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Abstract

Closures are anonymous functions which are able to capture variables de-
clared in the enclosing scope. They are a common and useful feature, present
in many popular programming languages. They are a powerful tool for pro-
grammers, but it is hard to reason about them formally.

In this work, we introduce support for the formal specification and verifica-
tion of closures within programs written in the popular Go language. Our
work extends the modular, deductive verification tool Gobra. We introduce
a design that is suitable to verify closures in several relevant scenarios. In
particular, our design is capable of handling the internal state of a closure
and capable of specifying the behaviour of higher-order functions. We use
our approach to verify relevant programs showcasing real-life uses of closures,
indicating that our design is powerful and flexible.
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Chapter 1

Introduction

Closures are anonymous functions that can use variables declared outside of their
body. They are first-class objects, so they can be assigned to variables, used as
arguments to other functions, returned from other functions or stored inside data
structures. Closures were first introduced as a feature of some functional program-
ming languages [10]. Today, they are supported by many popular imperative and
object-oriented programming languages, including C++, Java, Python, and Go.

Go is an increasingly popular programming language. Its focus on scalability and
concurrency makes it the ideal candidate for the implementation of large-scale
distributed systems. Such systems often include security-critical applications, so
it is important that their implementations contain no bugs. Ensuring that such
systems are bug-free, however, is often a hard problem, due to their complexity
and to their extensive use of concurrency. In this context, automated deductive
verifiers play an important role, as they allow us to formally prove that a program
follows its intended behaviour.

Gobra [13] is a verifier for Go programs. Gobra proves that a program follows the
specification provided by the user, and that the code is safe from crashes, memory-
related bugs, and data races. Gobra supports many of the language features of Go,
including Go’s methods, interfaces, and concurrency primitives. However, before
this thesis Gobra did not support closures.

1.1 Goals
With this thesis, we pursue the following high-level goals.

A mechanism for the verification of closures in Gobra. The mechanism
should support closure definitions, closure calls and the usage of closures as ar-
guments to higher-order functions, i.e. functions that receive a closure as an
argument, or return a closure. Closures should be able to capture variables.

1



2 1. Introduction

Higher-order functions should be able to describe, in their specification, how a
closure argument is used.

A consistent, modular, powerful, and generalisable design. Our language
design should be consistent with the existing Gobra language design. Most impor-
tantly, our design should follow the principle of modularity, i.e. functions should
be specified and verified independently from their callers. It is important that the
design is powerful enough to support the verification of the most important use
cases of closures.

1.2 Challenges

Closures1 can be considered a generalisation of ordinary functions. Similarly to
ordinary functions, they have arguments and results. However, they are first-class
objects and they can capture variables, i.e. they can read or modify variables
declared outside of their body. These features introduce additional challenges in
the verification of closures.

First, we often do not statically know the definition of a closure that we are
calling. For instance, a closure variable can be reassigned. Furthermore, a closure
received by a higher-order function as an argument may have any definition. We
want our verification design to be modular, so a higher-order function should have
no knowledge about its potential callers. Therefore, we require a mechanism that
enables higher-order functions to make assertions about the behaviour of a closure
argument, without knowing its actual behaviour.

Second, closures can capture variables. The values of the variables captured by
a closure form the internal state of the closure. Handling the internal state of
a closure is tricky, especially if we do not know statically which variables are
captured by a certain closures. Since the result of a closure call may be affected
by the internal state of the closure, it is also tricky to verify properties about the
result.

1.3 Outline

This thesis introduces a mechanism for the verification of closures in Go, and
the related encoding to the Viper language. Viper is the verification framework
used by Gobra. The framework consists in an intermediate language for the
representation of programs, and the tools required to verify programs written
using this intermediate language.

1The features of closures described here refer specifically to the implementation of closures
in Go. The behavior and capabilities of closures may be different in different programming
languages.
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Chapter 2 provides some background information necessary to understand the
content of this thesis. In particular, it presents the syntax and behaviour of
closures in Go, and it provides some necessary details about Gobra and Viper.

Chapter 3 presents our design for the verification of closures in Go, starting from
the high-level ideas and then explaining the syntax and behaviour of the new Gobra
language primitives. We also point out how our ideas and design were influenced
by previous works on the verification of closures, and discuss some alternative
designs.

Chapter 4 describes how the new language primitives are encoded into the Viper
language. We also discuss the soundness of our encoding.

Chapter 5 provides a series of case studies showcasing the possible uses of closures
in Go, and how our approach can be used to handle all these different use cases.

Chapter 6 presents our experimental evaluation. We choose several representative
examples of Go programs using closures in order to evaluate the performance of
our solution.

Chapter 7 concludes the thesis with a discussion about our work, and about
potential improvements or extensions to our work.





Chapter 2

Background

This chapter includes some background information necessary to understand this
thesis. In Section 2.1 we briefly present the syntax and behaviour of closures in
Go. Then, we present the main features of Gobra (Section 2.2). In Section 2.3 we
briefly introduce the intermediate verification language Viper, used within Gobra’s
verification pipeline.

2.1 Closures in Go
Closures in Go are similar to closures in other mainstream languages such as Java,
C# or Python. As an example, consider the code snippet below. cl is a closure,
declared at lines 2-5 using a closure literal. The signature of the literal (at line 2 in
the example) declares the arguments and results of the closure. Unlike an ordinary
function, a closure literal does not have a name (closures are anonymous). In the
example, the closure cl accepts an integer value as an argument and returns an
integer, so cl has type func(int)int. The body is analogous to the body of
an ordinary function. However, a closure literal can capture variables from the
surrounding scope. In the example, variable b is captured by cl. When we call
cl, b is increased (line 3) and the result of the call depends on b (line 4). Since
the value of b is changed by a call to cl, the calls at lines 6 and 7 have different
results. We can also still change the value of the captured variables directly, as
shown at line 8. This affects the result of further calls (line 9). Differently from
other languages such as Java, variables can also be passed to other functions by
taking their address. For instance, the address of variable b is &b.

1 b := 3
2 cl := func(a int)int {
3 b += 1
4 return a + b
5 }

6 r := cl (3) // r == 6, b == 4
7 r = cl (3) // r == 7, b == 5

8 b = 10

5



6 2. Background

9 r = cl (1) // r == 11, b == 11

There are many uses for closures in Go. Chapter 5 presents the main use cases
and provides relevant examples.

2.2 Gobra
Gobra [13] is a tool for the deductive verification of Go programs. Gobra checks
that a program satisfies a set of properties for every possible execution. We call
this set of properties the specification of a program.

In order to verify a Go program, a user adds annotations to it. Specification an-
notations allow the user to define the specification of a program. Some properties
need a proof to be verified; in this case, a user needs to write the corresponding
proof annotations. To automatically verify an annotated Go program, Gobra trans-
lates it into the intermediate verification language Viper. The generated Viper
program is then verified using other available tools.

In this section, we will briefly present the main features of Gobra that are relevant
to our work. First, we will look at how Gobra handles the access to heap-allocated
variables. Second, we will present some of the different kinds of annotations that
a user can employ in Gobra. Third, we will see how Gobra handles the verification
of Go interfaces.

Further information about Gobra and its features can be found in the paper by
Wolf et al. that introduces Gobra [13]. There is also a tutorial on Gobra’s GitHub
repository [3].

2.2.1 Permissions

Gobra is based on separation logic [8]. In a nutshell, separation logic allows us
to reason about heap-allocated values by introducing access permissions. In par-
ticular, each value allocated on the heap is associated with a permission, which
determines whether we can access the value, and whether we can read from the
value. In Gobra, a full or exclusive permission (corresponding to a permission
amount of 1) denotes that we have write access to the value. A fractional permis-
sion (corresponding to any permission amount greater than 0 and ≤1) denotes
that we have read access to the value.

The total permission amount associated with a single value is 1, meaning that,
if we have full permission to a value, then no one else has access to the value.
Conversely, if we have a fractional permission to a value, no one else can have full
permission to it, so the value cannot be modified.

Assume that x and y are pointers to integers (i.e. have type *int). Assertion
acc(x), or acc(x, 1/1) means that we have full permission to the corresponding
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value, so we can modify the value of *x. Assertion acc(y, 1/2) means that we
have a fractional permission to *y, so we can read the value of *y, but not write
to it.

Gobra also supports predicates, which are named assertions with parameters. An
example can be seen in the following snippet, where we define predicate p1. Note
that predicate instances are not equivalent to their body. For instance, in the
following example, p1(&x) does not hold at line 4. If we want to verify assertion
p1(&x), we need to fold the predicate first, as shown at line 5. When we fold a
predicate, we lose permission to the body of the predicate, and get permission to
the predicate instance. We can also unfold a predicate, which does the opposite.

1 pred p1(x *int) { acc(x) && *x > 0 }

2 func main () {
3 x@ := 1
4 assert acc (&x) && *x > 0
5 fold p1 (&x)
6 assert p1 (&x)
7 }

Predicates in Gobra can be recursive, so we can define access permissions over
unbounded data structures. The snippet below shows an example. The Node
struct, containing an integer value and the pointer to another node, can be used
to define a list of integers. The recursive predicate list defines access to all the
nodes in the list with head l.

1 type Node struct { elem int; next *Node }
2 pred list(l *Node) { l != nil ==> acc(l) && list(l.next) }

2.2.2 Annotations

We can annotate a Go program using assertions, function specifications and loop
invariants.

Assertions in Gobra are used to verify that a particular logic statement holds at
a certain point in the program, for every execution of the program. Consider
the following example. At line 1, we declare x to be an integer variable, and we
assign value 1 to it. Therefore, at line 2, it is always the case that x == 1, so the
assertion verifies successfully.

1 x := 1
2 assert x == 1

Methods and functions in Gobra can be annotated using preconditions and post-
conditions. Preconditions define properties about the arguments of the function
that always hold when the function is called (so, whenever the function is called,
the caller must guarantee the preconditions). Postconditions define properties
about the arguments and results that are guaranteed to hold after the execution
of the function. In the example below, the precondition (at line 1) specifies that



8 2. Background

there is write access to the value corresponding to x, and that this value is greater
than 0. The postcondition ensures that we still have write access to x when the
function returns, that *x is increased by 1, and that the result is equal to *x.

1 requires acc(x) && *x > 0
2 ensures acc(x) && *x == old (*x) + 1 && res == *x
3 func add1(x *int )( res int) {
4 *x += 1
5 return *x
6 }

A function or method is pure if it is deterministic and it has no side effects (i.e.
it does not modify any heap values). Pure methods or functions are annotated
with the pure modifier. Their body must consist of a single return statement,
which returns an expression that is deterministic and without side effects. Their
postcondition cannot contain permissions, since all of the permissions specified in
the preconditions are always returned. Also, the expression in the body is used
as an implicit postcondition, which says that the result is equal to the value of
the returned expression. Furthermore, calls to pure methods or functions can be
used within specifications. Consider the example below. Function pos, defined
at lines 1-4, is a pure boolean function that returns true if the value that we
can access using pointer n is positive. The precondition of pos at line 1 says
that we need read access to n (the wildcard indicates any non-zero permission
amount). At lines 5-8, function add1 calls pos in its specification. preserves is
used for assertions that are both in the precondition and in the postcondition of
the function, so acc(a) && pos(a) is both the precondition and the postcondition
of add1.

1 requires acc(n, _)
2 pure func pos(n *int)bool {
3 return *n > 0
4 }

5 preserves acc(a) && pos(a)
6 func add1(a *int) {
7 *a += 1
8 }

Loops in Gobra can be annotated with invariants, i.e. assertions that hold just
before executing the loop, and after each loop iteration. Within a loop body, we
lose all permissions to the heap-allocated variables that are accessed within the
body, unless such permissions are included in an invariant. In the example below,
value *x, initially 0, is incremented 100 times using a loop. The invariant at line 2
provides an upper bound and a lower bound to the values that iteration variable i
can have. Invariant at line 3 ensures that the permission to x is preserved and, at
each iteration, *x is always equal to i (this last invariant holds since both values
are increased by 1 at each iteration).

1 assert *x == 0

2 invariant i >= 0 && i <= 100
3 invariant acc(x) && *x == i
4 for i := 0; i < 100; i += 1 {
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5 *x += 1
6 }

7 assert *x == 100

The annotations introduced above are used to verify the partial correctness of a
Go program, i.e. the specification holds if the program terminates. Gobra also
supports termination measures for loops and methods, which are used to verify
the termination of the program. Usually, termination measures have the shape
‘decreases n’, where n is a bounded value that decreases at each loop iteration or
recursive call. Further details about termination measures in Gobra can be found
in Xuan’s Bachelor thesis [17], which introduced termination measures in Gobra.

2.2.3 Interfaces
Interfaces in Go are named collections of method signatures. Any type (e.g. a
struct, or a pointer to a struct) implementing all the method signatures of an
interface automatically implements the interface.

In Gobra, interface methods can be annotated with pre- and postconditions. Ad-
ditionally, an interface can define abstract predicates, used to abstract over the
heap structure of a type implementing the interface.

Consider the example below. Interface I defines predicate mem and method
transform. The specification of method transform declares that the method
must preserve access to an instance of predicate mem, and that the result is greater
than or equal to the argument. Struct S contains a pointer to an integer. The
struct implements both predicate mem (at line 8) and method transform (at line
13).

Intuitively, we can see that the specification of the implementation of transform at
line 13 satisfies the specification at line 5, since the body of self.mem() is equiva-
lent to acc(self.v) && *self.v >= 0. However, the verifier cannot prove this au-
tomatically, so we write the proof at lines 16-22 to prove that struct S implements
interface I. In the proof, we assume that the precondition of the interface method
holds. Therefore, at line 18 predicate instance self.mem() holds. We can thus use
the unfold operation at line 18 to obtain the property acc(self.v) && *self.v
>= 0. It is now possible to call the implementation method self.transform. After
folding self.mem() at line 20, the verifier can prove that all of the postconditions
of the interface method hold, which concludes the proof.

1 type I interface {
2 pred mem ()

3 preserves mem ()
4 ensures res >= x
5 transform (x int) (res int)
6 }

7 type S struct { v *int }
8 pred (self S) mem () {
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9 acc(self.v) && *self.v >= 0
10 }
11 preserves acc(self.v) && *self.v >= 0
12 ensures res >= x
13 func (self S) transform (x int) (res int) {
14 return x + *self.v
15 }

16 S implements I {
17 (self S) transform (x int )( res int) {
18 unfold self.mem ()
19 res = self. transform (x)
20 fold self.mem ()
21 }
22 }

2.3 Viper
Viper [6] is a verification infrastructure built with separation logic in mind. The
Viper intermediate language allows the encoding of programs, and the verification
of the properties of such programs.

In order to verify the specification of Go programs, Gobra encodes the annotated
program into a Viper program, so that the Viper program verifies if and only if
the specification of the Go program is satisfied.

The Viper intermediate language supports a permission model that is suitable for
this purpose. In particular, heap-allocated objects in Viper are represented via
references (type Ref), and the corresponding values are encoded as fields. For
instance, global declaration ‘field i: Int’ declares integer field i. As long as
we have access to the field i of a reference p, we can access and modify the
corresponding value, as shown in the example below.

In the example, at line 2 we obtain full permission to p.i, so we can assign to
the corresponding value. The inhale operation in Viper allows the user to obtain
permissions to any predicate or heap-allocated object, and to assume properties
about any value. For example, at line 2 we obtain the permission to access
p.i, and we assume that the current value of p.i is 2. The opposite operation
is exhale, which removes the permissions specified after asserting the specified
properties. For example, after the exhale operation at line 4, we cannot access
p.i anymore. Also, the exhale operation at line 4 would fail if we did not have
access to p.i or if the value of p.i were not 3.

1 var p Ref
2 inhale acc(p.i) && p.i == 2
3 p.i := 3
4 exhale acc(p.i) && p.i == 3

Further information about Viper and its features can be found in the paper by
Müller et al. [6]. There is also a tutorial on Viper’s website [11].



Chapter 3

Design

This chapter presents the ideas behind our approach to verifying closures in Gobra.
The first section introduces how we solve the verification of closures using the key
ideas of specification entailment and entailment interfaces. The second section
gives a descriptions of the new language primitives, which we have introduced to
put those ideas into practice. The third section explains how our design has been
influenced by previous works on the verification of closures and points out the
main differences in our approach. The fourth section presents some alternative
designs that have been considered.

3.1 Overview
This section is a brief overview of the key concepts that underpin our approach
to the verification of closures in Gobra. First, the concept of specification entail-
ment gives us a way to reason about a closure specification being strong enough
to satisfy a desired specification. Second, entailment interfaces allow higher-order
functions to reason about the state of closures without violating information hid-
ing.

3.1.1 Specification entailment

The concept of specification entailment is based on two key observations. First,
each call to a closure satisfies some contract, which depends on the behaviour
of the closure. This contract is a property of the closure, and we will call it the
specification of a closure. Second, a specification can be used to entail a more
general specification. Let us discuss these observations more in detail.

3.1.1.1 A call to a closure satisfies a contract

Calling a closure is similar to calling a function: some precondition must hold
before the call, and the call guarantees some postcondition after it. We define a

11
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specification of the closure to be any pair of precondition and postcondition that
holds for any call to the closure.

Consider the closure cl defined in the following code snippet.
1 cl := func(x int)int {
2 return x
3 }

Following our definition of closure specification, we can assert that cl satisfies the
following specification. In fact, if the argument received by cl is non-negative,
the result will also be non-negative.

1 requires x >= 0
2 ensures res >= 0
3 func pos(x int )( res int)

This does not mean that pos is the only valid specification for cl. For example,
cl also satisfies the specifications g10pos and reqPos, shown below.

1 requires x > 10
2 ensures res >= 0
3 func g10pos (x int )( res int)

4 requires x >= 0
5 ensures true
6 func reqPos (x int )( res int)

We can actually make a stronger statement than ‘cl satisfies g10pos and reqPos’.
In fact, any closure that satisfies cl will also satisfy g10pos and reqPos, not just
cl. In fact, g10pos has a stronger precondition than pos. So, any arguments that
are valid for g10pos will also be valid for pos, and the postcondition guarantees
are the same. We can also observe that reqPos has the same precondition, but a
weaker postcondition than pos.

More formally, if we assume that a closure c satisfies pre- and postcondition pair
(P1, Q1), then the closure c satisfies (P2, Q2) if there exists an assertion R such
that P2 ⇛ P1 ∗ R and Q1 ∗ R ⇛ Q2. R is any residual property (e.g. access
permissions unused by P1, which can then be assumed in the postcondition). The
arrow ⇛ represents a viewshift. A viewshift is an implication that can also change
the layout of permissions (e.g. by folding and unfolding predicates).

If the condition written above holds, then we say that the specification described
by pair (P1, Q1) entails the specification described by pair (P2, Q2).

We can exploit specification entailments in Gobra to make the verifier aware that,
if a closure satisfies a particular specification, then it also satisfies a second spec-
ification if we can show that the first specification entails the second.

3.1.2 Entailment interfaces
Unlike ordinary functions, closures can capture variables. The state of these
variables, which we will refer to as captured state, can change both within and
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1 func hof(f() int) {
2 // ...
3 }

4 func main () {
5 x := 0
6 cl := func () (res int) {
7 x += 1
8 return x
9 }

10 hof(cl)
11 }

Figure 3.1: Closure example: a counter.

outside the closure. The presence of a captured state has two consequences.
First, whether a closure satisfies a specification may depend on its captured state.
Second, it may be necessary to reason about the captured state of a closure, but
without knowing the details (e.g. which variables are captured by the closure).
The concept of entailment interface provides a solution to both of these problems.

Consider the example in figure 3.1. Closure cl captures variable x and increases
it by one every time it is called. We would like to be able to pass cl as an
argument to hof. What we need is a specification that hof can require, which
allows hof to reason about the internal state of the closure without knowing the
details. In particular, hof should not know about variable x. At the same time,
the precondition of the specification should guarantee access to x.

An entailment interface allows a specification to abstract over the state of a
closure, providing abstraction predicates and functions. To show that a closure
satisfies the specification, the user will then need to provide a suitable instance of
the interface.

Consider again the example in figure 3.1. A potential annotation for hof is in
figure 3.2. The function fspec is coupled with entailment interface Inv, and
asserts that the corresponding predicate inv() is preserved. hof will then require
that the closure satisfies the specification fspec with entailment interface inv,
and it will ensure that the predicate inv() is preserved. To call hof, any caller
will then need to implement the interface, making sure that the implementation
of inv() contains any required permissions and properties of its captured state.

In general, entailment interfaces can be used to express many kinds of closure
properties. Such interfaces can provide abstraction functions and predicates to
allow a higher-order function, for example, to specify how the result of a closure
call is used, or how many times a closure has been called. Section 5.6 shows how
this can be done, and how this allows us to successfully deal with several common
closure use patterns.
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1 type Inv interface { pred inv () }
2 preserves inv != nil && inv.inv ()
3 func fspec ( ghost inv Inv )( res int)

4 requires inv != nil && f implements fspec {inv}
5 preserves inv.inv ()
6 func hof( ghost inv Inv , f() int) {
7 // ...
8 }

Figure 3.2: A higher-order function allowing closure parameters with internal state.

3.2 Language extensions

3.2.1 Function literal specification

Function literals are specified, similarly to ordinary functions, using preconditions,
postconditions, and termination measures. The syntax is shown below. Specified
function literals can have a name, which is used to refer to the specification when
calling the closure. Note that, in Go, function literals are not allowed to have a
name, thus the name is considered a proof annotation.

1 trusted ?
2 requires P
3 ensures Q
4 decreases M
5 pure? func specName ?( arg1 , ... , argN) (res1 , ... , resN) { BODY }

Function literals are pure expressions that return a closure. If the literal captures
variables, then the preconditions, postconditions, and termination measures can
reference these variables. The captured variables must be addressable and access
to them must be guaranteed by the precondition.

The visibility of the function literal name follows the same visibility rules as any
variable. The name can be used within ghost code as an expression. The value
of this expression is the same as the closure created by the function literal. For
example, within the precondition P of specName, the expression c == specName,
where c is an argument or a captured variable, means that c is the same closure
as the one created by specName. The name specName can only be used as an
expression within the specification or body of the corresponding literal. It cannot
be used as an expression within the specification or body of any other function
literal, even if the other literal is defined within the body of specName.

The trusted clause is used to tell Gobra not to verify the body. The body of the
literal can be omitted (including the curly braces) to declare an abstract function
literal. Note that omitting the function literal body is not allowed in Go, so it can
only done within ghost code.

The pure clause is used to specify that the function literal does not have side
effects. In this case, the body and specification must satisfy the same restrictions
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as those required for ordinary pure functions. In particular, the body must consist
of a single, pure return statement.

The following example shows a specified function literal, assigned to closure vari-
able c. The literal is named accumulate, it captures variable x, and it accepts a
single integer argument n. Variable x is increased by n, and then returned. This
is reflected in the specification, which declares that access to x is preserved, that
the final value of x is equal to the old value of x plus n, and that the result is
equal to the final value of x.

1 x@ := 0
2 c := preserves acc (&x)
3 ensures x == old(x) + n && res == x
4 func accumulate (n int) {
5 x += n
6 return x
7 }

3.2.2 Closure specification instance
The name of any function, or function literal, constitutes a closure specification
instance. The specification instance is used within closure calls and specifica-
tion assertions, and it refers to the preconditions, postconditions and termination
measures of the function, or function literal, with the same name. The function
can also be a member of an imported package. In this case, standard package
resolution (package.name) applies.

Optionally, a closure specification instance can also have parameters. The full
syntax is shown below.

1 fName {( name1 : )? exp1 , ... , ( nameN : )? expK }?

Any parameters are specified within curly braces, after the function name. If
there are no parameters, the curly braces are allowed but not necessary. Either
all parameters are named, or all parameters are unnamed. If a parameter is not
named, the corresponding expression is assigned to the argument of fName with
the same position in the list of arguments. If the parameter has a name, then the
name must correspond to the name of one of the arguments of fName, and the
expression is assigned to that parameter.

The type of a specification instance corresponds to the type of fName, after re-
moving the arguments that are treated as parameters. Considering the function
addTo below, for example:

• addTo has type func(int,*int)int

• addTo{2} has type func(*int)int

• addTo{x: &y}, where y is an addressable integer variable, has type func(int)int

• addTo{2, &y} has type func()int
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1 preserves acc(x)
2 ensures *x == old (*x) + n && res == *x
3 func addTo (n int , x *int) (res int)

A closure that implements a specification instance must have the same type as the
specification instance. A closure satisfies a specification instance with parameters
fName{params} if and only if all calls to the closure satisfy the preconditions, post-
conditions and termination measures of fName, where all parameters are replaced
with the corresponding expression.

If fName is pure, then we consider its body to be part of the postconditions. This
is consistent with the current behaviour of pure functions. In fact, after a pure
function call, we can verify assertions that can only be inferred from the body.

3.2.3 Specification entailment assertion
Specification entailment assertions express that a closure, function, or method
satisfies a specification instance. They are not heap-dependent, so, once they
are established, they always hold. This applies even if the closure has a captured
state, as any properties related to the state are included in the specification,
which prevents a closure from being called if its state is invalid. A specification
entailment assertion is written ‘f implements spec’, where f is a closure, function
or method, and spec is a closure specification instance.

3.2.4 Closure call
If a user wants to call a closure, they need to declare which specification to use. A
closure call is written as ‘c(exp1, ..., expN) as spec’, where c is an expression
with function type, spec is a specification instance and exp1, . . . , expN are the
expressions passed as arguments to the function. The call is a pure expression if
spec is declared as pure.

The call requires that ‘c implements spec’ and the preconditions of spec hold.
After a call, the postconditions of spec are ensured.

Function and method expressions that implement a spec instance can also be
called using that spec, analogously to a closure. See line 18 of figure 3.3 for an
example of a call to an ordinary function that explicitly uses a spec different from
the function’s own specification.

3.2.5 Specification entailment proof
A specification entailment proof is a statement used to establish an entailment
assertion. The syntax is shown below.

1 proof f implements spec {
2 BODY
3 }
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The body is similar to that of an interface implementation proof. It consists of:

• A single call to f. If f is a closure, the call must be accompanied by a
specification, as explained in 3.2.4. If f is a function or method expression,
it can also be called without an associated specification instance.

• fold, unfold and assert statements.

If spec is pure, the body must consist of a single return statement, where the
return expression consists of a single call to f and unfolding sub-expressions.
These restrictions are analogous to the restrictions for interface implementation
proofs for pure methods.

The single call to f in the body must use, as arguments and results, exactly the
names that the arguments and results have in the definition of spec. Within the
proof, these names are visible and they always refer to the arguments and results
of spec, shadowing any other variables with the same name.

If spec has termination measures, which prove that the function terminates, then
the specification being used in the call must also have termination measures.

At the beginning of the proof body, the precondition of spec is assumed. The
proof verifies whether the postcondition of spec holds at the end of the body. If
that is the case, the fact ‘f implements spec’ is established after the proof.

Let (P1, Q1) be the pre- and postconditions of the single call in the proof body, and
(P2, Q2) the pre- and postconditions of spec. The only statements allowed other
than the call are assert, fold and unfold statements. These statements can
only change the permission layout. Therefore, a successful proof shows that there
exists assertion R such that P2 ⇛ P1 ∗ R and Q1 ∗ R ⇛ Q2, which means that
the specification used for the call entails spec (as explained in 3.1.1). Therefore,
it is correct to assume, after a successful proof, that f implements spec.

3.2.6 Entailment interface

Interfaces in Gobra support predicates and functions, so they provide all the ele-
ments necessary to implement the concept of entailment interfaces. Consider the
following code snippet.

1 type InvRes interface {
2 pred inv ()

3 ghost
4 requires inv ()
5 pure res(n int)int
6 }

7 ghost
8 preserves inv != nil && inv.inv ()
9 ensures res == old(inv.res(n))

10 func spec( ghost inv InvRes , n int )( res int)
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The interface InvRes can be used as an entailment interface. It includes a predi-
cate inv(), which allows the verification of closures with a captured state, since
an implementation of inv() can include access to the captured variables. It also
includes a pure function res, which requires access to inv().

Function spec shows how to associate an entailment interface with a specificaton.
spec accepts an instance inv of the interface as a ghost argument. The specifi-
cation of spec requires that inv.inv() is preserved, and the result is the same as
calling inv.res(n) in the state before the call.

The snippet below shows a possible implementation for the interface.
1 type InvResImpl struct { x *int }
2 pred (self InvResImpl ) inv () { acc(self.x) }
3 ghost requires self.inv ()
4 pure func (self InvResImpl ) res(n int)int {
5 return unfolding self.inv () in (* self.x + n)
6 }

Struct InvResImpl contains integer pointer x, and the predicate inv() contains
access to x. The result, given argument n, is defined to be the value of x plus
n. The struct implements the predicates and functions as indicated by InvRes, so
InvResImpl implements InvRes. A closure of type func(int)int that captures
an integer variable y and whose result, given argument n, is y + n can be shown
to implement specification instance spec{InvResImpl{&y}} using a specification
entailment proof.

3.2.7 Examples
The following two examples use all of the language features presented in this
section. The first example shows how a function can be given as an argument
to another function using specification entailment. The second example shows
how an entailment interface can be used, together with specification entailment,
to verify that a closure with a captured state can be given as an argument to a
higher-order function.

3.2.7.1 Simple example

The example in figure 3.3 shows a simple specification entailment.

In the example, function hof requires that the closure c that it receives as an
argument satisfies spec pos. This specification entails that c must be able to be
called with any positive argument, and c must ensure that, if the argument is
positive, then so is the result.

The caller calls hof, using function plus2 as an argument (line 17). Before the call,
the caller needs to show that the specification of plus2 entails the specification
of pos. The related proof is at lines 14-16. Inside the proof, a single call to plus2
is enough to show the entailment. Line 18 shows that it is possible to call an
ordinary function using a different specification that is entailed by the function.
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1 ghost
2 requires a >= 0
3 ensures r >= 0
4 func pos(a int) (r int)

5 preserves c implements pos
6 func hof(c func(int) int) {
7 v := c(42) as pos
8 assert v >= 0
9 }

10 pure func plus2 (a int)int {
11 return a + 2
12 }

13 func main () {
14 proof plus2 implements pos {
15 r = plus2 (a)
16 }

17 hof( plus2 )

18 r := plus2 (3) as pos
19 assert r >= 0
20 }

Figure 3.3: Simple example, without captured variables.

3.2.7.2 Full example

Figure 3.4 shows an example where a higher-order function accepts a closure which
is allowed to have a captured state.

In the example, function hof requires that the closure that it receives as an argu-
ment satisfies spec pos{p}, where p is an instance of an interface with predicate
inv(). We can treat p as the instance of an entailment interface. The predicate
allows c to have an internal state. In fact, a valid implementation of the inter-
face can define inv() to include the permissions required to access any captured
variables. The rest of the specification is analogous to the one in the previous
example.

The caller defines an implementation of the entailment interface at lines 1-2, by
declaring struct Acc and associated predicate inv(). Instance Acc{&x} of this
struct is then used as a parameter in specification instance pos{Acc{&x}}.

The caller declares c to be an accumulator function which captures variable x.
The value of x is updated by adding the value of the argument of the function
to it at each call. Each call returns the value of x after the update. Note that
this definition, by itself, does not guarantee that the result is always positive.
However, the definition of inv() at line 2 says that x remains non-negative. Since
any number of calls that satisfy the precondition of pos will keep the value of x
non-negative, the proof at line 11 succeeds. The definition of inv() also allows
us to assert, at line 19, that, after calling hof, the value of x is still non-negative.
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1 type Acc struct { x *int }
2 pred (p Acc) inv () { acc(p.x) && *p.x >= 0 }

3 func main () {
4 x@ := 0
5 c := preserves acc (&x)
6 ensures x == old(x) + n && m == x
7 func f(n int) (m int) {
8 x += n;
9 return x

10 }

11 proof c implements pos{p: Acc {&x}} {
12 unfold Acc {&x}. inv ()
13 r = c(a) as f
14 fold Acc {&x}. inv ()
15 }

16 fold Acc {&x}. inv ()
17 hof(c, Acc {&x})
18 unfold Acc {&x}. inv ()

19 assert x >= 0
20 }

21 ghost
22 requires p.inv () && a >= 0
23 ensures p.inv () && r >= 0
24 func pos( ghost p interface {pred inv ();} , a int) (r int)

25 preserves p.inv () && c implements pos{p}
26 func hof(c func(int) int , ghost p interface {pred inv ()}) {
27 v := c(42) as pos{p: p}
28 assert v >= 0
29 }

Figure 3.4: Full example, with captured variables.

3.3 Sources of inspiration
The concepts presented in this section have been inspired by two previous works
on the verification of closures.

Wolff et al. [14, 15] introduced support for the verification of closures in Prusti,
an automated verifier for the programming language Rust.

Their paper introduces the idea of specification entailments, which is similar to the
one presented here, with some important differences. The differences are related
to the fact that, due to the guarantees provided by Rust’s type system, Prusti does
not have user-defined permissions. Also, Rust imposes some restrictions on the
use of captured variables. As a consequence, specification entailments in Prusti
are checked automatically when a higher-order function is called. Instead, in order
to make use of specification entailments in Gobra, a user needs to write a separate
proof.

Their paper introduces the ideas of call descriptions, used by higher-order functions
to describe with which arguments a closure is called and how the result is used.
This idea inspired the research of a mechanism that would allow us to reach similar
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objectives in Gobra. However, these objectives are achieved in a very different
way. In fact, while Gobra uses entailment interfaces for this, Prusti introduced
additional specification primitives for functions.

Their paper proposes to use ghost predicates for the verification of some higher-
order functions. This idea has some similarities with the idea of entailment in-
terfaces, as predicates within the interface can provide the same functionality.
However, the concept of entailment interfaces is more general. For example, it
allows to define abstraction functions in addition to predicates. As a result, en-
tailment interfaces have a wider use in our approach than ghost predicates have
in theirs.

B. Weber investigated the verification of closures in Python programs in their
Masters thesis [12], within the automatic verifier Nagini. Their core idea was
based on two ideas. First, closure calls can be associated with a contract. Second,
the user should provide a proof, for each closure call, that the closure satisfies the
contract.

Similarly to our approach, closure contracts have a name, and a contract must
be specified for each call. Their thesis also introduces specification entailment to
enable a user to prove that a closure satisfies a contract. However, within their
approach each closure call must be associated with an entailment proof, whereas
we support separate proofs. Furthermore, they do not support the verification of
closures that capture variables, and they do not have entailment interfaces.

3.4 Alternative designs
During our research, we have considered a few different designs for the verification
of closures. The following sections briefly describe some alternative designs that
we have considered, and explains why we have decided not to use them. First,
we will see why applying the approach used in Prusti [14] directly is problematic.
Second, we will look at a design where call descriptions are handled explicitly.

3.4.1 Applying the approach from Prusti directly

In this section, we will explain the main issues that arise when we try to use, in
Gobra, the approach used in Prusti for the verification of closures. The design
for specification entailments used in Prusti (a verifier for Rust) has the following
characteristics1.

• The pre- and postconditions attached to a closure have no explicit access
permissions, since the access permissions can be inferred automatically using
Rust’s type system.

1This is just a short summary, which does not intend to explain the characteristics of Prusti’s
design in detail.
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1 requires f |= (i int) { requires i > 0; ensures res > 0 }
2 ensures res > 0
3 func hof(f func(int)int )( res int) {
4 // ...
5 }

6 func main () {
7 x@ := -1
8 cl := invariant x >= old(x)
9 requires i > 0

10 ensures res == old(x) && x == old(x) + i
11 func(i int )( res int) {
12 r := x
13 x += i
14 return r
15 }
16 // cannot use x here
17 cl (2)
18 hof(cl)
19 assert x >= 1
20 }

Figure 3.5: An example showing Prusti’s design for specification entailments

• A user can define the invariants of a closure, which denote the properties
that keep holding for a closure after an unbounded number of calls. These
invariants can express the relationship between the initial state of the closure
and any state reachable after calling the closure any number of times.

• The variables mutably captured by the closure (i.e. variables captured with
write access) cannot be accessed before the end of the closure’s lifetime.
If the variables are captured immutably, they cannot be modified until the
end of the closure’s lifetime. These conditions are enforced by Rust’s type
system, which makes the job easier for Prusti.

The example in figure 3.5 is taken from Wolff et al. [14]. The example is sim-
plified and adapted to use Gobra-like syntax. Higher-order function hof requires
a specification entailment at line 1 (which states that, if the closure receives a
positive argument, then the result of a closure call is positive). Function main
defines closure cl at line 8. cl captures variable x, which is increased by as much
as indicated by the closure argument i. The result of the closure is the value of
x before the increase. The specification of cl has an invariant, which states that,
after 0 or more calls to cl, the value of x increases or stays the same.

The call at line 17 increases the value of x by 2. Therefore, the value of x
becomes 1. The invariant at line 8 specifies that the value of x will not decrease,
so, from now on, the result of a call to cl will always be positive. Therefore, the
specification entailment required by hof is satisfied, and we can call hof at line
18. After the call, thanks to the invariant, we know that the value of x is at least
1.
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3.4.1.1 Issues

A design that consists in applying Prusti’s approach for the verification of closures
directly in Gobra has a series of issues.

The first issue is that the expressivity of such a design is limited by the fact
that there cannot be any user-defined permissions, precluding the verification of
closures where we cannot infer the required permissions automatically. Trying to
extend the design, by naively introducing user-defined permissions and predicates,
would also not work, for two reasons. First, we are not able to infer automatically
that a certain predicate is equivalent to, or stronger than, a second one. Therefore,
we cannot automatically verify that a specification entails a second specification
which has a different permission layout. Hence, we are only able to call a higher-
order function requiring exactly the same access permissions as the actual closure.
This means that the higher-order function needs to require the permissions to
access the captured variables, making the design violate encapsulation (a higher-
order function, in general, should not know about the variables captured by a
closure). Second, the encoding used in Prusti involves the use of a snapshot, i.e.
a mathematical abstraction over the value of the arguments, captured variables
and results of a closure. User-defined predicates make the generation of snapshots
problematic, due for example to the potentially recursive nature of predicates.

The second issue is that we need to understand when the lifetime of a closure ends,
and when we have access to its internal state. To see why this is problematic,
consider the example in figure 3.5. The caller main does not know how the function
hof uses the closure, so we cannot assume that we have access to x after the call,
or that we can call the closure again. In fact, hof might lose permission to the
internal state of the closure, for example by giving it as an argument in a go call
to another higher-order function. Therefore, a design applying Prusti’s approach
directly would need to be extended, for example adding primitives to indicate that
we have permission to access the internal state of the closure.

The third issue is that such a design does not fit well within the existing Gobra
verification framework. In fact, this design precludes the verification of perfectly
valid examples of Go programs, since it imposes restrictions on the usage of
variables that are specific to Rust’s type system. For example, it enforces that a
closure and its captured variables cannot be accessed at the same time.

3.4.2 Handling call descriptions explicitly

In our design, we use entailment interfaces to allow higher-order functions to
describe the usage of a closure, as demonstrated by the examples in Section
5.6. We have also considered a different approach, which introduces additional
verification primitives for this purpose. In this section, we will briefly present this
alternative approach, and justify our decision not to use this approach in the final
design.
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3.4.2.1 Call description primitives

The example below shows the call description primitives introduced in the al-
ternative design. The first primitive is the call definition, at line 1. Here, the
higher-order function gives a name to a closure call (c1), and asserts the proper-
ties of the argument values (in the example, that the value of a is 10). At line 3,
called#c1 indicates that call c1 happened, and call#c1(r) refers to the value of
the result of call c1. In general, the value of any expression E in the poststate of
the call can be referred to as call#c1(E).

1 call f#c1 { a == 10 }
2 requires f implements s1
3 ensures called #c1 && res == call#c1(r)
4 func hof(f func(a int )(r int )) (res int) {
5 return (f#c1 (10) as s1) + 1
6 }

In order to use the information provided by hof using the call description primitives,
the caller has to provide more information about the behaviour of the closure. An
example is shown below, where caller calls the function hof defined above. At
line 2, closure f is defined to be a closure that returns a result that is twice
the argument, and the related specification is named s2. hof is called at line 5.
The caller, at line 6, indicates that f should be used with specification s2. This
specification allows to know more about the value returned by the call than what
hof already knows. In particular, at line 7 there is an indication that the result
of the call is 20 (two times the argument, which is 10, as specified by hof). In
general, the caller of a higher-order function indicates the specification associated
with each closure used as an argument to the higher-order function. Additionally,
the caller uses the keyword ensures to specify properties about the values in the
post-state of the closure calls executed by the higher-order function. The verifier
then checks that these properties can be inferred from the closure specification
indicated by the caller and from the information contained in the call descriptions
within the higher-order function’s specification. In the Viper encoding, a proof that
the properties hold is then generated automatically. For instance, the encoding
of the example contains a proof that the specification s2, combined with the
information that a == 10 (from the specification of hof), entails that the result
of the closure call is 20.

1 func caller () {
2 f := ensures r == 2 * a
3 func s2(a int )(r int) { return 2*a }
4 // ...

5 r := hof(f)
6 using f as s2
7 ensures call#c1(r) == 20

8 assert r == 21
9 }
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3.4.2.2 Issues

When we try to use the approach presented above, some issues arise if we want
to introduce user-defined predicates. Consider the example below. Function hof
receives argument closure f, and integer pointer *x. The function f is called, in
call c1, using specification s1, which uses predicate acc1 to state that the access
to argument a is preserved. Therefore, to access *a, we need to unfold predicate
acc1 (as we can see at lines 4 and 6, where the unfolding operation is used). The
caller wants to use closure f, defined at line 11, as an argument to hof. We can
do it, since specification s2 entails specification s1 (assume that, at some point,
the entailment has been proven).

1 pred acc1(a *int) { acc(a) }

2 preserves acc1(a)
3 func s1(a *int)

4 call f#c1 { unfolding acc1(a) in (*a == old (*x)) }
5 requires acc(x) && f implements s1
6 ensures acc(x) && called #c1 && *x == call#c1( unfolding acc1(a) in (*a))
7 func hof(f func(a *int), x *int) {
8 // ...
9 }

10 func caller () {
11 f := preserves acc(a)
12 ensures *a == old (*a) + 1
13 func s2(a *int) {
14 *a += 1
15 }
16 // ...

17 x@ := 2
18 hof(f, &x)
19 using f as s2
20 ensures call#c1( unfolding acc1(a) in (*a)) == 3
21 }

However, in this case we cannot generate automatically a proof that the statement
at line 20 is entailed by the specification s2, because the specification of s2
does not use predicate acc1. We need some additional annotation from the
user, specifying how to transform the permission layout (using fold and unfold
operations), from the one required by s1 to the one required by s2, similarly to
what we do with specification entailment proofs.

The example above shows that, in general, using the alternative design presented,
the annotation overhead for the caller can be quite high. Indeed, it is comparable
to the annotation overhead we need in a design where we just use entailment
interfaces. Therefore, introducing the call description primitives presented in this
section is not necessary, and, in general, it does not improve the annotation
overhead. For this reason, these primitives have not been introduced in the final
design.
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3.5 Syntactic sugar
In this section we propose the introduction of some syntactic sugar for our design,
to reduce the annotation overhead. This proposal has not been implemented yet,
but it provides an idea for potential future work.

3.5.1 Syntactic sugar for closure literals
It is often the case that a closure specification proof is trivial, as it only involves
calling the closure with its original specification. We propose to introduce some
syntactic sugar to prove that a closure implements a particular specification di-
rectly within the specification of the corresponding closure literal. In this section,
we sketch the proposal using an example. We do not provide details of a potential
implementation of the proposal.

Consider the following example. The caller (defined at lines 9-19) defines closure
cl at lines 10-14. The closure is only used as an argument to hof, which is called
at line 18. In order to use cl as an argument to hof, the closure must implement
specification pos, defined at lines 1-3.

With the current design, in order to use cl in the call at line 18, we need to
provide a specification entailment proof, which we do at lines 15-17.

1 requires n >= 0
2 ensures res >= 0
3 func pos(n int )( res int)

4 requires c implements pos
5 ensures res >= 0
6 func hof(c func(int)int )( res int) {
7 return res
8 }

9 func caller () {
10 cl := requires n >= 0
11 ensures res >= 0
12 func spec(n int )( res int) {
13 return n + 1
14 }

15 proof cl implements pos {
16 return cl(n) as spec
17 }

18 hof(cl)
19 }

Our proposal is to allow the following syntax, which combines the closure definition
with the specification entailment proof. The specification of the closure literal has
an additional clause, at line 4, which specifies that the closure returned by the
literal satisfies the specification pos. Since the entailment proof is trivial, we
can verify that the entailment holds automatically, for example by adding the
corresponding checks in the encoding of the literal.

With this syntax, it is not always necessary to give a name to the literal in order
to use the corresponding closure.
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1 func caller () {
2 cl := requires n >= 0
3 ensures res >= 0
4 implements pos
5 func(n int )( res int) {
6 return n + 1
7 }
8 hof(cl)
9 }

To make the annotation even more compact, we can also allow a user not to write
the pre- and postcondition (at lines 10 and 11 in the original example), since in
this example we only use the specification of pos. Therefore, we can rewrite the
example as follows.

1 func caller () {
2 cl := implements pos
3 func(n int )( res int) {
4 return n + 1
5 }
6 hof(cl)
7 }

The syntax presented above allows the user to directly use a closure literal as an
argument to a higher-order function. In fact, we can rewrite the example above
as follows.

1 func caller () {
2 hof( implements pos
3 func(n int )( res int) { return n + 1 })
4 }





Chapter 4

Encoding

This chapter presents and justifies the Viper encoding of the language extensions
introduced in 3.2. The first section presents the notation used in the rest of the
chapter; the second presents the encoding for the new Gobra types, expressions
and statements; the third describes the encoding for the new Viper members
generated to enable the encoding of the new features. The fourth section briefly
discusses the soundness of the encoding, while the fifth section presents an issue
affecting the soundness of termination checks for closure literals.

4.1 Notation
Throughout this chapter, we will use the following notation:

• JcodeK denotes the Viper encoding of code.

• fName{params} denotes the name assigned, in the encoding, to the specifi-
cation instance fName{params}. This name depends on fName and on the
set of arguments used as parameters, not on the value of the parameters.
When we say that two specification instances are distinct, we mean that
their assigned names are different, i.e. their base functions are different or
they use a different set of arguments as parameters.

• recv.methName denotes the name assigned, in the encoding, to the method
recv.methName. This name depends on methName and on the type of the
receiver.

• Type denotes a name that uniquely identifies Viper type Type.

• code[exp1 → sub1, ..., expN → subN] denotes the result of replacing,
within code, expressions exp1, ..., expN with expressions sub1, ..., subN.

• fName.args, fName.res, fName.P, fName.Q and fName.BODY denote the
arguments, results, precondition, postcondition, and body of fName respec-
tively.

29
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4.2 Encoding of new types, expressions and statements

4.2.1 Function type

Jfunc(int)intK ≜ Closure

where Closure is a Viper domain (defined in 4.3.1).

4.2.2 Nil/default function variables

Jnil: func( ) K ≜ closureNil()

Jdflt[func( ) ]K ≜ closureNil()

where closureNil is a Viper domain function (defined in 4.3.1).

4.2.3 Function literals

Jpure? func litName( ) {...}K
≜ closureGet$litName(JlitName.capturedVariablePointers K)

where closureGet$litName is a Viper function (defined in 4.3.4.2)
and litName.capturedVariablePointers is a list containing pointers to the
variables captured by litName, in order of appearance within litName.

4.2.4 Function and method expressions

Function or method expressions are expressions that consist of a function or
method name. The name of a function or method, in Go, can be used similarly
to any other function-typed variable.

JfuncNameK ≜ closureGet$funcName()

where closureGet$funcName is a Viper function (defined in 4.3.5).

Jrecv.methNameK ≜ closureGet$recv.methName(JrecvK)
where closureGet$recv.methName(JrecvK) is a Viper function (defined in 4.3.6).

The analogous expression for function literals, as explained in 3.2.1, can only be
used within the literal itself.

JlitNameK ≜ closure

where closure is a parameter in the encoding of the callable Viper member cor-
responding to litName (defined in 4.3.4.3). This parameter is required, by a
precondition of the generated member, to have the same value as the closure
returned by the function literal (see 4.2.3).
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4.2.5 Closure specification entailment assertions
Jcl implements fName{params}K

≜ closureImplements$fName{params}(JclK, Jparams.valuesK)
where closureImplements$fName{params} is a Viper domain function that returns
a boolean (defined in 4.3.3).

4.2.6 Closure calls
Jcl(args) as fName{params}K

≜ closureCall$fName{params}
(JclK, JfName.captVarsFuncs(cl) K, Jcombine(args, params)K)

where

• closureCall$fName{params} is a Viper method, if fName is not pure, or
function, if fName is pure. If there are no parameters and fName denotes a
function literal, this Viper method or function is defined at 4.3.4.3, otherwise
it is defined at 4.3.7.

• fName.captVarsFuncs(cl) is defined in 4.3.2.1.

• combine(args, params) is a sequence of expressions combining args and
parameter values so that each parameter value is in the right position ac-
cording to the list of arguments of fName.

4.2.7 Specification entailment proofs
J proof cl implements fName{params} { BODY } K ≜

1 ∀ aX in fName.args: Jdeclare aX_SK
2 ∀ rX in fName.res: Jdeclare rX_SK
3 ∀ (p.name, p.value) in params: p.name_S := Jp.valueK
4 CL_SUB := JclK
5 if (*)
6 {
7 var numIterations : Int
8 numIterations := closureProofIterator ()
9 while ( numIterations > 0)

10 decreases numIterations
11 {
12 inhale J fName.P[aX → aX S] K
13 label pr_lbl
14 J BODY[aX → aX S, rX → rX S, cl → CL SUB, old(E) → old[pr lbl](E) ] K
15 exhale J fName.Q[aX → aX S, rX → rX S, old(E) → old[pr lbl](E)] K
16 numIterations := numIterations - 1
17 }
18 assume false
19 }
20 inhale J cl implements fName { params } K

At lines 1 and 2, we define substitutes for the arguments and results of fName.

At line 3, we assign the parameter values to the corresponding argument substi-
tutes (each parameter name p.name matches the name of an argument of fName).
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At line 4, we assign the value of closure expression cl to the exclusive variable
substitute CL SUB. This assignment is necessary to ensure that no permissions are
needed, inside the proof, to access the closure.

The arguments, results, and closure expression are substituted within the encoding
of the proof precondition, body and postcondition, as indicated at lines 12, 14,
and 15.

The body is enclosed within a loop, which in turn is enclosed within an if-statement.
The if-condition is a non-deterministic boolean value, which forces the verifier to
verify the body. The assume false at the end ensures that any changes to the
state of the program made within the if-statement are discarded.

The purpose of the loop is to lose all permissions related to the arguments, includ-
ing the parameters. The preconditions of fName are assumed at the beginning of
the body, and they must hold at the end so that the exhale operation, at line 15,
succeeds.

closureProofIterator is an abstract, terminating Viper method that returns an
unknown integer. Therefore the number of executions of the loop is unknown,
but not infinite. This allows the verifier to prove the termination of the enclosing
method, if necessary, since numIterations is decreased at line 16. Because the
number of iterations is unknown, the proof still works if a verifier backend attempts
to inline loops.

The inhale statement at the end ensures that, from now on, the expression ‘cl
implements fName{params}’ is known to be true.

4.3 New Viper members

4.3.1 Closure domain

A new domain Closure is introduced to encode Go’s function type.

1 domain Closure {
2 function closureNil (): Closure

4 J capturedVarDomainFunctions K
6 J specEntailmentDomainFunctions K
7 }

closureNil returns the nil function, which we encode as a variable of Closure
type with no known properties. JcapturedVarDomainFunctions K are the domain
functions necessary to access the variables captured by a closure, defined in 4.3.2.JspecEntailmentDomainFunctionsK are the domain functions used for specifica-
tion entailment assertions, defined in 4.3.3.
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4.3.2 Domain functions necessary to access captured variables
capturedVarDomainFunctions is a list of functions that allows all closures in the
package to access the variables that they capture.

Let CaptTypes be set of encoded types of pointers to all the variables captured
by any function literal in the package. For example, if the package contains a
function literal that captures a variable of type int, CaptTypes will contain type
Ref (the encoding of type *int).

For each type T in CaptTypes , let NT be the maximum number of distinct variables
with encoded pointer type T that are captured by a single function literal in the
package.

We define capturedVarDomainFunctions as follows.J capturedVarDomainFunctions K ≜
∀T in CaptTypes :

∀X := 1..NT:
function captVarX Closure T(closure: Closure): T

4.3.2.1 List of variables captured by a specific function literal

Given a closure cl and function literal fName, we define fName.captVarsFuncs(cl)
to be the list of domain function calls that correspond to the variables captured
by fName, assuming that the value of cl is the same as the one returned by fName.
If cl is not the closure returned by fName, the values returned by the call will
either be undefined, or they will correspond to the variables captured by some
other function literal.

If fName does not denote a function literal, then the list is empty.

Let vlist be the list of variables captured by fName, in the order in which they
appear within fName. For each variable vlist[i], let Ti be the encoded type of a
pointer to vlist[i], and let Xi be the number of variables v[j] such that j ≤ i
and Tj == Ti.

We obtain each element of fName.captVarsFuncs(cl) as follows.

fName.captVarsFuncs(cl) [i] ≜ captVarXiClosure Ti(cl)

Each of the functions captVarXiClosure Ti is defined within the Closure domain.
In fact, as explained in 4.3.2, the encoding makes sure that, for each type Ti, there
are enough domain functions to access captured variables whose pointer has this
type.

4.3.3 Domain functions used for specification entailment assertions
For each distinct specification instance fName{params} in the package, we generate
an abstract Viper function as follows.
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1 function closureImplements$fName{params}( closure : Closure , JparamsK])
2 : Bool

4.3.4 Function literal getter and callable member

The encoding of a function literal generates two Viper members: a callable method
or function and a getter function. To make the process easier, the literal is first
subject to a series of transformations.

4.3.4.1 Internal transformation

The function literal is transformed, internally, by:

• Replacing every occurrence of a captured variable with the dereference of a
fresh variable. The variable’s type is the type of a pointer to the variable.
For example, captured variable x, of type int, is replaced by expression
*x RN0, where x RN1 is a fresh variable of type *int.

• Renaming it, so that the new name is unique in the package.

• Transforming the body and specification similarly to any other function.

After the transformation described above, the literal has the shape shown in the
snippet below.

1 requires P
2 ensures Q
3 func litName <c1_T0 , c2_T0 , c1_T1 , ... >(a1 ,, ... , aN) (r1 , ... , rR) {
4 BODY
5 }

a1, a2, ..., aN are the arguments, r1, ..., rR are the results. c1 T0, c2 T0,
c1 T1, ... are the captured variables substitutes, where Tn is the type of the
variable after the encoding. Note that, in the actual encoding, the names are
different.

4.3.4.2 Closure getter

We generate a Viper function, so that a call to this function can be used to retrieve
the corresponding closure variable. The function looks as follows.

1 function closureGet$litName (Jc1_T0 , c2_T0 , c1_T1 , ...K): Closure
2 ensures closureImplements$litName( result )
3 ∀ cX_Tn : ensures captVarXClosure_Tn (cl) == cX_Tn

The function ensures that the result implements litName, and the values of the
relevant captured variables are the ones given as arguments. This allows the result
to be used as an argument to the closureCall$litName method.
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4.3.4.3 Callable method or function

A non-pure function literal is encoded as a Viper method. The encoding looks as
follows.

1 method closureCall$litName$( closure : Closure , Jc1_0 , ...K, Ja1 , ...K)
2 returns (Jr1 , ... , rRK)
3 (if litName does not capture any variables)
4 requires closureImplements$litName( closure )
5 (if litName captures some variables)
6 requires closure == closureGet$litName (closure , Jc1_0 , ...K)
7 requires JPK
8 ensures JQK
9 {

10 JBODYK
11 }

The arguments are:

• A closure parameter, which represents the closure being called;

• The substitutes of the captured variables (c1 0, c2 0, ...);

• The actual arguments.

The specification is the encoding of the original specification, with the additional
precondition that:

• If the literal does not capture any variables, the closure must implement
litName (line 4);

• If the literal captures some variables, closure must have the same value as
the one returned by the closure getter (i.e. it must be the closure created
using the function literal). This precondition is at line 6; note that this
condition is stronger than the one at line 4.

The purpose of this Viper member is twofold: first, it allows the verification of
the literal’s body and specification; second, it is used for closure calls.

The encoding for a pure literal is a Viper function with the following signature.
The specification and body are defined analogously to the non-pure version.

1 method closureCall$litName$( closure : Closure , Jc1_0 , ...K, Ja1 , ...K)
2 : JlitName.res.typeK
4.3.5 Function expression conversion
If function name someFunc is used as a function expression, we introduce a Viper
conversion function, that we can call to retrieve a closure value implementing
someFunc. This conversion function looks as follows.

1 function closureGet$someFunc (): Closure
2 ensures closureImplements$someFunc( result )

The function is very similar to a closure getter for function literals. The only
difference is that there are no captured variables.
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4.3.6 Method expression conversion
If a function name recv.someMeth is used as a method expression, we introduce
a conversion function, similarly to what we do with functions. However, in this
case the encoding depends on the type of the receiver.

Let recvT be the type of recv. The encoding of the corresponding conversion
function for recv.someMeth depends on whether recvT is an interface type or not.

If recvT is not an interface type, the conversion function looks as follows.
1 function closureGet$recv.someMeth(self: JrecvTK]): Closure

The function is very similar to the conversion for functions. The differences are
the following:

• The receiver is accepted as a parameter;

• The result is not assumed to implement any spec. The reason for this
absence is that specs, for now, can only be constructed from functions, or
function literals, but not from methods. The support for method-based
specs could be added in the future, but it is not necessary. In fact, to
prove that the method implements a particular spec, a user can use normal
method calls inside a specification entailment proof.

If recvT is an interface type, the conversion function looks as follows.
1 function closureGet$recv.someMeth(self: JrecvTK]): Closure
2 requires Jself != nilK
3 ∀ tX implementing recvT :
4 ensures (JtypeOf ( recvT ) == tXK) ==>
5 result == closureGet$recv.someMeth(Jself .( tX)K)

The postcondition at lines 4-6 ensures that the result depends on the concrete
type of self: if the concrete type is tX, the result is the same as we would get
after casting the type of self to tX. So, if there are variables i1 and s1 such that
i1 has interface type, s1 has a type that implements the type of i1, and i1 ==
s1, then i1.someMeth and s1.someMeth have the same value.

4.3.7 Method or function used by closure calls
For each distinct specification instance fName{params} in the package, where
fName is a non-pure function, we generate an abstract Viper method as follows.

1 method closureCall$fName{params}(cl: Closure , JfName .argsK)
2 returns (JfName .resK)
3 requires closureImplements$fName{params}(cl , Jparams . namesK)
4 requires JfName .PK
5 ensures JfName .QK
Note that, by construction, each parameter in params corresponds to one of the
arguments of fName, so params.names are valid values. A call to this method has
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the same requirements and guarantees as a call to the original fName method, with
the additional precondition that the closure argument cl implements the spec.

If fName is pure, we generate a Viper function instead, as follows.
1 function closureCall$fName{params}(cl: Closure , JfName .argsK)
2 : JfName .res.typeK
3 requires closureImplements$fName{params}(cl: Closure ,Jparams . namesK)
4 requires JfName .PK
5 ensures JfName .QK
6 ensures result == JfName .BODY. returnExpressionK
The remarks made for the method also apply to the function. An additional
observation is that there is an additional postcondition, at line 6. This additional
postcondition asserts that the result of a call is equal to the return expression of the
body of fName. The additional postcondition is necessary because, as explained
in 3.2.2, we consider the body of pure functions to be part of their postcondition.
Without the added postcondition, we would instead lose all information about the
body when calling this function. We would obtain the same result by copying
the body instead. However, adding a postcondition has the advantage that the
verifier does not need to verify again that fName.Q holds, which is unnecessary,
since this fact is already verified in the original function.

4.4 Soundness

This section provides an intuition as to why the encoding presented in the previous
sections is sound. This section is not meant to provide a formal proof of soundness.

4.4.1 Closure domain

A single closure domain is enough to represent all variables of function type. In
fact, the type checker makes sure that:

• A closure of a certain type cannot be assigned to a variable of a different
type;

• Two closures with different types cannot be compared;

• In any closure call (e.g. ‘cl(args) as spec’) and specification entailment
assertion (e.g. ‘cl implements spec’), the types of the closure and of the
spec match;

• In specification entailment proofs, the types of the closure and of the spec
match.

Therefore, all type mismatches are detected by the type checker. Hence, at the
encoding stage we can assume that the closures have the correct type.
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4.4.2 Nil/default closure

As emphasised in 4.4.1, it is not a problem that all nil closures, regardless of their
type, have the same encoding.

Additionally, the user cannot call a nil closure, because no spec instance is imple-
mented by it (unless the user explicitly assumes that it does).

4.4.3 Function literals

If the closureCall method or function generated from a function literal verifies,
then the function literal is correct. In fact, if we only consider normal arguments
and results, the behaviour of a function literal is equivalent to that of an ordinary
function. Also, capturing variables is equivalent to implicitly receiving pointers to
the variables. So, assuming that the verification of ordinary functions is sound,
then the verification of function literals is also sound.

For the same reason, if termination checks succeed for the generated member,
then the function literal terminates.

4.4.4 Closure calls

The encoding of closure calls ensures that the call ‘cl(args) as spec’ only verifies
if the verifier knows that cl implements the specification of spec. Therefore, if
a function verifies, it must be the case, by definition of specification entailment,
that the precondition of spec is enough to call cl, and that such a call ensures
the postcondition of spec. This guarantees that, if the call verifies, any assertion
that can be inferred right after the call is sound.

4.4.5 Specification entailment proofs and assertions

If specification entailment proof ‘proof cl implements spec { BODY }’ verifies,
then the behaviour of cl entails the specification.

The body of the proof, when encoded, is put inside a loop. Within the loop, all
knowledge about the properties of the parameters is lost, except for their value.
In particular, all access permissions are lost. The variables used to represent
non-parametrised arguments and results are completely new variables, so no in-
formation about them is known in the proof except for what the preconditions
state. Therefore, any assertion within the proof body must be entailed by the
precondition of the spec, and by the value of the parameters.

Therefore, for the call inside the body to succeed, the preconditions must be
entailed by the preconditions of spec. Analogously, the exhale statement at the
end only succeeds if the postconditions of the call, combined with any residual
properties unused by the call, entail the postconditions of spec.
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Hence, it is sound to assume, after a successful proof, that cl implements spec.
Whether a specification entailment assertion is true depends on the specific values
of the parameters, so the fact that the values of the parameters are not havoc-ed
within the proof body does not invalidate the soundness of the proof.

Also, the success of a proof does not depend on the state of a closure, since the
state can only be accessed through access permissions, which are havoc-ed in the
proof. Therefore, it is sound to treat a specification entailment assertion as a
heap-independent expression.

4.4.6 Termination

The type checker verifies that, if spec has any termination measures, then the
call of cl within the specification must use a specification which also has termi-
nation measures. The purpose of this check is to ensures that only closures that
are known to terminate can implement a specification that includes termination
measures.

The termination of closure literals is checked analogously to the termination of
regular functions, since closure literals are encoded as Viper functions or methods.
Viper provides a termination plugin that Gobra uses to add termination checks to
the encoded Viper program. However, in some scenarios, our encoding undercuts
the generation of checks by the plugin, leading to unsound termination checks.
We provide more details about this problem, and a potential solution, in the next
section.

4.5 Problem with termination checks for closure literals
In this section, we explain a problem in the encoding of our design that leads to the
presence of unsound termination checks for closures in some scenarios. First, we
briefly explain how termination checks work in Gobra. Then, we provide an exam-
ple showing a situation where termination checks fail to detect non-termination.
Lastly, we sketch a potential solution to the problem.

4.5.1 Termination checks in Gobra

In order to add termination checks to a generated Viper file, Gobra uses a plugin
provided by Viper. If the specification of a function contains termination measures,
then the plugin adds termination checks to ensure that the function actually
terminates. In particular, the checks ensure that loops terminate and that all
function calls terminate. Intuitively, a function call terminates if the callee is
guarantee to terminate.

A function f is recursive if it contains a recursive call. A function call in f is
recursive if it calls f directly, or if it calls a function that depends on f. Recursive
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1 requires n >= 0
2 decreases n
3 func a(n int) {
4 if (n > 0) {b(n -1)}
5 }

6 requires m >= 0
7 decreases m
8 func b(m int) {
9 if (m > 0) {a(m -1)}

10 }

Figure 4.1: An example of functions calling each other.

a b

Figure 4.2: Call graph corresponding to the program in figure 4.1.

calls are treated differently from other calls, as they require additional checks.
Therefore, it is necessary that the termination plugin is able to identify which
calls are recursive.

To generate the correct termination checks, Viper’s termination plugin generates
a call graph to identify which functions are recursive. In the call graph, each node
corresponds to a function, and each edge corresponds to one or more calls. In
particular, there is an edge from node A to node B if the function A contains
a call to the function B. If a node A belongs to a cycle in the graph, then the
corresponding function is recursive.

Consider the example in Figure 4.1. Functions a and b call each other. Both a
and b are encoded as Viper methods, and the corresponding call graph is in figure
4.2. Nodes a and b belong to a cycle. Therefore, the calls b(n-1) (line 4) and
a(m-1) (line 9) are recursive, and they will be treated as recursive calls by Viper’s
termination plugin. Identifying call cycles, and therefore identifying which calls
are recursive, is crucial for the soundness of termination checks, because recursive
calls need to satisfy more stringent conditions than non-recursive calls.

4.5.2 Explanation of the soundness problem
Closure calls are encoded as calls to the Viper method or function corresponding to
the specification used in the call. Therefore, calls to the same closure are encoded
as calls to separate methods, if they use different specifications. Hence, the call
graph corresponding to the encoding of a program that uses closures does not
preserve all the information required by the verification plugin. As a consequence,
in some situations, Viper’s verification plugin is unable to detect closure recursion,
leading to unsoundness in the verification of termination.
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1 ghost
2 preserves acc(acl , 1/2) && *acl implements aspec {acl}
3 decreases n
4 func aspec (acl *func(int), n int)

5 func t() {
6 var c@ func(int)
7 c := preserves acc (&c, 1/2) && c implements aspec {&c}
8 decreases n
9 func f(n int) {

10 c(n) as aspec {&c}
11 }

12 proof c implements aspec {&c} {
13 c(n) as f
14 }

15 c(5) as f
16 }

Figure 4.3: A non-terminating recursive closure.

Consider the example in figure 4.3. Function t, defined at lines 5-16, declares
closure variable c at line 7, and defines it at lines 8-12. Closure c calls itself at
line 11, using the unchanged argument n. Intuitively, it is clear that c does not
terminate, so the verification of the program should fail, since the specification at
line 8 requires the verifier to check that the closure always terminates. However,
the verification of the program succeeds.

Let us consider the call graph that Viper’s verification plugin generates for this
example. Constructing the call graph requires some facts about the encoding.
Following the encoding presented in this chapter, we know the following (we
simplify the names of the encoded methods for convenience).

• Closure literal f (lines 7-11) is encoded as method clCall$f.

• Closure call c(n) as aspec{&c} (line 10) is encoded as a call to method
clCall$aspec 1, which is encoded from the function specification defined
at lines 1-4.

• Function t (lines 5-16) is encoded as method t.

• Closure calls c(n) as f (line 13) and c(5) as f are encoded as calls to
method clCall$f.

The call graph generated by Viper’s termination plugin is shown in figure 4.4.
The body of t contains calls c(n) as f (line 13) and c(5) as f (line 15), so
there is an edge from node ‘t’ to node ‘clCall$f’. The body of closure literal f
contains call c(n) as aspec{&c} (line 10). Therefore, there is an edge from node
‘clCall$f’ to node ‘clCall$aspec 1’. Since there are no other calls, this is the
entire call graph (excluding nodes that are not relevant to our discussion). Note
that there is no edge between ‘t’ and ‘clCall$aspec 1’ because the call at line 10,
in the encoding, is not part of the body of ‘t’, since closure literals are encoded
as separate methods.
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clCall$
aspec_1

clCall$
f

t

Figure 4.4: (Incorrect) call graph corresponding to the program in figure 4.3.

clCall$
aspec_1

clCall$
f

t

Figure 4.5: (Correct) call graph corresponding to the program in figure 4.3.

The problem is that the call graph does not reflect the fact that ‘clCall$aspec 1’
might depend on ‘clCall$f’, since the proof at lines 12-14 uses spec f to prove
that c implements aspec{&c}.

4.5.3 Proposed solution

One possible solution to the problem is to ensure that the call graph of an encoded
Gobra program reflects that callable methods corresponding to closure specifica-
tion instances (whose encoding is defined at 4.3.4.3 and 4.3.7) might depend on
other methods. In particular, we can infer all the requires dependencies from the
body of the specification entailment proofs in the package.

Consider the example in figure 4.3 again. The correct call graph corresponding to
the example is shown in figure 4.5. The edge shown using a dotted line represents
the dependency between specification instance aspec{ } and specification instance
f, which can be inferred from the proof at lines 12-14 in the code.

In practice, for each specification entailment proof proof c implements spec1,
we need to add a dependency between the Viper method or function corresponding
to spec1 and the Viper method/function that is called within the body of the
proof.

Currently, Viper’s verification plugin does not support the explicit addition of
dependencies in the call graph. However, we can make sure that the dependencies
are added to the call graph using the approach sketched next. Note that the
proposal is only a sketch and needs to be refined. The approach proposed here
is similar to the approach currently used to ensure the soundness of termination
checks for calls to interface methods. We make the assumption that Viper’s
termination plugin does not distinguish between dead code and alive code when
computing the call graph.
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Approach for non-pure closure specification instances

Consider non-pure specification instance spec{params} and consider the corre-
sponding callable method closureCall$spec{params}. According to the encoding
described in 4.3.7, closureCall$spec{params} has no body. Let proof1, proof2,
. . . , proofN be the specification entailment proofs in the package that are used
to show that some closure implements spec{params}.

We define a new encoding, where the method closureCall$spec{params} has the
same specification as before. However, we now define the body as follows.

1 method closureCall$spec{params}(cl: Closure , Jspec.argsK)
2 // specification
3 {
4 inhale false

6 Jproof1 .BODY.callK
8 Jproof2 .BODY.callK

10 // ...

12 JproofN .BODY.callK
13 }

Statement inhale false at line 2 ensures that the calls at lines 4-10 have no effect
on the verification of the partial correctness of the program. However, since the
calls are contained inside the body of the generated method, Viper’s termination
plugin will add the corresponding dependencies in the call graph, as wanted.

Approach for pure closure specification instances

Consider pure specification instance spec{params} and consider the corresponding
callable function closureCall$spec{params}. Similarly to the non-pure case, the
function has no body according to the current encoding, defined at 4.3.7. De-
fine proof1, proof2, . . . , proofN analogously to the case where the specification
instance is not pure.

We define a new encoding, where the function closureCall$spec{params} has
the same specification as before. However, we now define the body as follows.

1 function closureCall$spec{params}(cl: Closure , Jspec.argsK)
2 // specification
3 {
4 return true ? closureCall$spec{params}$true(cl , Jspec.argsK)
5 : (true ? Jproof1 . returnExprK
6 : (true ? Jproof2 . returnExprK
7 // ...
8 : (JproofN . returnExprK)
9 ...))

10 }

The body is a nested ternary operator. The condition in the outermost ternary
operator is true. Therefore, the verifier knows that a call to the function is just
equivalent to verifying a call to closureCall$spec{params}$true.
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closureCall$spec{params}$true is defined analogously to the definition of
closureCall$spec{params} in the original encoding. The rest of the body con-
tains all of the expressions contained in all relevant specification entailment proofs.
So, although the rest of the body is not taken into account by the verifier, Viper’s
termination plugin will add the dependencies corresponding to proofs proof1, . . . ,
proofN in the call graph, as wanted.



Chapter 5

Case study

This chapter presents common use cases of closures. For each use case, we
propose a relevant example, and we show how our design can be used to verify
such examples.

5.1 Calling a closure within the function defining it
If a closure is called within the function that defines it, we fully know its specifica-
tion. The following example shows how this simple case can be verified following
our approach. The closure variable c is defined at line 3 using a function literal
ctr. The literal defines a counter that captures variable cnt, increments it at
each call and returns the new value of cnt.

The closure is called first at line 8, and then at line 14, within a loop. The
assertions at lines 9 and 15 show that we can make assertions about the new
value of cnt after each call. We can also change the value of the captured
variables freely, as shown at line 10.

1 func main () {
2 cnt@ := 0
3 c := preserves acc (& cnt)
4 ensures cnt == old(cnt) + 1 && res == cnt
5 func ctr ()( res int) {
6 cnt += 1; return cnt
7 }

8 r := c() as ctr
9 assert r == 1 && cnt == 1

10 cnt = 10

11 invariant i >= 0 && i <= 89
12 invariant acc (& cnt) && cnt == i + 10
13 for i := 0; i < 89; i += 1 {
14 r = c() as ctr
15 assert r == i + 11 && cnt == i + 11
16 }
17 assert cnt == 100
18 }

45
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5.2 Recursive closures
A closure is recursive if it contains a call to itself. In Go, this is achieved as shown
in the snippet below. The closure variable, called c in the example, is declared
at line 1. The literal declared at lines 2-6 then calls closure c at line 4, with any
arguments. The literal is assigned to variable c, which means that the call at line
4 will use the function declared by the literal, i.e. it is a recursive call.

1 var c func(int)int
2 c = func(a int)int {
3 // ...
4 c(??)
5 // ...
6 }

The code snippet below shows how our approach allows the verification of recursive
closures in Gobra. The closure in the snippet implements the factorial function
recursively, and the corresponding function literal factorial is defined at lines 7-
14. The precondition, postcondition, and termination measures at lines 7,8, and
10 are analogous to those that a standard factorial function defines: the argument
is non-negative and it is decreased in recursive calls, and the result is specified
by pure function fact. fact, defined at line 3, is a pure ghost function used to
define the value of the n-th factorial.

Closure variable c, defined at line 7, is used in a recursive call at line 17. Therefore,
c is captured by the literal, and we need to specify access permissions at line 9. The
remaining precondition c == factorial means that, for calls to succeed, closure
c must have exactly the same value as the closure created by the literal factorial.
This last condition allows the verifier to know that c implements factorial, and
that it captures the same variables (c itself, in this case). This information is
enough for the call c(n-1) as factorial (line 13) to be verified.

Line 17 shows a call to the recursively-defined closure c, which verifies and has
the expected result.

1 ghost requires n >= 0
2 pure func fact(n int)int {
3 return n == 0 ? 1 : n * fact(n -1)
4 }

5 func main () {
6 var c@ func(int)int
7 c = requires n >= 0
8 preserves acc (&c, 1/2) && c == factorial
9 ensures r == fact(n)

10 decreases n
11 func factorial (n int) (r int) {
12 if n == 0 { return 1 }
13 else { return n * c(n -1) as factorial }
14 }

15 assert fact (0) == 1 && fact (1) == 1 && fact (2) == 2 &&
16 fact (3) == 6 && fact (4) == 24 && fact (5) == 120

17 r := c(5) as factorial
18 assert r == 120
19 }
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5.3 Specification entailment for interface methods
We can use specification entailments to make assertions about the behaviour of
interface methods. Consider the example in the following code snippet. Every type
implementing interface Box, declared at lines 1-5, must implement a predicate mem
and a pure function value, which returns an integer and preserves mem. Function
transformBox, declared at lines 6-11, receives a Box variable as an argument,
calls it at line 10 and returns the result of the call multiplied by 2. We want to
ensure that this result is divisible by 4. The specification provided by the interface,
however, is not enough. We need an additional requirement, informally written
at line 6, which says that box.value() returns an integer divisible by 2, for the
specific implementation of box received as an argument.

1 type Box interface {
2 pred mem ()

3 preserves mem ()
4 value ()(r int)
5 }

6 requires box != nil && [the result of box. value () is even]
7 preserves box.mem ()
8 ensures res % 4 == 0
9 func useEvenBox (box Box) (res int) {

10 return box. value () * 2
11 }

We can use a specification entailment to write the precondition that we need, as
shown in the next code snippet. Lines 1-3 define the function even, which we
will use as a specification. The only parameter of even is variable box, of type
Box. The parameter box is necessary to link the specification defined by even
with a particular instance of interface Box. The pre- and postconditions of even
declare that the mem predicate of of box is preserved, and that the result of even
is divisible by 2. Function useEvenBox can now define precondition box.value
implements even{box} at line 4 to require that box.value() has an even result.
Thanks to this precondition, we can add the specification instance even{box} to
the call at line 8, allowing the verifier to know that the result of the call will be
divisible by 2.

1 ghost preserves box.mem ()
2 ensures r % 2 == 0
3 func even( ghost box Box )(r int)

4 requires box != nil && box. value implements even{box}
5 preserves box.mem ()
6 ensures res % 4 == 0
7 func useEvenBox (box Box) (res int) {
8 return (box. value () as even{box }) * 2
9 }

A potential caller of useEvenBox is shown below. Function main, defined at lines
8-17, creates variable box at line 12, using struct type TCtrBox. TCtrBox is defined
at line 1 as a struct type, which contains a pointer to an integer. The predicate
mem(), defined at line 2, contains access to the value accessible through the
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pointer, and method value() returns the value of the pointer, multiplied by 2.
Since this implementation of value() always has a result that is divisible by 2,
the entailment proof at lines 12-14 succeeds. Variable box can thus be used in
the call to useEvenBox at line 15.

1 type TCtrBox struct { x *int }
2 pred (self TCtrBox ) mem () { acc(self.x) }
3 preserves self.mem ()
4 ensures res % 2 == 0
5 func (self TCtrBox ) value ()( res int) {
6 return unfolding self.mem () in (2 * *self.x)
7 }

8 func main () {
9 x@ := 0

10 box := TCtrBox {&x}
11 fold box.mem ()

12 proof TCtrBox {&x}. value implements even{ TCtrBox {&x}} {
13 return TCtrBox {&x}. value ()
14 }

15 r := useEvenBox (box)
16 assert r % 4 == 0
17 }

5.4 Higher-order functions knowing the exact behaviour
of a closure

Specification entailments can be used to verify higher-order functions that know
the exact specification of a closure. To see an example of this, let us consider
a variation of the example considered in Section 5.1. This variation of the ex-
ample is shown below without annotations. The closure c is defined as in the
original example. The difference is that the main function, instead of calling c
directly, delegates this task to function call counter n times, by calling it at line
6. The function call counter n times, given an integer n and closure ctr, calls
the closure n times.

1 func main () {
2 cnt := 0
3 c := func ctr ()( res int) {
4 cnt += 1; return cnt
5 }

6 call_counter_n_times (100 , c)
7 }

8 func call_counter_n_times (n int , ctr func () int) {
9 for i := 0; i < n; i += 1 {

10 ctr ()
11 }
12 }

It is a common programming practice to split functions, in order to improve the
readability of the code by making the functions shorter. Sometimes, as in the
example shown above, this practice leads to the creation of higher-order functions.
In this case, the programmer knows exactly which closures are the arguments to
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the higher-order function. Therefore, in this specific case, our objective is writing
a specification for the higher-order function that leverages the full knowledge of
the behaviour of the closure. This objective can be achieved using specification
entailment. The annotated version of the code, shown in the code snippet below,
demonstrates how our mechanism is suitable for such a scenario.

Lines 1-7 are analogous to the same lines in the original example in Section 5.1. In
addition to the actual arguments, the function call counter n times has a ghost
argument cnt (line 21), which corresponds to the pointer to the variable captured
by the closure. The precondition at line 18 states that argument n must be
non-negative (line 18). The other precondition at line 18 (ctr implements ctr -
spec{cnt}) is used to specify the exact behaviour of ctr. In fact, the signature and
specification of ctr spec (lines 14-17) matches exactly the definition of function
literal ctr at lines 3-7, with the only difference that any captured variables are
replaced by pointer arguments. In our case, captured variable cnt, of type int, is
replaced with argument cnt, of type *int. Because the specification of ctr spec
matches the behaviour of the closure exactly, the specification entailment proof
at lines 8-10 succeeds.

Since function call counter n times knows the exact behaviour of ctr via the
precondition at line 18, it can track the value of the captured variable cnt at
every call. Therefore, the remaining part of the specification can be verified and
is meaningful. In particular, the rest of the specification states that access to cnt
is preserved (line 19), and that, after the call, the value of cnt is increased by n
(line 20).

1 func main () {
2 cnt@ := 0
3 c := preserves acc (& cnt)
4 ensures cnt == old(cnt) + 1 && res == cnt
5 func ctr ()( res int) {
6 cnt += 1; return cnt
7 }

8 proof c implements ctr_spec {& cnt} {
9 return c() as ctr

10 }

11 call_counter_n_times (100 , c, &cnt)

12 assert cnt == 100
13 }

14 ghost
15 preserves acc( count )
16 ensures * count == old (* count ) + 1 && res == * count
17 func ctr_spec ( count *int )( res int)

18 requires n >= 0 && ctr implements ctr_spec {cnt}
19 preserves acc(cnt)
20 ensures *cnt == old (* cnt) + n
21 func call_counter_n_times (n int , ctr func ()int , ghost cnt *int) {
22 invariant i >= 0 && i <= n
23 invariant acc(cnt) && *cnt == old (* cnt) + i
24 for i := 0; i < n; i += 1 {
25 ctr () as ctr_spec {cnt}
26 }
27 }
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5.5 Higher-order functions returning a closure
Functions can return a closure. The caller of such functions has the benefit that it
does not need to know about the exact implementation of the closure, making the
code easier to read and to maintain. The example below shows, as an example,
a function that returns a counter function. Function getCounter declares integer
variable x at line 2, and the variable is then captured by the closure c declared at
line 2. The closure increases the variable and returns its value. getCounter then
returns the closure ctr.

1 func getCounter () (ctr func () int) {
2 x := 0
3 ctr = func count () (res int) {
4 x += 1; return x
5 }
6 }

We can verify this example using our verification mechanism. Our objective, in this
case, is that the caller getCounter can call the closure returned by getCounter,
with knowledge about the values returned by each call but without knowing the
implementation details. To achieve this goal, we define an appropriate entailment
interface and closure specification, shown below. The interface predicate inv at
line 2 allows the presence of an internal state, and the pure interface method at line
4 provides a way to make assertions about the value returned by the closure. The
counter function, at lines 6-10, defines the specification of the closure returned
by getCounter. The only parameter of counter is ctrint, an instance of the
entailment interface Ctr. The specification states that the predicate ctrint.inv()
is preserved (line 8), that ctrint.value() increases by 1 at each call (line 9), and
that the result of counter is the same as ctrint.value(). Note that there is no
indication that ctrint.value() corresponds to the value of a particular variable,
or any other information about the implementation of the counter.

1 type Ctr interface {
2 pred inv ()

3 ghost requires inv ()
4 pure value () int
5 }

6 ghost
7 requires ctrint != nil
8 preserves ctrint .inv ()
9 ensures ctrint . value () == old( ctrint . value ()) + 1 && res == ctrint . value ()

10 func counter ( ghost ctrint Ctr )( res int)

Below, we show the annotated getCounter. At lines 18, we define struct CtrImpl,
which implements entailment interface Ctr. The inv predicate, at line 19, contains
access to an integer pointer, corresponding to the captured variable. The value
function, defined at lines 20-23, returns the value accessible via the pointer. In
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the body of getCounter, a specification entailment proof (at lines 10-14) is used to
prove that the closure ctr implements the specification instance counter{CtrImpl{&x}},
where x is the variable captured by ctr. A ghost return value, with name ctrint
and type Ctr, is returned together with the closure. The value of this additional
return value is CtrImpl{&x}. However, the caller of getCounter will only know
that ctrint is an instance of entailment interface Ctr. ctrint.inv() is folded at
line 16, in order to ensure permission to ctrint.inv() in the postcondition.

The postcondition of getCounter (lines 1-2) communicates, to the caller, that
there is permission to ctrint.inv(), that the current value returned by ctrint.value()
is 0, and that the closure returned implements the specification of counter, with
entailment interface instance ctrint.

1 ensures ctrint != nil && ctrint .inv () && ctrint . value () == 0
2 ensures ctr implements counter { ctrint }
3 func getCounter () (ctr func ()int , ghost ctrint Ctr) {
4 x@ := 0
5 ctr = preserves acc (&x)
6 ensures x == old(x) + 1 && res == x
7 func count () (res int) {
8 x += 1; return x
9 }

10 proof ctr implements counter { CtrImpl {&x}} {
11 unfold CtrImpl {&x}. inv ()
12 res = ctr () as count
13 fold CtrImpl {&x}. inv ()
14 }

15 ctrint = CtrImpl {&x}
16 fold ctrint .inv ()
17 }

18 type CtrImpl struct { cnt *int }
19 pred (self CtrImpl ) inv () { acc(self.cnt) }
20 ghost requires self.inv ()
21 pure func (self CtrImpl ) value () int {
22 return unfolding self.inv () in (* self.cnt)
23 }

The snippet below shows a potential caller of getCounter. Closure variable ctr
is declared and defined at line 2, alongside entailment interface instance ctrint.
Note that ctrint is a ghost variable. The closure is then called at lines 3 and 6,
using specification instance counter{ctrint}. Assertions at lines 4 and 7 check
that we can verify that the value returned by the calls increases by one at each
call.

1 func main () {
2 ctr , ctrint := getCounter ()

3 r := ctr () as counter { ctrint }
4 assert r == 1

5 r = ctr () as counter { ctrint }
6 assert r == 2
7 }
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5.6 Higher-order functions describing their calls to a
closure

In this section, we will consider several scenarios where a higher-order function
receives a generic closure as an argument. In each case, we will use our verification
mechanism for closures, so that the higher-order function can declare, within its
own specification, how the closure is used.

In each scenario, our objective is that the specification of the higher-order function
is:

• General with respect to the closure. We should make no unnecessary as-
sumptions about the implementation or behaviour of the closure.

• Understandable by a human reader.

• Informative about how the closure is used by the higher-order function. The
caller of the higher-order function should be able to infer useful information
about how the results of the closure affect the results of the higher-order
function, and about how the internal state of the closure changes after a
call to the higher-order function.

For each scenario, we will present:

• A general description of the scenario, with a relevant example.

• A specification pattern suitable for this scenario. A specification pattern
consists in an entailment interface used in combination with a closure spec-
ification function. These two elements can be used in instances of the
scenario, in order to allow a higher-order function to describe the usage of
a closure argument.

• The annotated version of the example shown at the beginning.

• An annotated call example, showing a potential caller of the higher-order
function.

5.6.1 The closure is called an unspecified number of times
In this scenario, we want a higher-order function to communicate, via its post-
condition, that a particular closure argument will be called 0 or more times, with
any arguments. However, the function should also be able to communicate that
some particular calls happened, in some unspecified order, and to express the
relationship between these calls and the function’s results.

5.6.1.1 Example

In the example below, higher-order function hof calls closure argument f in a
different order depending on boolean parameter choice. The result of hof is the
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sum of the calls f(2) and f(3). Note that, depending on the order of these calls,
the result might change.

1 func hof(f func(int)int )( res int) {
2 if choice {
3 res = f(2) + f(3)
4 } else {
5 res = f(3) + f(2)
6 }
7 f(5)
8 }

5.6.1.2 Pattern

A potential specification pattern for this scenario is shown below.

1 type Calls interface {
2 pred inv ()

3 ghost requires inv ()
4 pure called (x int)bool

5 ghost pure res(x int , res int)bool
6 }

7 ghost
8 requires x >= 0 && cs != nil && cs.inv ()
9 ensures cs.inv () && cs. called (x) && cs.res(x, res)

10 ensures forall x int :: old(cs. called (x)) ==> cs. called (x)
11 func spec( ghost cs Calls , x int) (res int)

The Calls entailment interface consists of a predicate, inv, and of two pure
methods, called and res. inv() is used to capture all the properties about the
state of the closure that will keep holding after any number of calls, assuming
that the arguments satisfy the preconditions declared by spec. called(x int) is
a pure boolean method, which is used to specify any properties of the internal
state that hold, and will keep holding, after a call with argument x. res(x int,
r int) is a pure boolean method, which encodes all the properties of the result
r of a call to the closure, assuming that the argument used in the call is x. The
properties described by res hold for the results of all the closure calls that use
specification spec, regardless of the precise internal state of the closure.

Specification function spec has the same signature as the closure argument that
we want to specify, with an additional ghost parameter cs, which is an instance
of the interface Calls. The specification of spec makes sure that cs.inv() is
preserved (line 8), that cs.called(x) holds after after the call (line 9), and that
cs.res(x, res) holds (line 9), where res is the result of the call. Intuitively, spec
makes sure that the implementations of the methods called and res provided
by cs actually describe the behaviour of a closure that we want to specify. The
postcondition at line 10 ensures that the called method keeps holding for old call
values.



54 5. Case study

5.6.1.3 Annotated example

The snippet below shows the annotated version of function hof from the example
at 5.6.1.1. The signature of hof, at line 6, accepts ghost parameter cs, which is an
instance of entailment interface Calls. The precondition at lines 1-2 states that
the closure argument f must implement closure specification instance spec{cs},
and that cs.inv() is preserved. The postconditions contain information about
the usage of f. The postcondition at line 5 states that f is called with argument
2, and with argument 3. The postcondition at lines 3-4 states that the result
of hof is obtained by adding up the results of two calls to f. All postconditions
can be verified because the closure calls at lines 8, 10 and 12 are annotated with
specification instance spec{cs}, so the verifier can leverage the specification of
function spec.

1 requires f implements spec{cs}
2 requires cs != nil && cs.inv ()
3 ensures cs.inv () && exists a int , b int ::
4 cs.res (2, a) && cs.res (3, b) && res == a + b
5 ensures cs. called (2) && cs. called (3)
6 func hof( ghost cs Calls , f func(int)int , choice bool )( res int) {
7 if choice {
8 res = (f(2) as spec{cs }) + (f(3) as spec{cs })
9 } else {

10 res = (f(3) as spec{cs }) + (f(2) as spec{cs })
11 }
12 f(5) as spec{cs}
13 }

5.6.1.4 Call example

Consider the snippet below for an example of how a caller can verify a call to hof.
In the example below, the caller defines closure cl at line 12. The closure captures
variable accum. At each call, accum is incremented by the value indicated by the
argument to the call, and it is returned as the result of the call. The specification
entailment proof at lines 19-23 uses interface entailment instance Acc{&accum}.

The implementation of struct Acc is defined at lines 1-9. The predicate inv(), at
line 2, provides access to the captured variable and states that the value remains
non-negative. The implementation of called (line 4) says that, after a call, the
value of the captured variable becomes at least as large as the argument to the
call. The implementation of res (line 7) says that the result of the call is also at
least as large and the argument.

With this implementation of the entailment interface, it is possible to verify the
call at line 25, and to make the assertions at lines 26 and 28, giving a lower bound
to the result of hof and to the new value of accum.

1 type Acc struct { accum *int }
2 pred (self Acc) inv () { acc(self. accum ) && *self. accum >= 0 }
3 ghost requires self.inv ()
4 pure func (self Acc) called (x int)bool {
5 return unfolding self.inv () in (* self. accum >= x)
6 }
7 ghost pure func (self Acc) res(x int , y int)bool {
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8 return y >= x
9 }

10 func main () {
11 accum@ := 0
12 cl := requires x >= 0
13 preserves acc (& accum ) && accum >= 0
14 ensures accum == old( accum ) + x && y == accum
15 func accumulate (x int )(y int) {
16 accum += x
17 return accum
18 }

19 proof cl implements spec{Acc {& accum }} {
20 unfold Acc {& accum }. inv ()
21 res = cl(x) as accumulate
22 fold Acc {& accum }. inv ()
23 }

24 fold Acc {& accum }. inv ()
25 r := hof(Acc {& accum }, cl , true)
26 assert r >= 5

27 unfold Acc {& accum }. inv ()
28 assert accum >= 3
29 }

Under this scenario, as seen in the call example, the caller might not be able to
know the exact state of the closure after a call to the higher-order function. In
Section 5.6.3 we will see a scenario where a higher-order function provides more
precise information about the usage of a closure, allowing the caller to know more
precise information about the state of the closure after the call.

5.6.2 The closure is only called once

In this scenario, we want a higher-order function to communicate, via its post-
condition, that a particular closure argument will be called at most once, with a
particular argument. The result of the call needs to satisfy a particular specifi-
cation. Since we know that the closure is only called once, however, the closure
argument only needs to satisfy the required specification for the first call, not
necessarily for any other call.

5.6.2.1 Example

In the example below, higher-order function hof calls closure argument f once,
with argument n. The result of this call is then returned, so the value of the result
of hof is the same as the value returned by the closure call. We want to ensure
that the result of hof is greater than or equal to n, so it is necessary that the first
call to f with any argument n returns a value that is at least as large as n.

1 // ensures res >= n
2 func hof(f func ()int , n int )( res int) {
3 return f(n)
4 }
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5.6.2.2 Pattern

A potential specification pattern for this scenario is shown below.
1 type Once interface {
2 pred invBefore ()
3 pred invAfter (n int)
4 }

5 requires o != nil && o. invBefore ()
6 ensures o. invAfter (n) && res >= n
7 func onceGT ( ghost o Once , n int) (res int)

Interface Once has two separate predicates, one (invBefore) corresponding to the
state before the call, one corresponding to the state after the call (invAfter).

Specification function onceGT has the same signature as the closure argument that
we want to specify, with an additional ghost parameter o, which is an instance
of the interface Once. The specification of onceGT states that o.invBefore() is
required to hold before the call, and o.invAfter(n) is guaranteed to hold after
the call. The result is guaranteed to be greater than or equal to n, as wanted.
Since onceGT does not guarantee permissions to the invBefore predicate after
the call, any higher-order function using this pattern will only be able to call the
closure at most once.

5.6.2.3 Annotated example

The following snippet shows the annotated version of function hof from the exam-
ple at 5.6.2.1. The function accepts ghost parameter o, an instance of entailment
interface Once. As a precondition, there must be access to o.invBefore() and
closure f must implement specification instance onceGT{o}. The function ensures
that o.invAfter() holds after the call and that the result returned by hof is
greater than or equal to n.

1 requires o != nil && o. invBefore () && f implements onceGT {o}
2 ensures o. invAfter (n) && res >= n
3 func hof( ghost o Once , f func(int)int , n int )( res int) {
4 return f(n) as onceGT {o}
5 }

5.6.2.4 Call example

The snippet below demonstrates that, as long as the postcondition res >= n is
guaranteed by the first call to a closure, it is possible to write an implementation
of Once that allows us to use the closure as an argument to hof. In the example,
the closure cl is defined at line 6. The closure captures variable accum. At each
call with argument x, x is added to accum and the new value of accum is returned
as a result of the call.

It is not true, in general, that call cl(n) returns a value that is at least as large
as n. In fact, if the value of accum is negative before the call, that is not the
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case. However, the first call satisfies the condition, since accum has value 0 at
the beginning. In the entailment interface proof at lines 12-16, we use struct
Acc{&accum} as an entailment interface instance. Acc is defined at lines 1-3, and
the definition of invBefore states that we are in the state before the call if the
value of the captured variable accum is 0. Also, the definition of invAfter at line
3 it says that, after a call with argument n, the value of the captured variable is
equal to n.

This implementation of the entailment interface allows the caller to prove the
specification entailment that we need, and to call hof. After the call, we also
know that the new value of accum is 5, since Acc{&accum}.invAfter(5) holds
after the call.

1 type Acc struct { accum *int }
2 pred (self Acc) invBefore () { acc(self. accum ) && *self. accum == 0 }
3 pred (self Acc) invAfter (n int) { acc(self. accum ) && *self. accum == n }

4 func main () {
5 accum@ := 0
6 cl := preserves acc (& accum )
7 ensures accum == old( accum ) + x && y == accum
8 func accumulate (x int )(y int) {
9 accum += x

10 return accum
11 }

12 proof cl implements onceGT {Acc {& accum }} {
13 unfold Acc {& accum }. invBefore ()
14 res = cl(n) as accumulate
15 fold Acc {& accum }. invAfter (n)
16 }

17 fold Acc {& accum }. invBefore ()
18 r := hof(Acc {& accum }, cl , 5)
19 assert r >= 5

20 unfold Acc {& accum }. invAfter (5)
21 assert accum == 5
22 }

5.6.3 The closure is called with specific values

In this scenario, we know exactly how a higher-order function will use a closure
argument f. In particular, we know the precise sequence of calls to f within
the higher-order function’s body, including the arguments that are used for each
call. We can use a sequence, which is a ghost type, to represent a sequence of
calls, and to enable the higher-order function to add a relevant assertion in the
postcondition. Each element of the call sequence will contain values that describe
the arguments of the corresponding call. We will show a simple example where
a single integer is enough to represent the closure call argument. However, in
general we can define a type in Gobra to provide a mathematical abstraction over
the argument values, in order to represent the value of the arguments without the
need for access permissions.
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5.6.3.1 Example

Consider the example below. In the example, higher-order function hof calls
closure argument f three times. The argument is 2 for the first call, 3 for the
second, and 5 for the third. As informally stated in the comments at lines 1-2, the
goal is to add assertions, in the postcondition, that communicate this information
to the caller.

1 // ensures sequence of calls to f is f(2) ,f(3) ,f (5)
2 // ensures res is the sum of the value returned by the calls
3 func hof(f func(int)int )( res int) {
4 res = f(2)
5 res += f(3)
6 res += f(5)
7 }

5.6.3.2 Pattern

In this case, the value returned by a call to a closure might depend on the sequence
of previous calls. The pattern shown below verifies closures of type func(ghost
seq[int], int)int, where the ghost argument represents the sequence of previ-
ous calls to the closure.

1 type Calls interface {
2 pred inv( ghost seq[int ])

3 ghost
4 requires len( calls ) > 0
5 pure res( ghost calls seq[int ]) int
6 }

7 ghost
8 requires cs != nil && cs.inv(prev)
9 ensures cs.inv(prev ++ seq[int ]{x}) &&

10 res == cs.res(prev ++ seq[int ]{x})
11 func spec( ghost cs Calls , ghost prev seq[int], x int) (res int)

Consider the Calls entailment interface (lines 1-6) first. The predicate inv, at
line 2, contains information about the internal state of the closure, which depends
on the sequence of calls made so far. Function res, at line 5, returns an integer
that corresponds to the result returned by the closure after the calls described by
sequence calls.

The specification function spec, defined at lines 7-11, has ghost arguments cs,
which is an instance of entailment interface Calls, and prev, a sequence describing
the previous calls to the closure. The precondition at line 8 states that the
predicate inv(prev) holds, which means that the closure has already been called
with the arguments specified by prev. The postcondition at lines 9-10 states that
inv now holds with argument prev ++ seq[int]x, and res matches the value
returned by cs.res when called with the same argument. Intuitively, we are
stating that, after the call, the internal state of the closure can depend on all the
closure call arguments used so far, both in the previous calls, and in the current
one.
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5.6.3.3 Annotated example

The following snippet shows the annotated version of function hof from the exam-
ple at 5.6.3.1. The function accepts ghost parameter cs, an instance of entailment
interface Calls. Also, the type of the closure parameter is changed to include,
among the arguments, a sequence describing the arguments of the previous calls
to the closure. As usual, the precondition at line 1 requires that the closure
implements specification instance spec{cs}. The precondition at line 2, instead,
requires that cs.inv holds with the empty sequence as argument, meaning that
the closure has not been called yet. The postcondition at line 3 ensures that,
when hof returns, the closure has been called three times, with arguments 2,3,5.
Line 4 informs the caller that the result of hof is obtained by adding the values
returned by all three calls to the closure. Each call in the body is annotated
with specification instance spec{cs}. Also, a ghost argument is added to each
call. The ghost argument is a sequence describing the argument values used for
previous calls.

1 requires f implements spec{cs}
2 requires cs != nil && cs.inv(seq[int ]{})
3 ensures cs.inv(seq[int ]{2 ,3 ,5})
4 ensures res == cs.res(seq[int ]{2}) + cs.res(seq[int ]{2 ,3}) +
5 cs.res(seq[int ]{2 ,3 ,5})
6 func hof( ghost cs Calls , f func( ghost seq[int], int)int )( res int) {
7 res = f(seq[int ]{} , 2) as spec{cs}
8 res += f(seq[int ]{2} , 3) as spec{cs}
9 res += f(seq[int ]{2 , 3}, 5) as spec{cs}

10 }

Consider the snippet below for an example of how a caller can verify a call to hof.
In this case, the caller is able to know precisely the value of the captured variable
after the call to hof, because the postcondition of hof gives a precise indication
of which calls have been made.

The closure cl is defined at line 16, and it is an accumulator function analogous
to the closure defined in the example analysed in 5.6.2.3. The implementation of
entailment interface Calls is Acc, defined at lines 6-10. Predicate inv, defined at
line 7, states that, after the calls described by argument calls, the value of the
captured variable corresponds to the sum of the elements of calls. Similarly, res
(at lines 10-13) states that the result, after the calls described in argument calls
corresponds to the sum of all the elements of calls. In order to express these
properties, it is necessary to define the sum of a sequence using pure function
seqSum, defined at lines 1-6.

It is worth taking a look at the specification entailment proof at lines 23-28. As in
the other examples, there are unfold and fold statements at lines 24 and 27. In
this case, however, we also need the assertion at line 26, which helps the verifier to
know that there are enough permissions for the fold statement at line 27. After
the proof, it is possible to call hof at line 30. The postcondition of hof allows us
to know the exact value of the result of the call (as shown by the assertion at line
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30), and the new value of the captured variable accum (as shown by the assertion
at line 33).

1 ghost
2 ensures forall k int :: k > 0 && len(s) == k ==>
3 res == s[k -1] + seqSum (s[:(k -1)])
4 pure func seqSum (s seq[int ]) (res int) {
5 return len(s) == 0 ? 0 : (s[len(s) -1] + seqSum (s[:( len(s) -1)]))
6 }

7 type Acc struct { accum *int }
8 pred (self Acc) inv( ghost calls seq[int ]) {
9 acc(self. accum ) && *self. accum == seqSum ( calls )

10 }
11 ghost
12 pure func (self Acc) res( ghost calls seq[int ]) int {
13 return seqSum ( calls )
14 }

15 func main () {
16 accum@ := 0
17 cl := preserves acc (& accum )
18 ensures accum == old( accum ) + x && y == accum
19 func accumulate ( ghost seq[int], x int )(y int) {
20 accum += x
21 return accum
22 }

23 proof cl implements spec{Acc {& accum }} {
24 unfold Acc {& accum }. inv(prev)
25 res = cl(prev , x) as accumulate
26 assert (prev ++ seq[int ]{x })[:( len(prev ))] == prev
27 fold Acc {& accum }. inv(prev ++ seq[int ]{x})
28 }

29 fold Acc {& accum }. inv(seq[int ]{})
30 r := hof(Acc {& accum }, cl)
31 assert r == 2 + (2 + 3) + (2 + 3 + 5)

32 unfold Acc {& accum }. inv(seq[int ]{2 , 3, 5})
33 assert accum == 2 + 3 + 5
34 }

5.7 Examples of common higher-order functions

The following examples show the verification of the two common higher-order
functions all and map defined over slices. Both functions have in common the
property that they call an argument closure over all elements of the slice. Due
to their wide use, these functions are a common case study in the verification
literature. In particular, the examples shown here were inspired and adapted from
Wolff et al. [14], which uses them as case studies for the verification of higher-
order functions in Rust. We also show the verification of the fold function, defined
over a custom list type. The last example demonstrates that our mechanism for
the verification of closures and higher-order functions is also applicable when the
higher-order function uses a custom data type with custom permissions.
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5.7.1 All

We define the all function on integer slices. The function, shown below, accepts
a closure of type func(int)bool and an integer slice as arguments, and returns a
boolean as a result, which is true if and only if all elements of the slice satisfy the
condition defined by the closure. Here, we assume that the closure is pure and
that it does not have an internal state. However, these limitations could be lifted
by using a slightly more complex specification pattern than the one presented
here. It is up to the programmer writing the higher-order function to decide on
the right balance between having fewer limitations, and making the specification
more complex.

An implementation of all in Go is shown below. In the implementation, we use
a for-loop to go over the element, and we return false if we encounter a value
that does not satisfy the condition described by f. If the loop terminates without
returning false, then we return true.

1 func all(v []int , f func(int)bool)bool {
2 for i := 0; i < len(v); i += 1 {
3 if !f(v[i]) {
4 return false
5 }
6 }

7 return true
8 }

The annotated version is shown below. As usual, we use a specification pattern
consisting of an entailment interface (Property, at lines 1-3), and of a specification
function (property, at lines 4-6). It is a very simple pattern: the entailment
interface just defines a pure boolean function holds, and the result of specification
function property matches the value of this function, as specified at line 5.

Function all is defined at lines 7-20. In addition to the actual arguments, it
receives ghost argument prop, an instance of entailment interface Property. The
precondition at line 7 specifies that the closure f must implement specification
instance property{prop}, ensuring that the result of any call to the closure with
argument n matches the result of prop.holds(n). Also, the all function preserves
read permissions to all elements of slice v.

The call at line 17 is annotated with specification instance property{prop}, so
that the call to the closure can be made. The loop invariant at line 9 asserts
that, at each loop iteration, the property holds for every element that we have
seen so far. This invariant enables the verification of the postcondition at line 9,
which states that the result has value true if and only if the property holds for all
elements of the slice.

1 type Property interface {
2 ghost pure holds (int)bool
3 }

4 ghost
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5 ensures prop != nil && res == prop. holds (n)
6 pure func property ( ghost prop Property , n int) (res bool)

7 requires prop != nil && f implements property {prop}
8 preserves forall i int :: i >= 0 && i < len(v) ==> acc (&v[i], 1/2)
9 ensures res == forall i int :: i >= 0 &&

10 i < len(v) ==> f(v[i]) as property {prop}
11 func all(v []int , ghost prop Property , f func(int)bool )( res bool) {
12 invariant i >= 0 && i <= len(v)
13 invariant forall j int :: j >= 0 && j < len(v) ==> acc (&v[j], 1/2)
14 invariant forall j int :: j >= 0 && j < i ==>
15 f(v[j]) as property {prop}
16 for i := 0; i < len(v); i += 1 {
17 if !(f(v[i]) as property {prop }) {
18 return false
19 }
20 }

21 return true
22 }

Any caller of this function will need to provide an implementation of Property,
whose holds method returns the same result as closure f. Therefore, after the
call, the caller knows whether the result is true or false, depending on the values
in v and on the concrete behaviour of f.

5.7.2 Map

We define the map function on integer slices. Since map is a keyword that is already
used in Go (it defines a type), the function will be named map vec in the example.
The function, shown below, accepts a closure of type func(int)int and an integer
slice v as arguments. There are no results, but the values of v are changed. In
particular, the closure is called for each element of the slice, in order, and each
value v[i] is replaced by the result of the closure called giving, as argument, the
original value of v[i].

1 func map_vec (v []int , f func( ghost seq[int], int)int) {
2 for i := 0; i < len(v); i += 1 {
3 v[i] = v[i]
4 }
5 }

The annotated function is shown below. The verification of map vec uses the same
specification pattern as described in 5.6.3, since we know exactly the sequence of
calls made inside the function, and the result of a call may depend on previous
calls. Refer to 5.6.3.2 for a description of the pattern. The function also uses
ghost pure function toSeq to define the sequence corresponding to a slice (i.e. the
sequence that contains the same elements as the slice).

Function map vec is defined at lines 20-38. In addition to the actual arguments,
it receives ghost argument cs, an instance of entailment interface Calls. The
precondition at line 20 states that cs.inv holds for the empty sequence, and
closure f implements specification instance fspec{cs}. The precondition at line
21 provides write access to all the elements of v.
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1 type Calls interface {
2 pred inv( ghost seq[int ])

3 ghost
4 requires len( calls ) > 0
5 pure res( ghost calls seq[int ]) int
6 }

7 ghost
8 requires cs != nil && cs.inv(prev)
9 ensures cs.inv(prev ++ seq[int ]{x}) && res == cs.res(prev ++ seq[int ]{x})

10 func fspec ( ghost cs Calls , ghost prev seq[int], x int) (res int)

11 ghost
12 requires forall i int :: i >= 0 && i < len(v) ==> acc (&v[i], _)
13 ensures len(s) == len(v)
14 ensures forall i int :: i >= 0 && i < len(v) ==> s[i] == v[i]
15 pure func toSeq (v [] int) (s seq[int ]) {
16 return len(v) == 0 ?
17 seq[int ]{} :
18 ( toSeq (v[: len(v) -1]) ++ seq[int ]{v[len(v) -1]})
19 }

20 requires cs != nil && cs.inv(seq[int ]{}) && f implements fspec {cs}
21 requires forall i int :: i >= 0 && i < len(v) ==> acc (&v[i])
22 ensures cs.inv(old( toSeq (v)))
23 ensures forall i int :: i >= 0 && i < len(v) ==> acc (&v[i]) &&
24 v[i] == cs.res(old( toSeq (v ))[:( i +1)])
25 func map_vec (v []int , ghost cs Calls , f func( ghost seq[int], int)int) {
26 ghost s := toSeq (v)

27 invariant i >= 0 && i <= len(v)
28 invariant cs.inv(s[:i])
29 invariant forall j int :: j >= 0 && j < len(v) ==> acc (&v[j])
30 invariant forall j int :: j >= 0 && j < i ==> v[j] == inv.res(s[:(j +1)])
31 invariant forall j int :: j >= i && j < len(v) ==> v[j] == s[j]
32 for i := 0; i < len(v); i += 1 {
33 assert v[i] == s[i]
34 v[i] = f(s[:i], v[i]) as fspec {cs}
35 assert s[:(i+1)] == s[:i] ++ seq[int ]{s[i]}
36 assert v[i] == cs.res(s[:(i +1)])
37 }
38 }

The most interesting part of the specification are the postconditions. The postcon-
dition at line 22 states that the arguments used for calls to closure f correspond
to the original values of the elements of v, in this order. The postcondition at line
23 states that the new value of each element v[i] is the result of the (i+1)-th
call, and the arguments to the calls executed before this one correspond to the
original values of elements of v placed before the i-th element.

The loop inside the body is annotated in order to verify the postconditions. The
most interesting invariants are at lines 28 and 30. At line 28, we keep track of
the calls that have already taken place. At line 30, we keep track of each of the
updated values of v.

5.7.3 Fold
It is possible to verify the fold function over integer slices similarly to the map
function. Here, we will analyse a different version, which uses a custom list type,
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and which we will call foldList. This variation of the fold function was proposed
by Svendsen at al. [9], as part of a case study involving the in-place reversal of
a list. The example at the end of this section contains the full, annotated Gobra
translation of the case study, which uses the foldList function to reverse a list
in place.

First of all, let us introduce the list type, which we define via a Node struct that
can be seen below. The struct consist of an integer value, and a pointer to another
node, which is the next element in the list. We also introduce predicate list and
ghost pure function toSeq. list is recursively defined to contain the permission
to access all elements of the list. toSeq allows to convert, within ghost code, a
list to the corresponding sequence of integers (i.e. the sequence which contains
the same values in the same order).

1 type Node struct { elem int; next *Node }

2 pred list(l *Node) {
3 l != nil ==> acc(l) && list(l.next)
4 }

5 ghost
6 requires list(l)
7 ensures l != nil ==> len(res) > 0
8 ensures l != nil ==> unfolding list(l) in
9 (l.elem == res [0] && toSeq (l.next) == res [1:])

10 pure func toSeq (l *Node) (res seq[int ]) {
11 return l == nil ?
12 seq[int ]{} :
13 unfolding list(l) in (seq[int ]{l.elem} ++ toSeq (l.next ))
14 }

We can now define the foldList function, shown below. The function has argu-
ment l, a Node pointer which is the head of a list, and f, a closure that performs
some operation on a Node. f has access to a single node, which it can transform
in any way: it can change its next element, or its value. For example, it is possible
to define f so that, when the foldList function terminates, the resulting list has
a single node and its value is the sum of all values in the original list. A further
example, showing the reversal of a list using foldLeft, is shown at the end of this
section.

1 func foldList (l *Node , f func (* Node )) {
2 if l != nil {
3 tmp := l.next
4 f(l)
5 foldList (tmp , f)
6 }
7 }

The annotated function is shown below. The entailment interface Inv (lines 1-3)
defines a predicate inv, which depends on a sequence of integers. The sequence
describes the arguments of calls to the closure made so far. The specification
function fspec (lines 4-8) has ghost parameters inv and prev. inv is an instance
of entailment interface Inv, while prev is a sequence of integers. The precondition
at line 5 makes sure that prev describes the arguments of previous calls to the
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closure, while the postconditions at line 5 makes sure that inv.inv(newseq) is
established, where newseq describes the argument values of calls made until now,
including the current call. The precondition at line 6 states that there is access
to the node x.

Function foldList is defined at lines 9-22. In addition to the original arguments,
the function receives ghost arguments inv and prev. inv is an instance of entail-
ment interface Inv, while prev is a sequence of integers, describing the argument
of calls to f that have been made before the current foldList call. Closure f also
accepts a sequence of integers as an additional ghost argument, representing the
previous calls.

The pre- and postconditions at lines 10 and 11 state, intuitively, that foldList
calls closure f with all the current values contained in list l, in order (the corre-
sponding values are appended to prev).

1 type Inv interface {
2 pred inv( ghost seq[int ])
3 }

4 ghost
5 requires inv != nil && inv.inv(prev)
6 requires x != nil && acc(x)
7 ensures inv.inv(prev ++ seq[int ]{ old(x.elem )})
8 func fspec ( ghost inv Inv , ghost prev seq[int], x *Node)

9 requires f implements fspec {inv}
10 requires inv != nil && inv.inv(prev) && list(l)
11 ensures inv.inv(prev ++ old( toSeq (l)))
12 func foldList (l *Node , ghost inv Inv , ghost prev seq[int],
13 f func( ghost seq[int], *Node )) {
14 if l != nil {
15 ghost s := toSeq (l)
16 unfold list(l)
17 tmp := l.next
18 assert s == seq[int ]{l.elem} ++ toSeq (tmp)
19 f(prev , l) as fspec {inv}
20 foldList (tmp , inv , prev ++ seq[int ]{s[0]} , f)
21 }
22 }

5.7.3.1 Example: reverse a list using the foldList function

Figure 5.1 shows the annotated example of a caller using the function foldLeft
(defined in 5.7.3) to reverse a list in place. The example is adapted from Svendsen
at al. [9].

Method reverseSeq (lines 1-11) defines a reversed sequence.

Struct Reverse (lines 12-17) implements the entailment interface Inv. It contains
a field box of type *Box, where Box is a structure containing a pointer to a node.
Struct Box had to be introduced because Gobra does not support struct fields with
double-pointer type yet (so, Reverse cannot have a field of type **Node). The
inv predicate at lines 14-17 states that, at each call, node self.box.head is the
head of a list that is the reverse of the list corresponding to prev.
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1 ghost
2 ensures forall sq seq[int], n int :: reverseSeq (sq ++ seq[int ]{n}) ==
3 seq[int ]{n} ++ reverseSeq (sq)
4 ensures len(res) == len(s)
5 ensures forall i int :: i >= 0 && i < len(s) ==>
6 s[i] == res[len(s)-i -1]
7 pure func reverseSeq (s seq[int ])( res seq[int ]) {
8 return len(s) == 0 ?
9 seq[int ]{} :

10 (seq[int ]{s[len(s) -1]} ++ reverseSeq (s[:( len(s) -1)]))
11 }

12 type Box struct { head *Node }
13 type Reverse struct { box *Box }
14 pred (self Reverse ) inv( ghost prev seq[int ]) {
15 acc(self.box) && list(self.box.head) &&
16 toSeq (self.box.head) == reverseSeq (prev)
17 }

18 func main () {
19 fold list(nil)
20 n3@ := Node {3, nil}
21 fold list (& n3)
22 n2@ := Node {2, &n3}
23 fold list (& n2)
24 n1@ := Node {1, &n2}
25 fold list (& n1)
26 assert toSeq (& n1) == seq[int ]{1 ,2 ,3}

27 var box@ Box = Box{nil}
28 flip := requires acc(x) && acc (& box) && list(box.head)
29 ensures acc (& box) && list(box.head) && box.head == x
30 ensures unfolding list(box.head) in
31 (box.head.elem == old(x.elem) &&
32 box.head.next == old(box.head) &&
33 toSeq (x.next) == old( toSeq (box.head )))
34 func flip_ ( ghost seq[int], x *Node) {
35 x.next = box.head
36 box.head = x
37 fold list(box.head)
38 }

39 proof flip implements fspec { Reverse {& box }} {
40 unfold Reverse {& box }. inv(prev)
41 flip(prev , x) as flip_
42 fold Reverse {& box }. inv(prev ++
43 seq[int ]{ unfolding list(box.head) in (box.head.elem )})
44 }

45 fold list(box.head)
46 fold Reverse {& box }. inv(seq[int ]{})
47 foldList (&n1 , Reverse {& box}, seq[int ]{} , flip)
48 unfold Reverse {& box }. inv(seq[int ]{1 ,2 ,3})
49 assert toSeq (box.head) == seq[int ]{3 ,2 ,1}
50 }

Figure 5.1: A method implementing the in-place reversal of a list using the foldList function

The closure flip, defined at lines 28-38, captures variable box of type Box, which,
at all times, points to the head of the reversed list being constructed. When flip
is called, the node x given as an argument becomes the new head of the list, and
its next element becomes the current box.head. As the assertion at line 49 verifies,
a call to foldList with this closure reverses the list passed as an argument to
foldList.



Chapter 6

Evaluation

This chapter presents the setup and results of our experimental evaluation. Section
6.1 explains how the example programs for the evaluation have been selected.
Section 6.2 provides a brief descriptions of the examples that have not already
been presented in the Case Studies chapter. Section 6.3 presents the setup of
our experiments, and explains which data we have collected. In Section 6.4 we
summarise the results of the evaluation in a table, and we make some comments
about the results.

6.1 Selection of the examples
The example programs chosen for the evaluation come from two main sources.

The first source is the paper by Wolff et al. that introduced support for closures
in Prusti [14]. In particular, we have taken the example programs used by the pa-
per in their experimental evaluation1. We have translated each of these example
programs to an annotated Go program, using our methodology to verify closures
and higher-order functions. In particular, the example fold list rev is translated
from Svendsen et al. [9], the paper which originally introduced the corresponding
case study. For the other examples, even those inspired by the pre-existing litera-
ture, we have used the corresponding Rust implementation from Wolff et al. [14]
as a source for the translation.

The remaining example programs are representative of the case studies analysed
in chapter 5. For each case study, we have written a corresponding example
program. We have not written an additional example program for case studies
already covered by, or similar to, one of the example programs taken from Wolff
et al. [14]. In particular, we have not written an additional example for case study

1We have ignored the example programs option, option map err and result uoe,
because they specifically involve the higher-order functions provided by Rust types that are not
easily translatable to Go.
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5.1 (corresponding to example program counter), 5.7.1 (all), 5.7.2 (map vec),
and 5.7.3 (fold list rev).

6.2 Brief description of the examples
Refer to table 6.1 for a full list of the example programs used in the evaluation. In
this section, we provide a brief description of the examples which have not already
been mentioned in chapter 5.

The examples with suffix err are negative examples, which are expected to cause
verification errors. They are analogous to the corresponding positive examples,
with small changes that make the verification fail. For instance, some of the
negative examples contain closure calls that do not satisfy the precondition of the
call, or an incorrect specification entailment proof. In other negative examples,
we make incorrect assertions after a call to a higher-order function.

The delegation example was originally introduced by Kassios and Müller [5]. The
example consists of a function f which receives, as parameters, a pointer y to an
integer and pointers to two closures. The purpose of the example is to show how
we verify that f can call the two closures, and that either call does not interfere
with the preconditions of the closures or with the value of y.

The blameassgn example was originally inspired by Findler and Felleisen [2]. The
example verifies whether our implementation is able to assign the blame correctly
for the violation of the contractual obligations defined by a higher-order function,
which accepts a closure as a parameter. In particular, the higher-order function is
to blame if it calls the closure without satisfying its precondition. Conversely, the
caller of the higher-order function is to blame if it provides a closure which does
not satisfy the specification requirements defined by the higher-order function.

The repeat with n example consists of a higher-order function that receives a
closure as an argument and calls it n times, where n is a parameter of the higher-
order function. The closure has no arguments, and the n results are saved in a
vector, which is returned by the higher-order function. To verify this example, we
followed the same strategy as the one used fot the map function (5.7.2).

The any example is similar to the all example (5.7.1). In fact, the higher-order
function any accepts a closure of type func(int)bool and a slice of integer as
arguments, and returns a boolean as a result, analogously to the all function. In
this case, however, the result of any is true if at least one of the elements of the
slice satisfies the condition defined by the closure.

6.3 Setup of the experiments
All experiments were executed on a warmed-up JVM on a laptop with a 1.6 GHz
8-Core Intel Core i5-8250U CPU and 8 GB of RAM, running Ubuntu 22.04 and
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OpenJDK 17.0.2. We measured the total verification time for each experiment, i.e.
the time it takes to encode the Gobra program to Viper, and to verify the encoded
Viper program. The runtime is averaged over twelve executions, excluding the
slowest and fastest outliers. For each experiment, we also collected the length (in
lines of code) of the encoded Viper file.

We transformed five example programs into similar programs without closures.
In these transformed programs, we removed all the closures and closure-related
specifications. We replaced the higher-order functions with functions that, instead
of calling a closure, compute on their own any result that they would originally
get from a closure call. Therefore, the transformed programs have a similar size
and complexity as the originals, except that they do not use closures. Thus, we
can use the verification time of these transformed programs to get an idea of the
impact on the verification time of our mechanism for the verification of closures.

We also ran the original experiments from the paper by Wolff et al. [14], in order
to make a comparison with our results. We ran their experiments using the script
provided as part of the related artefact [16], running it on the same machine as
the other experiments. Analogously to the other experiments, we averaged the
runtime over twelve executions, excluding the slowest and fastest outliers.

6.4 Results
Table 6.1 shows the results of our experiments. The caption explains the meaning
of each column in the table.

The annotation overhead (lines of specification / lines of code) varies between
0.9 and 3.0, which is a typical range for deductive verifiers similar to Gobra. This
range is also in line with the annotation overhead for Gobra programs that do not
use closures. In fact, the annotation overhead reported in the Evaluation section
of the paper introducing Gobra [13] is between 0.3 and 3.1.

The lines of encoded Viper code (excluding blank lines and comments) are between
4.5 and 8.9 times as many as the combined lines of code and annotations in the
original Gobra file (where lines with both code and annotations are counted twice).
These values are slightly higher than the ones we can find for Gobra programs
without closures, which are between 1.9 and 7.8. The fact that the encoding
is longer in the presence of closures is expected, since the encoding of closures
generates several Viper members for each closure specification instance. It is
worth noting, however, that a difference in the size of the generated Viper code
does not affect the user, since the encoding is not exposed to the user.

As one might expect, the verification time for the examples where higher-order
functions specify how a closure argument is used is generally higher than for the
other examples. However, the verification time mostly depends on the complexity
of the closures used by the caller of a higher-order function. For example, if the
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Table 6.1: The list of the example programs considered in the evaluation, and the corresponding
experimental results. The examples named err are negative examples (whose verification fails
as expected). For each experiment, we report: the corresponding case study in chapter 5, if
there is one (CS); whether the example corresponds to an equivalent example from Wolff et
al. [14] (FP); the lines of Go code (LOC); the lines of specification (LOS); the lines of code
in the encoded Viper file (VLC); the verification time in seconds (T[s]). If a line includes both
code and annotations, it is counted both in LOC and LOS. For some of the experiments, we
also report the verification time for a similar program that does not use closures (TL[s]), and the
verification time for the corresponding example in the Prusti paper [14] (TP[s]).

# example CS FP LOC LOS VLC T[s] TL[s] TP[s]
counter 5.1 ✓ 15 29 277 1.01 6.451 counter err ✓ 14 27 274 0.95 6.31

2 delegation ✓ 20 36 331 1.13 6.48
blameassgn ✓ 11 12 173 0.79 5.853 blameassgn err ✓ 19 17 203 0.78 7.11

4 factorial 5.2 13 14 155 0.95 0.76
5 even box 5.3 16 19 307 1.05 0.85
6 call ctr n tms 5.4 14 19 211 0.86
7 get counter 5.5 13 34 325 1.17
8 cdesc imprecise 5.6.1 18 45 349 1.13
9 cdesc once 5.6.2 13 34 313 1.05
10 cdesc precise 5.6.3 15 45 320 1.16
11 map vec 5.7.2 ✓ 33 100 664 3.07 11.27
12 repeat with n ✓ 17 41 390 1.56 1.34 14.43
13 fold list rev 5.7.3 ✓ 23 59 371 1.76 6.962

any ✓ 39 49 616 1.65 1.37 9.9314 any err ✓ 40 45 614 1.87 10.19
15 all 5.7.1 ✓ 39 48 615 1.64 1.43 9.04

result of a closure depends on the entire sequence of previous calls to the closure
(which is the case in map vec), the verification takes significantly more time than
for closures whose result only depends on the arguments.

Since closures introduce more complexity to a program and its encoding, the ver-
ification of programs with closures takes slightly longer than the verification of
similar examples which do not use closures. However, the increase in the verifica-
tion time is limited (none of our experiments show an increase exceeding 25%).
Furthermore, successful and failed verifications take around the same amount of
time, which is desirable, especially if users verify their programs interactively.

Lastly, our results show that Gobra takes significantly less time to verify Go pro-
grams using closures than the amount of time required by Prusti to verify equiv-
alent Rust programs. The absolute difference in performance is not particularly

2In the Prusti closures paper [14], example fold list rev is encoded directly in Viper, so
the runtime reported in the table only refers to the verification of the encoded Viper file, and
does not include the encoding time.
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insightful, since the encodings used in Gobra and Prusti are very different. How-
ever, we can notice some similarities and differences in the relative verification
time of the examples. Similarly to Gobra, examples with call descriptions take
the longest. However, the verification time in Gobra does not always increase if
the verification time of Prusti increases. Gobra has a much higher annotation
overhead than Prusti (consult the Experimental Evaluation Section of Wolff et
al. [14] for a comparison). This is expected, since Prusti exploits the restrictions
of Rust’s type system in order to allow simpler annotations.





Chapter 7

Conclusion

We have introduced support for the verification of closures in Go programs, ex-
tending the functionality of the Gobra verifier. We have devised a modular design
that is consistent with the existing design of Gobra. The design consists of very
simple new verification primitives, which give the user the flexibility required to
verify a wide range of programs using closures.

Our design is based on two core ideas: specification entailment and entailment
interfaces. Specification entailment is inspired by previous works [14, 15, 12], but
we have adapted their ideas to a setting where both user-defined permissions and
captured variables are allowed. Entailment interfaces, instead, are an original idea.
Using the two core ideas of specification entailment and entailment interfaces,
our design can effectively handle the captured state of closures, and higher-order
functions. Furthermore, higher-order functions can describe, in a wide variety of
cases, how they use a closure argument, without violating the modularity of our
design.

In our case study, we have analysed several examples, which showcase that our
design is suitable for the verification of a large range of scenarios. Our experimen-
tal evaluation shows that our implementation of the design is usable in practice.
In fact, we have found that the verification time of our experimental example
programs is in line with the verification time of similarly-sized Go programs which
do not use closures.

Our design is not strongly dependent on any Go-specific features. In fact, the ideas
of specification entailment and entailment interfaces can be implemented using
any language that provides some form of inheritance or interfaces. Therefore, we
expect our approach to be easily applicable to other verification tools similar to
Gobra.

The next section briefly presents existing literature that has inspired our work.
Then, we suggest potential future work, including outstanding issues that need to
be addressed and possible improvements and extensions to the design.
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7.1 Related work
Our design for specification entailments is inspired by two previous works. The first
work that inspired our design is the paper by Wolff et al. [14] on the verification
of closures in Prusti, a verifier for Rust. The second is Weber’s Master thesis [12]
on the verification of closures in Python.

The two main ideas behind Wolff at al.’s work are specification entailment and call
descriptions. The concept of specification entailment is defined similarly to how
we define it in Gobra. Call descriptions are primitives used, within the specification
of a higher-order function, to specify how a closure argument is used and how the
calls to the closure influence the results of the higher-order function. However,
Wolff et al.’s approach for both specification entailment and call descriptions relies
on guarantees provided by Rust’s type system, which are not provided by Go. For
example, their approach does not support user-defined permissions since Rust’s
type system allows Prusti to infer the required permissions automatically. Since
Go’s type system does not provide the same guarantees as Rust’s type system,
their approach is not suitable to be applied directly in Go (as explained in more
detail in Section 3.3 and 3.4.1).

Weber’s thesis introduces call slots, i.e. annotations for closure calls which include
a specification for the call, and a proof that the closure implements the specifi-
cation. Weber’s approach supports user-defined permissions. However, their ap-
proach fails to verify closures with a captured state, which is an essential part of
our work.

The problem of automatically verifying closures using an SMT-based verifier was
also considered by Kassios and Müller [5] and by Nordio et al. [7]. Both works
propose a methodology based on first-order logic, and they provide an encoding
into Boogie, an SMT-based verifier that is also used by Viper. The methodologies
proposed by the two works are similar, and they are both based on ideas related
to the concept of specification entailment.

Other works, including those by Svendsen et al. [9] and Kanig et al. [4], address
similar problems, but their mechanisms for the verification of closures or higher-
order functions require the use of higher-order separation logic, which is unsuitable
for SMT-based solvers. Such mechanisms can only be encoded using theorem
provers that support higher-order logic, such as Coq.

7.2 Future work
Fix termination checks for closures

As pointed out in Section 4.4.6, the termination checks for closures are unsound
in some scenarios. In Section 4.5.3, we have sketched an approach which can be
used as a starting point to find a solution to the problem.
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Invocation of closures in a goroutine

Goroutines are a feature of Go which enables concurrency. They are lightweight
threads, which can be started by adding the keyword go before a function or
method call. Gobra already supports the creation of goroutines using ordinary
function or method calls [13]. Also, the encoding of closure calls is similar to the
encoding of regular function calls. Therefore, we expect the addition of support
for the creation of goroutines via closure calls to be straightforward.

Syntactic sugar for closure literals

With our current design, to call a higher-order function, it is always necessary to
write a proof that the closure used as an argument satisfies the required specifica-
tion. However, in many cases, the proof is trivial. We propose to introduce some
syntactic sugar, so that, in these simple cases, a user can prove a specification
entailment directly within the specification of a function literal. Section 3.5.1
explains this proposal in more detail.

Syntactic sugar for call descriptions

In Section 5.6 we have presented some common specification patterns. These
patterns can be used to enable a higher-order function to describe how they use
a closure argument. We propose to introduce some syntactic sugar for the most
common specification patterns to reduce the annotation overhead.

Apply our approach to verify closures in other languages

As mentioned in the conclusion (Chapter 7), our design does not rely on features
that are exclusive to Go or Gobra. Therefore, we propose to apply our approach
to similar verification tools, to verify closures in other languages. For example, a
potential candidate is Nagini [1], a verifier for Python which, analogously to Gobra,
supports user-defined permissions and uses the Viper verification framework.
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