseness, which is crucial if the
permission should be recombined later on. In this chapter we describe an extension to Chalice,
and to its permission model in particular, that overcomes these issues. We �rst motivate again
what is missing, and then present the extension itself.

4.1 Motivation

The new permission model changes the semantics of rd(o.f) to a fractional permission of an
unspeci�ed, but positive amount. There is currently no way to refer to the amount of such a
permission. For instance, consider an asynchronous method call. It is not possible to mention
the amount of permission that has been given away, or that will be regained when joining
the thread again (at least, if an abstract read permission is used in the speci�cation). If the
token is passed across method boundaries, this information is therefore completely lost, and
one cannot hope to regain a full permission.

Another problem is that it is not possible to express di�erences between permissions in general.
For example, we can again consider an asynchronous call to a method that requires an abstract
read permission. If we start with a full permission, we cannot express the amount of permission
that is left to the caller after the fork statement, as we cannot express the subtraction.

Listing 21 shows a simple example that forks a thread to do a long-running computation, and
than joins it again later. We need to be able to express the exact amount of permission that is
missing from 100% in order to get back a full permission in the end. It is also interesting to see
that using counting permissions (i.e., using rd(o.f,1) instead of rd(o.f)) would not help here,
even though we now can precisely express the missing permission. We still could not write the
precondition of method finish, since we cannot express �100% minus one epsilon�.

The only thing that would have worked, is to manually split the permission into percentages,
e.g., giving away 10% and keeping 90%. If we use precise percentages, we can actually already
do some permission arithmetic. However, this approach would use �xed amounts of permission,
which is problematic as we have argued in Section 3.1.2. Furthermore, manual splitting of
percentages is severely limited, as only integers between 1 and 100 are allowed. For instance,
this means that such a permission cannot be split into more than 100 pieces.

4.2 New Permission Type

To overcome the current limitations, we generalize permission predicates to allow arithmetic
expressions to specify the corresponding amount. The syntax of this generalization is as follows

acc(o.f, perm_expr)

This expression stands for a permission to the �eld f of object o, and represents the amount
speci�ed by perm_expr, a permission expression.

4.2.1 Permission Expressions

A permission expression allows one to perform arithmetic operations on permission amounts, as
well as referring to certain abstract permissions (e.g., the one used in an asynchronous method
call). Furthermore, the already available amounts (such as a certain number of epsilons, or a
full permission) can be used. Note that permission expressions represent a permission amount
rather than a permission. In particular this means that permission expressions do not mention
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class C {
var f: int;

method main()
requires acc(this.f);
ensures acc(this.f);

{
// start long-running processing
fork tk := processing();

/* do some computation itself */

// finish
call finish(tk);

}

method finish(tk: token<C.processing>)
requires /* access to this.f of "100% - one read permission" (cannot be

expressed yet)*/;
requires acc(tk.joinable) && tk.joinable && tk != null;
ensures acc(this.f);

{
var res: int;
join res := tk;

// final write to this.f (requires full permission)
this.f := res - 1;

}

method processing() returns (res: int)
requires rd(this.f);
ensures rd(this.f);

{
/* do some computation */

}

}

Listing 21: Simple example that cannot be veri�ed without the extension.

a memory location, and they can only be used as part of a permission, i.e., as perm_expr in
acc(o.f, perm_expr).

Permission expressions are inductively de�ned as follows:

• rd(tk) - represents the amount of an abstract read permission mentioned in the speci�-
cation of a method that is called asynchronously with token tk. This expression can be
used for any rd(o.f), regardless of o and f: As we have seen in Section 3.2, all abstract
read permissions in the speci�cation of a method represent the same amount.

• rd(monitor) - amount of an abstract read permission mentioned in the monitor invariant
of monitor. This is similar to rd(tk), but for monitors instead of tokens.

• rd(ch) - amount of an abstract read permission mentioned in the where clause of chan-
nel ch.

• rd(p) - amount of an abstract read permission mentioned in the de�nition of a predicate p.
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• rd - amount of an abstract read permission of the current context. That is, rd corresponds
to the amount of an abstract read permission of the monitor invariant, of the predicate,
of the where clause of a channel, of the loop invariant, or of the speci�cation of a method
(depending on where it occurs).

• rd(n), e.g., rd(1) - amount corresponding to a counting permission of n epsilon.

• n, e.g., 42 - percentage of a full permission. 100 is the amount of a full permission.

• (perm_expr1 ± perm_expr2) - addition and subtraction of two permission expressions.

• (-perm_expr) - additive inverse of a permission expression.

• (n*perm_expr) or (perm_expr*n) - multiplication of an integer n with a permission ex-
pression.

Note that parentheses can also be dropped and that the normal rules of precedence apply in
this case.

4.2.2 Peculiar Corner Cases

In Section 3.2.6, 3.2.7, and 3.2.8 we have explained why it is useful to use the same amount for
all monitors, predicates and channels. One interesting and somewhat peculiar consequence of
this equivalence is, that the amount described by rd(m) for a monitor m, rd(ch) for a channel
ch and rd(p) for a predicate p is the same in all cases. While this might seem surprising, it
does not cause any problems in our experience.

4.3 Encoding of Permission Expressions

As described in Section 3.2.9, a permission in Chalice corresponds to a pair (f, n) of two
integers. f stands for the fractional part (encoded as an integer), and n represents the number
of epsilons.

A permission that uses a permission expression to specify its amount shares the same rep-
resentation as the existing permissions. In fact, the operations necessary to evaluate these
expressions are not new either; permission addition and subtraction have been used already
before when inhaling and exhaling permissions. The same also holds for expressions like rd or
rd(tk), which have been used internally before as well. The extension merely gives the user
the ability to use these constructs explicitly in speci�cations.

For this reason, the evaluation is straight forward, and is not explained in further detail here.

4.4 Valid Permissions

Because permission expressions allow to subtract permission amounts, and since it is possible
to take the additive inverse of amounts, not all permissions are valid any more. For instance,
it is not guaranteed that rd(tk)-rd denotes a positive amount of permission, and -rd is even
negative in any case. For this reason, we demand that only positive permission amounts
are used. More precisely, whenever a permission is exhaled, an additional proof obligation
is generated to ensure that the permission corresponds to a positive amount. This is even
the case for regular permissions (i.e., permissions that do not use a permission expression to
specify its amount), such as percentage or epsilon permissions. This allows us then to assume
that any permission we inhale denotes a positive amount. The precise details are described in
Section 4.4.1.

This is di�erent from what Chalice did before, even if we only consider the standard permis-
sions. Previously, Chalice required that any permission mentioned in a speci�cation denotes a
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positive amount; not only when the permission is exhaled, but already the speci�cation itself
was required to ensure this property. For instance, it was not allowed to have a precondition
rd(o.f,n) where n is the integer argument to the method. The de�nedness check rejected this
speci�cation, because it is not possible to prove that n is non-negative (0 was also allowed
before). Instead, n>=0 && rd(o.f,n) could be used as precondition.

Such an explicit condition in the contract is not possible with the permission expressions. For
example, it is not possible to include rd-rd(tk)>0 in a speci�cation, because rd and rd(tk) are
permission amounts and only allowed inside a acc predicate. However, this would be needed
to show that acc(o.f,rd-rd(tk)) is a valid permission, which can be the case. For this reason,
there is the implicit condition with any permission, that its amount has to be positive. We
also require that it is positive (rather than just non-negative), because only a positive amount
enables to read a location safely.

There is a further reason why such an implicit is preferable: Previously, Chalice required to
explicitly write down the constraint on n in an expression such as acc(o.f,n). This could easily
be done as

n >= 0 && n <= 100 && acc(o.f,n)

However, if we add another permission to the same location, things are not so clear any more.
The following expression can be used as precondition of a method:

n >= 0 && n <= 100 && acc(o.f,n) && m >= 0 && m <= 100 && acc(o.f,m)

Regardless of the explicit constraints on n and m, such a precondition hides a further, implicit
constraint n+m ≤ 100. That is, we can only call the method from contexts where this condition
is satis�ed. This condition is necessary and sensible, as no thread can hold more than 100
percent of permission to any memory location. However, it is unclear why n >= 0 && n <= 100
(and the same condition for m) need to be written down explicitly, while n+m ≤ 100 does not.

Our approach removing these explicit constraint altogether does not su�er from such an in-
consistency. Furthermore it makes speci�cations less verbose, as can be seen by the following
example: Consider a method start that take an integer argument n and requires n epsilon
permissions. Using our approach, the precondition rd(o.f,n) su�ces, while previously it was
necessary to use n > 0 && rd(o.f,n).

4.4.1 Inhaling and Exhaling

As mentioned above, besides the obvious type-checking, there are veri�cation conditions that
need to be proven when working with permission expressions. In particular, the following steps
are necessary when inhaling or exhaling such a permission:

• Exhaling

� We have to ensure that permission expression actually stands for a valid permission.
If we evaluate the permission expression to (f, n), we have to assert the following:

assert f > 0 || (f == 0 && n > 0)

� Update the permission mask of the particular memory location by subtracting (f, n).

• Inhaling

� When inhaling, we can assume that the permission has a valid form, that is for (f, n)

assume f > 0 || (f == 0 && n > 0)

This assumption is sound, because whenever we inhale such a permission, it has
been exhaled earlier in the execution somewhere.
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� Again, update the permission mask accordingly by adding (f, n).

Even though these veri�cation conditions are required in general, for many cases it is possible
to optimize the expressions slightly. For many permissions expressions such as rd-rd(tk) or
rd(10) we can determine statically whether they only use the fractional part (i.e., n = 0 in
the encoding (f, n), like in the former example), only consist of epsilons (i.e., f = 0 as in the
latter example), or possibly use both parts of the encoding. In such cases, we can simply omit
the redundant parts of the assertion or assumption. For instance, when exhaling rd-rd(tk), it
su�ces to assert that f > 0, as n will be 0 for sure.

However, this is not possible in general, and our implementation only takes a very simple ap-
proximation. For instance, the permission expression rd+(rd(1)-rd(1)) will not be considered
to only consist of a fractional part (even though it clearly does), and the general assertion or
assumption will be used. Note however, that our approximation is conservative, and when in
doubt, always uses the general form. This is a very simple optimization that for a large number
of practical example simpli�es the generated output slightly.

4.4.2 Inexact or Exact Exhaling

As explained in Section 3.2.2, there are two possible version of the exhale operation; namely
Exhale and InexactExhale. Recall that for an abstract read permission, InexactExhale only
checks whether there is some permission available, and then constrains the corresponding vari-
able. We call this behaviour inexact checking. For the full permission however, the behaviour
of Exhale and InexactExhale is identical, and both check that at least fraction 1 is available
(called exact checking).

To decide whether we have to check that at least the speci�ed amount is available, or whether
it su�ces to check that some permission is available, the following recursive procedure is used.

• rd(tk) - exact checking.

• rd(monitor) - exact checking.

• rd(ch) - exact checking.

• rd(p) - exact checking.

• rd - if it occurs in a method speci�cation, inexact checking is used, otherwise exact
checking.

• rd(n) - exact checking.

• n - exact checking.

• (perm_expr1 ± perm_expr2) - if both perm_expr1 and perm_expr2 use inexact checking,
then this permission expression uses inexact checking as well. Otherwise, we use exact
checking.

• (-perm_expr) - the same behaviour as perm_expr.

• (n*perm_expr) or (perm_expr*n) - the same behaviour as perm_expr.

4.5 Previous Examples Revisited

In Section 4.1 we presented an example that requires us to express di�erences between per-
missions. Using the newly introduced permission expressions, this is easily possible, and an
encoding of the example shown in Listing 21 is given in Listing 22.
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class C {
var f: int;

method main()
requires acc(this.f);
ensures acc(this.f);

{
// start long-running processing
fork tk := processing();

/* do some computation itself */

// finish
call finish(tk);

}

method finish(tk: token<C.processing>)
requires acc(this.f,100-rd(tk));
requires acc(tk.joinable) && tk.joinable && tk != null;
ensures acc(this.f);

{
var res: int;
join res := tk;

// final write to this.f (requires full permission)
this.f := res - 1;

}

method processing() returns (res: int)
requires rd(this.f);
ensures rd(this.f);

{
/* do some computation */

}

}

Listing 22: Simple example that cannot be veri�ed without the extension.

In Section 3.2.6 we have seen that monitors are not very �exible if the corresponding monitor
invariant mentions an abstract read permission. Using the starred read permission partly solve
the issue, but at the expense of precision. That is, we cannot recombine the permission to a
full permission again in such cases.

The extension allows us to precisely express the involved permission amounts. To illustrate
this, we again look at Listing 17. As Listing 23 shows, we can use rd(monitor) to refer to the
amount of permission stored in the monitor.
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class Application {
method m(monitor: Lock)

requires acc(monitor.f,rd(monitor)) && holds(monitor);
lockchange monitor;

{
release monitor;

}
}
class Lock {

var f: int;
invariant rd(this.f);

}

Listing 23: Using the extension to precisely specify Listing 17.

38



5 Evaluation of the New Permission Model

5 Evaluation of the New Permission Model

In this chapter we critically evaluate the new permission model. In particular we consider
backwards compatibility, simplicity, expressiveness and how well the new permission model
performs in terms of execution time.

5.1 Backwards Compatibility

The encoding used in the new permission model is rather similar to the encoding of the previous
model. Furthermore, the basic idea of having two di�erent kinds of permissions (a fraction or
percentage, and epsilons) is still present in the new model. This allowed us to retain very high
degree of backward compatibility.

The full permission acc(o.f), percentage permissions such as acc(o.f,p), and epsilon permis-
sions such as rd(o.f,n) are still fully supported, without changing their syntax or semantics.
The short form of a single epsilon, rd(o.f), now has a di�erent interpretation. Also, the per-
mission rd(o.f,*) is no longer supported. Previously, rd(o.f,*) informally had the meaning
of �any number of epsilons�, but has not been fully supported by Chalice. The new starred
read permission, rd*(o.f), does not con�ict with any existing syntax.

Even though the semantics of rd(o.f) have been changed, the new and old interpretation are
still similar in practise. When we worked with Chalice programs written for the old permission
model (such as the examples from the Chalice test suite), we found that in most cases the
program and its contracts are still valid and can be veri�ed without any changes.

In fact, the complete test suite of Chalice programs can be veri�ed with only minor modi�-
cations to the contracts. The only cases where (trivial) modi�cations were necessary are the
following:

• One test case checks that a single epsilon permission cannot be given away multiple times
to other threads. More precisely, this test consists of a method m that requires rd(o.f)
and tries to (recursively) fork two copies of m. Clearly, this should not be possible in the
old model, where rd(o.f) corresponds to one epsilon. However, in the new model, this
is supported.

• When abstract read permissions are used in monitor invariants, these permissions corre-
spond to a �xed fraction. This requires the user in some cases to either use the mecha-
nisms introduced in the extension (see Chapter 4), or replace the permission by rd(o.f,*)
to indicate that the exact amount is not important.

Trivially, all old programs can be updated by simply replacing any occurrences of rd(o.f) (for
any object o and �eld f) by rd(o.f,1). This will work regardless of the program at hand,
as in the old model the two programs before and after this transformation were equivalent,
and in the new model no construct is used that has di�erent semantics. Furthermore, such a
transformation could even be done fully automatically by a simple program.

5.2 Expressiveness and Simplicity

We support essentially all of the features of Chalice that were present in the old version and
therefore we can verify at least the examples that could be veri�ed before. The new permission
model and in particular the fact we use fractions as permission furthermore allows us to verify
examples that could not be veri�ed before.
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5.2.1 Permission Splitting

The use of fractional permissions allow us to split permissions arbitrarily often. For instance
let us look at the example from Section 3.1.1, where we work on a binary tree and want to start
a new thread to work on each node. In Listing 24 we can see how we can use the new abstract
read permission to encode the problem very intuitively. The new semantics of rd(data.f) allow
us to split the permission into multiple parts and start the child threads. Furthermore it is
possible to recombine the permission by joining the child threads. Note that the method and
its speci�cation can be used for any tree, even if it's depths is unbounded.

class Node {
var l: Node; var r: Node;
method work(data: Data)

requires valid;
requires rd(data.f);

{
unfold valid;
var tkl: token<Node.work>
var tkr: token<Node.work>
if (this.l != null) { fork tkl := this.l.work(data) }
if (this.r != null) { fork tkr := this.r.work(data) }
/* ... (perform work on this node, using data.f) */
if (this.l != null) { join tkl }
if (this.r != null) { join tkr }

}
predicate valid {

rd(this.l) && rd(this.r) && (this.l != null ==> this.l.valid) && (this.r !=
null ==> this.r.valid)

}
}
class Main {
method main(tree: Node)

requires tree != null && tree.valid;
{
var data: Data := new Data { data.f := 1 }
fork tree.work(data);

}
}
class Data { var f: int; }

Listing 24: Working on a binary tree with arbitrary permission splitting.

5.2.2 Information Hiding and Simplicity

The new abstract read permissions that correspond to unknown fractions also simplify the task
of choosing the permissions to be used in the speci�cation of a Chalice program. To illustrate
this, let us again consider the example from Section 3.1.2 where we wanted to parallelize a
method, but could only do so if the precondition required more than one epsilon permission.

In Listing 25 we can see how the new abstract read permission can be used regardless of
whether the computation is done sequentially or in parallel.
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class Worker {
var f: int;

method m1()
requires rd(this.f)
ensures rd(this.f)

{
call subtask_1()
call subtask_2()

}

method m2()
requires rd(this.f)
ensures rd(this.f)

{
fork tk1 := subtask_1();
fork tk2 := subtask_2(); // no problem, still permission left to start

subtask 2
join tk1; join tk2;

}

method subtask_1/2()
requires rd(this.f)
ensures rd(this.f)

{ /* perform some computation involving x ... */ }
}

Listing 25: No information hiding problem in the new permission model.

5.3 Performance

How long a veri�er takes to verify challenging examples is an important measure when assess-
ing a veri�er. Since the new permission model is more expressive than the old model, it is
interesting to see how much this increase of expressiveness costs in terms of performance.

5.3.1 Performance of Existing Features

To compare the performance of the implementation of the new permission model with the
previous version of Chalice, we used the test suite that is available as a part of Chalice. More
precisely, we measured the complete execution time of the invocation of the Chalice veri�er for
all examples in the test suite. The tests were run both with the most recent version of Chalice,
which was HG changeset 1785795e3eae, and with our implementation of the new permission
model.

The tests were run on an otherwise idle machine with an Intel Core i7 620M processor and
4096 MiB of RAM. To ensure a low error, the measurements were repeated three times and
the average over those runs has been used as a result.

Figure 2 shows an overview of the performance comparison, and there are several things to
point out. First of all, the test iterator sticks out, as our implementation performs 1042.58%
worse on this example. We tried to investigate the cause, and it seemed that the theorem
prover is searching for a proof in the wrong direction �rst. In particular, changing the random
seed of the theorem prover changes its performance drastically, ranging from 10 seconds up
to 90 seconds. To investigate the issue we contacted Rustan Leino, one of the developers of
Chalice. He [Lei11] pointed out that the bad performance is due to the use of non-linear
arithmetic when percentages are used. In the encoding, we use n*d to represent n percentage
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Figure 2: Performance comparison of the examples from Chalice's test suite.

Chalice reference Thesis implementation Improvement

AVLTree 859.22 s 819.44 s 4.63%

AVLTree.iterative 9.99 s 8.55 s 14.43%

AVLTree.original 1342.42 s 1135.81 s 15.39%

Composite 93.33 s 97.67 s -4.65%

AssociationList 12.59 s 5.78 s 54.06%

HandOverHand 24.19 s 14.56 s 39.80%

Figure 3: Performance comparison of the more challenging examples.

of a permission. The use of various heuristics when dealing with non-linear arithmetic in
Z3 can cause large variation and might even be much worse in cases where the veri�cation
conditions are not valid. Rustan Leino also suggested several solutions to this problem which
either eliminate the bad e�ects of non-linear arithmetic, or work completely without non-linear
arithmetic. Because this was not work done as part of this thesis, we do not further describe
these solutions here. However, the suggested solutions have been implemented later, and all of
them solve the performance problems.

Figure 2 also shows that for all the small examples in the test suite the performance is almost
identical. More precisely, the di�erences are all smaller than 6% and for the cases where our
implementation is slower, the di�erences are even below 3.7%. For the two more challenging
examples, HandOverHand and AssociationList, our implementation performs signi�cantly
better. To see whether our tool handles complicated examples better in general, we also tested
several examples that are not part of the test suite. We looked at a Chalice encoding of the
composite design pattern which we took from the Master thesis of Filip Wieladek [Wie10]. We
also tested several variants of an AVL tree implementation in Chalice.

Figure 3 shows the average execution time (again on the same machine, using the same mea-
surement procedure) of all challenging examples, including the two examples from Chalice' test
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suite. The two test cases called AVLTree and AVLTree.iterative are very challenging for the
theorem prover, and running further tests with di�erent random seeds for the prover causes
their performance to vary a lot. For those reason, those two tests appear in italics in Fig-
ure 3 and have to be considered with caution. The performance of our implementation for
the composite pattern is about 5% slower than with the previous version of Chalice. All other
examples however run faster with our implementation with improvements up to over 50%.

In summary, our implementation provides very competitive performance compared to the pre-
vious version of Chalice with the old permission model. It seems that for the more challenging
examples, our implementation even provides better performance.

5.3.2 Performance of the New Features

It is di�cult to test the performance of the new features, but the abstract read permissions
do not seem to cause any performance problems. After all, various tests of the test suite use
them, and the performance of those test is very competitive.

However, permission multiplication is rather slow. For instance, the veri�cation of the program
shown in Listing 26 takes 30.98 seconds on average. If we replace rd(valid) by the full predicate
valid (such that no permission multiplication is necessary), the performance suddenly increases
to 2.82 seconds on average.

Again it was Rustan Leino [Lei11] who pointed out that the performance discrepancy is due to
the use of non-linear arithmetic. However, his suggestions for the percentages cannot be easily
adapted to this more general case of multiplication.

class Cell {
var f: int;

predicate valid { rd(f) && f > 0 }

method m()
requires rd(valid);

{
unfold rd(valid);
assert(rd(this.f,*));
assert(rd(this.f)); // this assertion should fail

}
}

Listing 26: Example that uses permission scaling.
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6 Additional Work

Beside the core of this project and the extension, work has also been carried out that is not
directly related to the project, but can still be considered part of this Bachelor thesis.

6.1 Bug Reports and Bug Fixes

During our work on Chalice we have found a number of bugs in Chalice and Boogie, for some
of which we directly provided a patch. All patches and most errors have been submitted to
the Chalice website at http://boogie.codeplex.com, and they include:

• Chalice: Duplicated member declarations (both �elds and methods) in classes are not
correctly detected in Chalice (see patch #7685 on boogie.codeplex.com).

• Chalice: Under certain circumstances, read locks allow write access (see workitem #10148).

• Chalice: Duplicated method parameters and return values are not checked by Chalice,
which can lead to unexpected output from Boogie (see workitem #10147 and patch
#8151).

• Boogie: Nested lambda expressions cause Boogie to crash (see workitem #10175).

• Chalice: If a fork statement is used inside of a loop, a NullPointerException can occur
(see workitem #9978 and patch #7636).

• Chalice: The command-line switch -noDeadlockChecks introduces contradictory as-
sumption, which allows the veri�cation of assert false (see workitem #10007).

• Chalice: There is a copy-paste error in the implementation of the method EpsilonsOf,
leading to erroneous behaviour (see patch #8152).

• Chalice: The pretty printer functionality contained several errors and used some outdated
syntax. This has been �xed.

6.2 Improvements to Chalice' Prelude

The Boogie �le that Chalice generates during the veri�cation starts with the �prelude�, which
contains important de�nitions, axioms and global variables. This prelude was de�ned as a
static piece of text in Chalice, always containing all information, regardless of the program to
be veri�ed. Depending on the features the program at hand uses, this prelude often contained
information that is not needed for the veri�cation. For instance, the sequences in Chalice are
based on a sequence axiomatization that is part of the prelude. If a program did not use
sequences at all, the Boogie �le produced still contained the lengthy sequence axiomatization.

For this reason, the prelude is now built from smaller parts which are be included on demand.
In particular, sections such as the sequence axiomatization are now only included if needed for
the veri�cation of the program at hand.

6.3 Compatibility with Scala 2.8.

Chalice is written in Scala and most parts of it were developed in 2009. With later releases of
Scala, in particular with Scala version 2.8, the code of Chalice used more and more deprecated
features. This resulted in many warnings during compilation. Some of these shortcomings have
been removed during our work on Chalice, including:
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• The method flatten in object List is deprecated in Scala 2.8. All uses of List.flatten
(xss) have been replaced by xss.flatten.

• The method first in trait IterableLike is deprecated in Scala 2.8. All uses of this
method have been replaced by head.

• The object Math in package scala is deprecated in Scala 2.8. Package scala.math is
used now.

6.4 Improved Error Reporting

Under some circumstances, Chalice abruptly exits by throwing an exception. For instance, if
the user tries to access a feature that has not yet been implemented, or when the program to
be veri�ed contains unsupported constructs such as scaling epsilon permissions with another
epsilon permission. While these cases indeed are exceptional, it does not seem sensible to print
a full stack trace.

Therefore, we now catch such exceptions and print a user-friendly error message, indicating
what has gone wrong. It appears much more appropriate to have a clear error message, rather
than a full stack trace in these cases.

Nevertheless, during debugging of Chalice or when new features are implemented, a full
stack trace might still be useful. For this reason we introduced the command line switch
-showFullStackTrace.

6.5 Submission to FTfJP 2011

Based on the work of this Bachelor thesis, K. Rustan M. Leino, Peter Müller, Alexander J.
Summers and myself wrote a paper called Fractional Permission without the Fractions, which
has been accepted at the workshop Formal Techniques for Java-like Programs at the 25th
European Conference on Object-Oriented Programming 2011 [HLMS11].
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7.1 Status of the Implementation

The Chalice veri�er has been modi�ed to use the new permission model, as described in this
report. As a basis we used the SVN revision 57305 from boogie.codeplex.com (later renamed
to HG changeset 77645fdef3e9), the most recent revision at the time the project started. All
major aspects of the new permission model have been implemented, with the exception of one
recent extension to Chalice, which is called stepwise re�nements [LY10]. It is unclear what
will happen to that extension, and therefore we decided not to implement the new permission
model in this case. At a later point in time support for this extension can be easily added. To
simplify this even more, we used comments to mark all locations in the source code of Chalice
that need to be considered when implementing support for these re�nements.

To ensure the quality of the implementation, a new test suite with a large number of small
test cases has been put together. These test cases typically cover one single aspect of the new
model and examine its correctness. Furthermore, the existing test suite of Chalice has been
ported to the new permission model (though only minor changes were necessary, as described
in Section 5.1). All of these test cases pass.

One feature that will not work fully any more is the command line option -autoFold. This
tries to automatically close a predicate when it cannot �nd it in the heap. There was not
enough time to implement this feature again for the new model.

Another rarely used feature for which the new permission model could not yet be implemented
is read locks. Again, this has not been implemented due to lack of time.

7.2 Future Work

A possible direction for the future is to investigate more closely how important the epsilon
permissions are and whether it would be possible to remove them from the permission model.
This is interesting for several reasons. First of all, the fractions as permissions are nicer from a
conceptual point of view. But it would also be very interesting to see how an implementation
that does not use epsilon permission performs. In particular, currently every proof obligation
that checks read access introduces a disjunction. More precisely, we use the function CanRead
(o,f), which is de�ned as

let (p,n) be the permission to o.f in (p > 0 ∨n > 0)

We suspect that this disjunction might have negative e�ects on the performance, which is why
a model without epsilon permissions might be interesting to consider.

Another possibility is to introduce comprehension expressions such as summation, product,
minimum, maximum and count. This could be done in a similar way as in the Spec# program
veri�er [BLS05]. Speci�cally, it would be interesting to introduce at least summation for
amounts of permission. For instance, this would allow the veri�cation of examples which fork
a dynamic number of n threads, whose tokens are stored in a sequence. The summation
expression would then enable us to express the amount of permission that corresponds to
sequence of tokens, even if the threads each hold a (possibly di�erent) fractional amount of
permission to some location.

A further direction would be improving the Boogie output that Chalice generates. In particular
there are various assertions, assumption and statements in general that are super�uous, and
which could be fairly easily identi�ed as such. For instance, an assertion that this is not
null does not have to be output at all, as this will always be the case. Another example are
duplicated assumptions. Our implementation of the new permission model is also not optimal
in this respect. In particular, the fractions are �xed regardless of whether they are actually
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needed or not. For instance, if a method does not use read permissions in its contract, then
�xing the fraction πmethod at the beginning of the method's veri�cation is not necessary, and
could be omitted. Even though it should be fairly easy to prove such trivial assertions and
ignore unnecessary assumptions, it might still be a signi�cant performance problem. First
of all, the number of such super�uous statements is quite signi�cant, and lots of additional
assumptions might mislead the prover and cause needless instantiations of axioms.

7.3 Conclusions

We presented a new permission model for Chalice based on the idea of fractional permissions.
This new model allows us to split permissions arbitrarily often. Furthermore it provides better
abstraction and information hiding by using a single expression for all read permission instead
of forcing the user to specify precise amounts.

We then extended the model further by generalizing permissions such that they allow arithmetic
operations on permission amounts. Furthermore it is possible to refer to the amount of the
newly introduced abstract read permissions.

All these improvements and changes to the permission model have been implemented in the
Chalice veri�er. Our implementation is almost fully backwards compatible and provides
roughly the same performance, even though many more examples can now be veri�ed due
to the increased expressiveness.
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