
Specification
and Automated Reasoning

for Datastructure Comprehensions

Bachelor’s Thesis

Tierry Hörmann

October 2, 2018

Advisors: Prof. Dr. Peter Müller, Dr. Alexander J. Summers, Arshavir Ter-Gabrielyan

Department of Computer Science, ETH Zürich

Abstract

With quantified permissions, Viper added native support for encoding
iterated separating conjunctions; a way of specifying datastructures in
permission logics, particularly in separation logic, without imposing
an order of traversal. For reasoning about the content of such datas-
tructures, quantified permissions are, however, impractical, since they
only allow conjunctions of direct assertions about the elements of the
datastructure. A more common and general way to reason about datas-
tructures is to create a comprehension over the content of a datastruc-
ture and to reason about program properties via such functions. In
this thesis, we provide a system for specifying comprehensions for Sat-
isfiability Modulo Theories (SMT) along with an axiomatization whose
goal is to reason automatically about comprehension. We have imple-
mented the technique as a native feature into the Viper framework for
the verification condition generating verifier.

i

Acknowledgements

I would like to thank my supervisors, Alexander J. Summers and Ar-
shavir Ter-Gabrielyan for their immense support. They were always
available when help was needed and always helped out to solve the
problem. Our long(!) weekly meetings were very interesting and pro-
vided good inputs for me to think about my progress from a different
perspective. I would also like to thank Prof. Peter Müller for the op-
portunity to work in this fascinating research area. I really enjoyed
working on the project.

ii

Contents

Contents iii

1 Introduction 1
1.1 Motivation . 1
1.2 Comprehension . 2
1.3 Background . 2

1.3.1 Viper . 2
1.3.2 Permission-based verification 3
1.3.3 SMT-solving . 3

1.4 Notation . 5
1.5 Related Work . 5

2 Formal Specification 7
2.1 Components of a comprehension 7
2.2 Properties of the components 8
2.3 Definition of a comprehension 10
2.4 Definition of the value of a comprehension 10

3 The Singleton Case 13
3.1 Overview . 13
3.2 Simplification of comprehension value definition 14
3.3 Automatic deduction . 15
3.4 Incompleteness and matching loops 18
3.5 Summary . 22

4 The General Case 25
4.1 Overview . 25
4.2 Fundamental limitations . 26

4.2.1 Automatic induction . 26
4.2.2 Losing permission . 27

iii

Contents

4.3 Automatic deduction . 28
4.4 Incompleteness . 31

4.4.1 Multiple heaps . 31
4.4.2 Equal filters . 31
4.4.3 Combining filters . 32

4.5 Matching loops . 36
4.5.1 General Axiom . 36

4.6 Summary . 40

5 Analysis 43
5.1 Matching Loop Freedom . 43
5.2 Performance . 45
5.3 Limitations . 46

6 Implementation 49
6.1 Syntax . 49
6.2 Well-Definedness checks . 50
6.3 Assumptions . 51

7 Evaluation 53

8 Conclusion and Future Work 55

A Appendix 57

Bibliography 61

iv

Chapter 1

Introduction

1.1 Motivation

Modern realistic programs usually make extensive use of datastructures to
manage the program heap. For example arrays are one of the most fun-
damental components of many programming languages, and their correct
usage is taught early on when learning such a language. For a program
verifier to be useful in practice, it is therefore important to provide means
of describing such datastructures, as well as techniques for reasoning about
the content.

Consider the following example of a simple C function that swaps two val-
ues in an array:

void swap(int array[], int size, int slot1, int slot2) {

assert(slot1 >= 0 && slot2 >= 0 && slot1 < size && slot2 < size);

int tmp = array[slot1];

array[slot1] = array[slot2];

array[slot2] = tmp;

}

If we could prove now that the content of the array has not changed after a
call to swap, we could also prove that a sorting algorithm, using swap as its
only method of altering the array, did not change its content. Such results
could then be useful for example in an optimizer, which could prove that
the sum over the array has not changed after sorting, and therefore cache
the value for the sum in a previous call to use it for subsequent calls.

The goal of this thesis is to create a technique for encoding comprehensions
into SMT and provide support for comprehensions in Viper.

1

1. Introduction

1.2 Comprehension

We define a comprehension as a function over a set of values, returning a
value describing the content of this set according to the semantics of the
function. Examples of comprehensions would be a sum over a set of integers,
a product over a set of integers, a minimum of a set of comparable values, etc.
We will distinguish between a comprehension, which is the operator per se,
and the value of a comprehension, which is the value we get when evaluating
the comprehension on a specific set of values.

We define a datastructure comprehension as the comprehension over the
set of values of a specific datastructure. So, for example, a function which
calculates the sum over all elements of an array would be a datastructure
comprehension.

The approach developed in this thesis (and the technical solution) are more
general than datastructure comprehensions. We will interpret a datastruc-
ture as an abstraction of a part of the program heap and will provide a
mechanism for describing and reasoning about comprehensions over the
mathematical set of values in a particular state of such a part of the program
heap. We will therefore not restrict ourselves to specific datastructures, but
allow a more general way of abstracting memory.

Note that since a comprehension depends on some function (e.g. the sum
between two elements) and is itself a function, it carries the semantics of a
higher-order function. This is noteworthy, since we encode comprehensions
for SMT, which is in first-order logic.

1.3 Background

1.3.1 Viper

Viper [10] is a verification infrastructure developed at ETH Zürich. It has
an intermediate verification language which supports permission-based rea-
soning natively, to argue about the program heap. The Viper intermediate
language translates to SMT which is finally verified by Z3 [1]. In this thesis
we will focus on supporting comprehensions for Viper. This will not only
be relevant in the practical part, the implementation, but also in the theoret-
ical part, since we will focus on creating axioms which will be encoded into
SMT. Sometimes it will also be relevant in the theoretical part that we will
use Z3 to solve SMT problems, because we will rely on certain features of
SMT-solvers.

2

1.3. Background

1.3.2 Permission-based verification

The Viper language is procedural and not object oriented. Objects can, how-
ever, still be modeled easily with fields and references. Fields in Viper are
top-level declarations, however they don’t have a unique value, but the value
of a field is rather bound to a reference. The program heap in Viper is there-
fore modeled as a set of heap locations, which are fields of references.

Viper has support for permission-based reasoning, which means that for ev-
ery state, every heap location has an assigned permission value between 0
and 1. 1 indicates full permission, while 0 indicates no permission. To read
a heap location, there must be at least some permission to the location. To
write to a heap location, there must be full permission. Indicating whether
there is permission to a heap location can be done via the access predicate
acc(r.v, p), which indicates that there is a permission amount of p for
heap location r.v. A Viper assertion can include access predicates. Instead
of assuming and asserting, we inhale and exhale an assertion. Inhaling an
assertion gains the permission from the access predicates, i.e. it adds the
permission amounts to the current state, and asserts the remaining expres-
sion. Exhaling an assertion checks, whether the permission amounts of the
access predicates are currently held and if so, gives them up, i.e. it removes
the permission amounts from the state. It then checks whether the remain-
ing expression currently holds. For encoding this permission model, Viper
uses a permission mask, a map which maps from heap locations to permission
amounts, to indicate which heap location has which permission amount in
the current state. The state of a Viper program consists of the permission
mask, as well as the heap, which is modeled as a map from heap locations
to values.

To specify permission for multiple heap locations, we can use a feature called
quantified permissions [9]. Quantified permissions are Viper’s way of express-
ing iterated separating conjunctions [11], quantifiers over a set of assertions.
We specify such an assertion as follows

∀x : T. c(x)→ acc(e(x). f , p(x))

where c(x) is a boolean expression, e(x) a reference-typed, injective expres-
sion and p(x) an expression denoting a permission amount.

1.3.3 SMT-solving

Since Viper reasons about verifiability by encoding a program into SMT and
solving it with the SMT-solver Z3 [1], we will ultimately describe how to
encode our axioms into SMT as well. We will rely our axioms on the e-
matching and trigger-matching feature of Z3 for handling forall quantifiers, as
well as on skolemization for handling existential quantifiers.

3

1. Introduction

With e-matching, Z3 supports a so called e-graph, which is a graph, holding
a node for every constant. In the e-graph, equality and inequality which
were previously proven, are stored between constants. The e-graph makes
it possible to quickly find all equivalent constants, which is necessary for
trigger matching.

With trigger matching, Z3 takes a heuristic approach on forall quantifier
instantiation. A trigger contains at least one term, which is a function appli-
cation of an uninterpreted function. Every quantified variable must appear
at least once in a term of the trigger. The quantifier gets instantiated, iff all
the terms in the trigger occur somewhere in a clause without any quantified
variables (the quantified variables are instantiated). If this is the case, we
say that the quantifier got triggered by the respective terms. The respective
instantiated variables in the found terms will then be used to instantiate the
quantifier. A quantifier can have multiple triggers, to allow different terms
to trigger the instantiation. In this case every match of one of the triggers
instantiates the quantifier. As an example, we can have the following quan-
tifier

∀x : Int :: { f oo(x), boo(x)}x < 10

where { f oo(x), boo(x)} denotes the trigger of the quantifier. As soon as
the SMT-solver learns terms which contain the two expressions f oo(x) and
boo(x), for example with the term f oo(5) < boo(5), the quantifier gets in-
stantiated and the SMT-solver learns 5 < 10. If we now had an additional
trigger for the axiom, for example {hoo(x)}, the quantifier would also be
instantiated for a term like hoo(f oo(42)), which gives us the instantiation
f oo(42) < 10.

This introduction to triggers might a reader conclude that it is good to just
allow generous triggers, because then we cause more instantiations. How-
ever triggers must be selected very carefully, because trigger-matching gives
rise to the problem of so called matching loops. Imagine we had an axiom

∀x : Int :: { f oo(x)} f oo(f oo(x)) < 10

The body of the quantifier introduces a new term, which matches the trigger
of the same axiom. This is called a matching loop, and instantiation will
go on, until we can prove or disprove something else, or the verifier gets
terminated. If we would provide the more restrictive trigge { f oo(f oo(x))},
we would prevent the matching loop.

Skolemization is a technique of handling existential quantifiers. With skolem-
ization, the quantified variables will be replaced by constants and the exis-
tential will be replaced with its body. If the existential is inside of a forall
quantifier, the quantified variables will be instead replaced by new func-
tions over the quantified variables of the forall quantifier. The function has
the respective type of the variable.

4

1.4. Notation

Another important feature of Z3 to control instantiations of quantifiers, is
that the right-hand-side of an implication will only be learned, if the left-
hand-side could be proven. This means that when instantiating an implica-
tion, only terms from the left-hand-side will be used for trigger matching,
until the right-hand-side will be learned by proving the left-hand-side. This
feature will be extensively used in our axiomatizations.

1.4 Notation

When specifying SMT axioms, we will use the following mathematical nota-
tion to specify quantifiers.

∀x : T. {t1(x)}{t2(x)} cond(x)

where {t1(x)} and {t2(x)} are the triggers of the quantifier.

To refer to a heap location access, we will use the notation

r.hv

to refer to an access for reference r and field v in heap h.

To specify a mathematical function, we use the notation

f : D → T

where f is the name of the function, D is the domain type and T is the type
of the image.

To specify a comprehension value, we will use the following notation

c(h, f)

where h is a heap and f is a filter.

1.5 Related Work

In terms of supporting comprehensions for program verification, there are
only very few previous works. We could actually only find one paper, which
goes roughly in the same direction as this thesis. For the Spec# program ver-
ifier [4], there are implementations for sequence comprehensions, such as
sum, count, product, min and max [6]. However this approach is in many
ways less general than our approach. First of all the underlying datastruc-
ture is required to impose an order on its elements. Another major differ-
ence is, that the axiomatization in this approach is based on the idea of
automated induction. The comprehension value can only be deduce if we
know the value for the previous case, which is the case where the top or the

5

1. Introduction

bottom of the iterable range, over which the comprehension was calculated,
is decreased or increased respectively. For example to deduce the value of a
comprehension for an array [0 . . . n], the solver would need to have an asser-
tion about the value of the sub-array [1 . . . n] or [0 . . . n− 1]. This obviously
restricts the order, by which algorithms can traverse the datastructure to still
be verifiable. In addition to all of the above, this technique does not provide
any explicit care to the heap. This means that for example features such as
framing of comprehension values across different heaps won’t be supported.

However the presented approach makes better effort in combining, in our
definition different comprehensions by a certain axiom which proves that
two comprehension values from possibly different comprehensions are the
same, when they cover the same set of values and have the same basic oper-
ator. Also the provided approach is more lightweight than our approach.

6

Chapter 2

Formal Specification

In section 1.2 we informally described what we mean by a comprehension.
In this chapter, we try to formalize this intuition and provide formal defi-
nitions for every component. First, we will try to gather, what components
we will need to provide a formal definition for, in order to be able to de-
fine a comprehension, and what properties those components must have.
Afterwards, we will be able to define a comprehension formally. Next, we
will define, what the value of a comprehension is, and what is needed to
evaluate it.

2.1 Components of a comprehension

In this section we present the components of a comprehension and why they
are considered as such. In the next section we will then provide restrictions
on the components and explain the motivation behind those restrictions.

Binary operator In order to define a comprehension we must fix some
core operator, which describes how the value of the comprehension will
be calculated. For example, for a sum comprehension, this would simply be
the binary plus between two elements, while for a minimum comprehension
this would be a relation <. From now on we will use the symbol ∗ to refer to
this operator and call it the binary operator of the comprehension. The reason
why the operator is binary will be explained in the next section.

Receiver expression Our next component comes with the fact that arguing
about the heap is in many cases unnatural with references. For example,
arrays provide in many cases a more practical way of arguing about heap
locations, which is why they are one of the most common datastructures in
use. We can interpret such a domain shift as an abstraction of the heap. In
Viper the usual way to encode such an abstraction for arrays is via the func-

7

2. Formal Specification

tion loc(a, i), which maps from arrays and integers to references. Since
comprehensions are evaluated over heap locations, it makes sense to pro-
vide such a way of abstraction to the user for comprehensions as well. This
is why we include an expression e, mapping from some argument of type
A (which might be a tuple) to references, as a component of a comprehen-
sion. We call e the receiver expression and the type A the argument type of
the comprehension, of which instances are called comprehension arguments.
So, for example, loc(a, i) could be a receiver expression, mapping from
argument type (Array, Int) to Ref.

Body In addition to the receiver expression e, we will need to know what
values of the heap locations we want our comprehension to comprehend
over. For this, the user will need to specify a field v, which is also a compo-
nent of the comprehension. Together with the receiver expression, we now
get a field-access expression e.v, which we call the body of the comprehen-
sion.

Unit Lastly, we will also need the user to specify a value 1, which we
call the unit of the comprehension. For example, for a sum comprehension,
the unit will be 0. What this value exactly is and why we need it will be
explained in the next section.

2.2 Properties of the components

Arity of the operator ∗ In the previous section we already stated, that
the core operator ∗ should be a binary operator, however did not explain
why. This property is merely a design choice oriented towards properties
of similar concepts, like the fold operator in functional programming. While
it might be interesting to generalize the core operator of a comprehension
to more general functions, we restrict ourselves here on the simpler (and
probably more common) case of a binary operator.

Associativity and commutativity Note that in our informal description we
stated that the comprehension ranges over a set of values. Since a set has
no particular order, and the comprehension is a function (which means, that
its value is unique for a given set), the order in which the value of the
comprehension is calculated should not be relevant for the result. For the
binary operator ∗, this means that it must be associative and commutative.

Identity Since ∗ is binary, we will also need to specify what happens when
we evaluate a comprehension over an empty set of references or over a sin-
gleton set. This is where we introduce the unit 1 of a comprehension. It will
fill the space of the missing arguments of the binary operator in this case.

8

2.2. Properties of the components

So for the singleton set of references {e(a)} (remember that e(a) denotes the
receiver expression on argument a, which is reference-typed) and the empty
set, we would evaluate the comprehension with e(a).v ∗ 1 and 1 ∗ 1 respec-
tively. If we now require 1 to be an identity element in terms of ∗, we get
e(a).v ∗ 1 = e(a).v and 1 ∗ 1 = 1. This requirement now makes sense in two
ways:

1. The value of the comprehension over a singleton set is equal to the
value of the single heap location of the set, which is something we
naturally expect.

2. If we have two sets A, B of references, we can now evaluate the com-
prehension over the set A∪ B by simply evaluating the comprehension
over A and B separately and applying ∗ to the two results. From a
different perspective, this means also that we can evaluate a compre-
hension with a divide and conquer approach. This feature will be very
relevant when we try to find methods on how to automatically derive
the value of a comprehension.

Together with the properties of ∗ we can now conclude that (T, ∗) is a com-
mutative monoid with identity element 1, where T denotes the type of the
comprehension.

Injectivity For each comprehension we require the receiver condition e to
be injective. This has, among other things, to do with quantified permissions.
Since during evaluation of a comprehension, we will obviously access areas
of the program heap, we will need to check, whether we currently have
permission to those heap locations. In Viper, this is done with quantified
permissions by quantifying over the set of heap locations e(a).v we evalu-
ate the comprehension over. Within the quantifier we assert for them the
expression acc(e(a).v, 1/2). This leads to an assertion in the form of

forall a: A :: cond(a) => acc(e(a).v, 1/2)

where cond(a) is a condition, which restricts the abstract representation of
the heap location a to the heap locations we wish the comprehension to
be evaluated over. Note that the permission amount of 1/2 is completely
arbitrary and can be replaced with any amount between 0 and 1. With
an amount between 0 and 1 we ensure that we only have read permission,
which is enough for comprehensions. Viper’s system for quantified permis-
sion requires e(a) to be injective into the set of heap locations [9] (under the
condition cond(a)). Therefore, it makes sense to pose this as a requirement
for comprehensions as well. We will also later see that in certain axioms
we will want to quantify over references, with which we will want to spec-
ify the comprehension arguments. This will then be possible with inverse
functions, which require receiver injectivity.

9

2. Formal Specification

Types There are two types which occurred so far in our discussion

• A refers to the type which abstracts heap locations, for example the
tuple (Array, Int) for arrays. We will sometimes use a to refer to an
instance of A and ai to refer to the i’th entry in the tuple of a. We call
A the argument type of the comprehension.

• T refers to the type of the value of the comprehension and we will
therefore call it simply the type of the comprehension.

With our discussion above we can now impose types on our components.
Obviously, v must be of type T. Because ∗ is binary, associative, and com-
mutative, it must be of type (T, T) → T. This now means that 1 has type T
as well. Lastly, e needs to be of type A→ T.

2.3 Definition of a comprehension

The above discussion now allows us to formally define a comprehension.

Definition 2.1 (Comprehension) A comprehension is a tuple (e, v, ∗, 1, A, T),
where A, T are types, e is an injective expression of type A → Re f , v is a field
of type T, 1 is a value of type T, ∗ is a binary function of type (T, T) → T and
(T, ∗) is a commutative monoid with identity element 1.

2.4 Definition of the value of a comprehension

After providing a formal definition for a comprehension, we will now try to
do the same for the value of a comprehension. For evaluation of a compre-
hension, we need two components.

The first component is a set f of comprehension arguments a with

f := {a : A | cond(a)}

We call f a filter of comprehension c with argument type A and cond(a)
the filtering condition of filter f . We say that a filter f covers a heap loca-
tion r.v, iff there exists a comprehension argument a, such that cond(a) and
e(a) == r. Viper already has a way to specify sets. The Viper language in-
cludes a built-in type Set with appropriate functions and built-in axiomati-
zation. However, to be able to fully control the axiomatization, we introduce
a new type Filter which abstractly expresses sets like f . Since filters are es-
sentially sets, we will also use common set notations, such as relations like
∈,⊂, \, etc. Later on we will take a closer look at those operators and pro-
vide axiomatizations for them. We will say that a filter instance is bound to
a comprehension, because they range over type A of some comprehension.

10

2.4. Definition of the value of a comprehension

In principle we could relax this dependency a bit and only require a depen-
dency of a filter to type A. However since filters will only be specified by the
user for comprehension calls, and we will provide an own axiomatization
for every comprehension, it makes sense to uphold this dependency, such
that we can talk about filters of a comprehension. The type Filter however
is independent of any comprehension and can be interpreted as the set of
all possible filters for all possible comprehensions.

The second component for evaluation of a comprehension is a heap h in
which the comprehension is evaluated.

To define now the value of a comprehension, we will make use of the insight
we gained in section 2.2 on that we can evaluate a comprehension with a
divide and conquer approach.

Definition 2.2 (Comprehension value) A function ϕc(h, f) is called the value
of the comprehension c = (e, v, ∗, 1, A, T) for h : Heap and f : Filter, iff for all
f ′ ⊂ f

ϕc(h, f) =

1 | f | = 0
e(a).hv, a ∈ f | f | = 1
ϕc(h, f ′) ∗ ϕc(h, f \ f ′) | f | > 1

(2.1)

This recursive definition allows the comprehension value to be described
via splitting up the filter into two parts and describing the comprehension
value over those two parts. One base case is the empty filter. The empty
filter can only be split up into empty filters again. As we have discussed
above, it makes sense to set the comprehension value over an empty filter as
1. The other base case is the singleton filter. The singleton filter can only be
split up into an empty filter and the same singleton filter. The singleton base
case incorporates, what we actually comprehend over, which are the heap
locations covered by the filter. So the comprehension value over a singleton
filter is equal to the value of the heap location covered by the filter.

11

Chapter 3

The Singleton Case

We will now start our analysis on how we can encode this specification
into an SMT problem, such that we can automatically solve it. For this we
start with a more restrictive scenario, which can later be generalized to the
general case.

3.1 Overview

In this chapter we restrict ourselves to programs which are not allowed
to contain method calls. This would mean that heap updates only occur
via assignments, in other words, only singleton heap updates (updates to a
single location at once) are possible. In addition, we require that at the entry
point of a program, the permission mask is empty, which means that there is
no permission to any heap location. This requirement induces that at every
program point (for every heap) we know the value of every heap location
we have permission to (just by looking at the most recent assignment to the
location). Evaluation of a comprehension is then trivial, because we can
simply recursively apply the definition to every heap location. In addition
this means that the number of heap locations we have permission to is finite,
because we can only inhale permission to single heap locations.

To get a more concrete idea about this scenario, consider the following Viper
program. At the end of the method, we know the heap locations to have the
values r1.val == 0, r2.val == 0, r3.val == -2, so the sum comprehen-
sion over those heap locations would obviously be −2. We were able to
deduce this by simply looking at the different occurrences of val. We will
now take a look at how such a reasoning can be done automatically. For
this example this means, how a user could write an assertion at the end of
method singleton to express the value of the comprehension after program
execution, and how such an assertion could be checked automatically via
observing location accesses to single heap locations.

13

3. The Singleton Case

Source Code 3.1: Singleton updates

1 field val: Int

2 method singleton() {

3 var r1: Ref

4 var r2: Ref

5 var r3: Ref

6 inhale acc(r1.val) && acc(r2.val) && acc(r3.val)

7 r1.val := 0

8 r2.val == r1.val

9 r3.val := r2.val - 2

10 }

3.2 Simplification of comprehension value definition

Let us tackle this problem by first providing an alternative formula for the
value of a comprehension (for equation 2.1).

Lemma 3.1 For all h, f , a ∈ f , f ′ ⊂ f , the value ϕc(h, f) of the comprehension
c := (e, v, ∗, 1, A, T) is equal to

Φc(h, f) :=

{
1 | f | = 0
Φc(h, f \ {a}) ∗ e(a).hv | f | > 0

(3.1)

The above equation now expresses the value of a comprehension in a similar
way to a f old operation (without imposing an ordering), by an inductive
definition. We provide a simple proof by induction of the above lemma.

Proof (by induction over the number of elements in f) We prove the prop-
erty that ϕc(h, f) = Φc(h, f) for some fixed c, h.

• Base case | f | = 0: ϕc(h, f) = 1 = Φc(h, f)

• Base case | f | = 1: Let a ∈ f be arbitrary (that is f = {a}). We get

ϕc(h, f) = e(a).hv
= 1 ∗ e(a).hv
= Φc(h, {}) ∗ e(a).hv
= Φc(h, f \ {a}) ∗ e(a).hv
= Φc(h, f)

• Induction hypothesis: We assume that for fixed f with 0 ≤ n := | f | the
definitions 3.1 and 2.1 are equal.

14

3.3. Automatic deduction

• Step case | f | = n + 1: Let f ′ ⊂ f be arbitrary. We restrict without loss
of generality f ′ 6= {}, fix an arbitrary a ∈ f ′ and get

ϕc(h, f) = ϕc(h, f ′) ∗ ϕc(h, f \ f ′)
= ϕc(h, {a}) ∗ ϕc(h, f ′ \ {a}) ∗ ϕc(h, f \ f ′)
= ϕc(h, {a}) ∗ ϕc(h, f ′ \ {a}) ∗ ϕc(h, (f \ f ′) \ {a})
= ϕc(h, {a}) ∗ ϕc(h, f ′ \ {a}) ∗ ϕc(h, (f \ {a}) \ f ′)
= ϕc(h, {a}) ∗ ϕc(h, f ′ \ {a}) ∗ ϕc(h, (f \ {a}) \ (f ′ \ {a}))
(2.1)
= ϕc(h, {a}) ∗ ϕc(h, f \ {a})
= ϕc(h, f \ {a}) ∗ e(a).hv
IH
= Φc(h, f \ {a}) ∗ e(a).hv
= Φc(h, f)

For a ∈ f \ { f ′} the above steps would be similar, hence we get
ϕc(h, f) = Φc(h, f). �

To manually prove the value of a comprehension for our simple programs,
we can now just apply formula 3.1 inductively to every heap location of
interest, since we know the value of the heap location. How we can encode
this into SMT to make such a deduction automatic is shown in the next
sections.

3.3 Automatic deduction

From formula 3.1 we can now create a first draft of two quantifiers (for the
two cases of the definition), without triggers, to axiomatize the value of a
comprehension. The draft will later be refined and provided with triggers.

∀h : Heap, f : Filter. empty(f)→ c(h, f) = 1 (3.2)

∀h : Heap, f : Filter, a : A. a ∈ f →
c(h, f) = c(h, f \ f ilterCreate(a)) ∗ e(a).hv

(3.3)

Here we have used the expression c(h, f) to refer to the value of a compre-
hension, which is a notation we will use from now on in the context of SMT
encodings. In the above axioms we have used some functions, which we
have not yet defined in this context (but whose meaning should be clear), in
particular empty,∈, \ and f ilterCreate. We will need to show how to encode
and axiomatize them. In addition we will need to find a way of defining
filters.

15

3. The Singleton Case

Filter Let us start with the filter encoding. As already stated, a filter should
be a variable (or literal) of type Filter that represents a set of comprehension
arguments. A common way to describe sets is the set-builder notation, e.g.,
f := {a : A|cond(a)}. We will use this notation to describe filters. We will
call the filter condition of filter f as cond. Since A is fixed for a comprehen-
sion, cond(a) will define the content of a filter. To encode this, let us provide
a built-in function:

f iltering : (Filter, A)→ Bool

that represents the filter condition for a given filter. To define a filter f , we
can now declare a variable or constant f0 for which we assume the following:

∀a : A.{ f iltering(f0, a)} f iltering(f0, a)↔ cond(a), (3.4)

where cond(a) is a boolean-typed expression.

empty We can now see that f iltering provides semantics for ∈, so we
are left with encoding empty, \, and f ilterCreate. empty(f) should encode
a check that filter f is empty, i.e., has no elements. This suggests that empty
has the following signature

empty : Filter→ Bool

Checking that a filter has no elements contained is equivalent to checking,
whether the f iltering function for this filter is false for every comprehension
argument, which is an UNSAT query (a boolean formula, which should be
proven to be unsatisfiable) of the expression cond. This can be encoded by
either introducing a new constant a and checking ! f iltering(f , a), or (as we
will do), by directly checking the condition:

∀a : A. ! f iltering(f , a)

It is easy to see that, with skolemization, the two approaches are equivalent.
Finally, we get the following axiom for the empty function:

∀ f : Filter. {empty(f)} empty(f)↔
(∀a : A. { f iltering(f , a)} ! f iltering(f , a))

(3.5)

The triggers of the above axiom are chosen such that the body of the outer
quantifier gets instantiated when empty is applied, and such that the body of
the inner quantifier gets instantiated, when f iltering for f is called, creating
a ’shortcut’, to a possibly very complex formula to check f iltering for f . For
example consider a filter f , which has a very complex filtering condition,
taking immensely long to prove f iltering for some argument a. As soon as
we get to know (f), every call to f iltering(f , a) can then simply be answered
by instantiating the inner quantifier of the above axiom, where we learn
directly ¬ f iltering(f , a).

16

3.3. Automatic deduction

Narrow Now, we consider the encoding of \ and f ilterCreate. Note that in
the axiomatization of a comprehension value from above, the two functions
only appear together to describe a filter f ′ as a filter f without a specific
argument. Such a filter ’constructor’ can also be represented by a single
function, which we call narrow, with the following signature:

narrow : (Filter, Ref)→ Filter

Note that we use Ref in the signature, instead of the more obvious A. The
reason for this lies within triggering, which we will explore in the next para-
graph. So, the narrow function can now be interpreted as a function that
outputs a filter that covers every reference, covered by another filter, except
for one specific reference. The following SMT axiom encodes this interpreta-
tion.

∀ f : Filter,r : Ref, a : A. { f iltering(narrow(f , r), a)}
f iltering(narrow(f , r), a)↔ f iltering(f , a) ∧ e(a) 6= r

(3.6)

Triggering Since we have our components now defined and axiomatized,
we can think about triggers for the two axioms for the value of a compre-
hension. A good selection of triggers is vital for our automatic deduction,
since triggers define where the axioms get instantiated, and therefore where
our axioms can be applied. Selecting too restrictive triggers can cause that
we cannot prove desired properties anymore, while on the other hand, too
loose triggers can cause matching loops and bad performance [6] [8]. The
challenge therefore is to find minimally necessary triggers to be able to
prove exactly what we would like to. We will make a deeper analysis on
the capabilities of our system in the next section, while we try to keep this
requirement in mind when coming up with triggers.

For our axioms 3.2 and 3.3, the triggers are fortunately very straight-forward.
Both of the axioms will need to have the comprehension call as a triggering-
term, since whenever we call a comprehension we request its value, and
those two axioms define the value. For axiom 3.2 this is even the only term
we need, since it already contains all the quantified variables, so for this ax-
iom we get the trigger {c(h, f)}. Axiom 3.3 however includes an additional
quantified variable. Now remember that we would like to deduce the value
of a comprehension via location accesses, so it makes sense to trigger on a
location access. However a location access does not necessarily mention a
value of type A, so we cannot use it as a trigger for our quantified variable
of type A. So instead of now using a variable of type A (an abstract repre-
sentation of a reference) as a quantified variable, we could just use a variable
r of type Ref and use a location access of the form r.v as a triggering-term.

This now obviously implies that we need to change the body of the quan-
tifier and replace the occurrence of a. For the term f f ilterCreate(a) we

17

3. The Singleton Case

already have a solution to replace a by using the narrow function, which we
defined earlier, and which does not depend on an instance of A, but on a
reference. For the other two terms with a contained, remember that we re-
quired the receiver expression of the comprehension to be injective, which
means that it has an inverse e−1(r), which we will use instead of a in the
axiom. With all of this being said, we now get the following axiom which
will replace our draft formula 3.3

∀h : Heap, f : Filter, r : Ref. {c(h, f), r.hv}
f iltering(f , e−1(r))→ c(h, f) = c(h, narrow(f , r)) ∗ r.hv

(3.7)

3.4 Incompleteness and matching loops

We have now created an encoding of the definition of a comprehension value
for SMT. However we would not be able to prove a lot of cases in our re-
stricted scenario. Consider again example 3.1, where we have two heap
updates. Let’s say we want to prove c(h2, f) = −2, with h2 being the heap at
the end of the program and f being a filter including r1, r2 and r3, we would
get the following deduction.

c(h2, f) = c(h2, narrow(f , r3)) ∗ r3.h2 v
= c(h2, narrow(f , r3)) ∗ −2

Since narrow(f , r3) is obviously not empty and we don’t have any further lo-
cation access in heap h2, we will not learn anything about c(h2, narrow(f , r3))
and therefore won’t be able to prove our assertion. The problem here is that
we focus ourselves on a single heap and try to deduce the value of the com-
prehension only based on information from the current heap, because we
restrict h in axiom 3.7 to the heap used in the comprehension call via the
trigger. To avoid this, we want to instantiate axiom 3.7 in the heap, where
the heap location update happened, independently from the heap in which
the comprehension was called. We can do this by defining a new function

dummy : (Filter)→ Bool

, which we can interpret as a function that indicates, whether the given filter
is used in a comprehension call. We can axiomatize the dummy function
easily as follows.

∀h : Heap, f : Filter. {c(h, f)} dummy(f) (3.8)

When we use now the trigger {dummy(f), r.hv} for axiom 3.7, the axiom gets
instantiated for every filter used as an argument for a comprehension call,
whenever we have a heap location update.

18

3.4. Incompleteness and matching loops

This alone however won’t be enough. We can now instantiate the axiom
in different heaps, other than the one mentioned in the comprehension call,
but when instantiating the axiom, we also get an assertion about the com-
prehension in a different heap. That the value of the comprehension in this
different heap is the same as in the current heap, is not always true, so we
need another axiom for this. To make this point more clear consider again
the deduction for example 3.1, but this time with our new trigger.

c(h2, f) = c(h2, narrow(f , r3)) ∗ r3.h2 v
= c(h2, narrow(f , r3)) ∗ −2

c(h1, narrow(f , r3)) = c(h1, narrow(narrow(f , r3), r2)) ∗ r2.h1 v
= c(h2, narrow(narrow(f , r3), r2)) ∗ 0

c(h1, narrow(narrow(f , r3), r2))

= c(h1, narrow(narrow(narrow(f , r3), r2), r1) ∗ r1.h1 v
= c(h2, narrow(narrow(narrow(f , r3), r2), r1) ∗ 0

c(h2, narrow(narrow(narrow(f , r3), r2), r1) = 1

We can easily verify by hand that for example c(h1, narrow(f , r3)) is equal
to c(h2, narrow(f , r3)), but obviously we won’t get this automatically. This
problem is called framing and has luckily already been encoded for Viper
for custom functions. However since our function will be generated, and to
have more control, we provide our own framing axiom.

∀ f : Filter, h1 : Heap, h2 : Heap. {c(h1, f), c(h2, f)}
(∀r : Ref. {r.h1 v, r.h2 v} f iltering(f , e−1(r))→ r.h1 v = r.h2 v)

→ c(h1, f) = c(h2, f) (3.9)

Matching loop With the framing axiom, we have now however introduced
the possibility for matching loops. Let f be an unbounded filter (e.g. with
f iltering(f , a) ↔ true). Now let there be two comprehension calls c(h1, f),
c(h2, f) for two different heaps h1, h2, where c(h1, f) 6= c(h2, f). The two calls
now trigger axiom 3.9 and instantiates the following formula, which can be
interpreted as follows: If for all heap locations covered by f , the value is the
same in h1 and h2, then the value of the comprehension calls must be the
same in the two heaps.

(∀r : Ref. {r.h1 v, r.h2 v} f iltering(f , e−1(r))→ r.h1 v = r.h2 v)
→ c(h1, f) = c(h2, f)

19

3. The Singleton Case

The left-hand side of the implication is a forall-quantifier, which will be-
come an existential-quantifier during SMT-solving. Remember that when
solving SMT-problems with existentials, the solver will skolemize the exis-
tential and create fresh variables (or functions). In this example, a fresh
function of type Ref will be created, lets call it ρ. Since the two comprehen-
sion calls have different values, some heap locations covered by the filter,
must have different values in h1 and h2 and therefore the SMT-solver will
learn f iltering(f , e−1(ρ(f , h1, h2))), which means that we have an expression
for a reference, which is covered by f and for which we know that its value
is not the same in h1 and h2. Now the SMT-solver will instantiate axiom 3.7
for f , ρ(f , h1, h2) and for both h1 and h2 once and learns

f iltering(f , e−1(ρ(f , h1, h2)))

→ c(h, f) = c(h, narrow(f , ρ(f , h1, h2))) ∗ ρ(f , h1, h2).hv

where h is once h1 and once h2.

Since the SMT-solver just learned the left-hand side of the implication, the
SMT-solver also learns the right-hand side and therefore the filter f ′ :=
narrow(f , ρ(f , h1, h2)) will be in scope. Since f was unbounded, f ′ is again
unbounded and the comprehension calls for h1 and h2 with f ′ will again
trigger the framing axiom 3.9, which closes the matching loop.

The problem however lies not only within the framing axiom, indeed every
assertion of a similar form to

∀ f : Filter, h : Heap.
∃r : Ref. f iltering(f , r) ∧ cond1(r.hv) ∧ cond2(c(h, f)) (3.10)

will introduce a matching loop, where cond1 and cond2 are boolean expres-
sions, with at least one occurrence of their argument and the triggers are
avoided for simplicity. This is because such an axiom will generate a new
function from skolemization for every instantiation, and because the body
of the existential mentions all triggering terms of the axiom 3.7, which again
generates a new filter, instantiating the above axiom.

Let’s first state a few things we cannot do to avoid the matching loop, before
we will propose a solution that works. One idea could be to somehow re-
strict the instantiation of the existential of 3.10 to disallow instantiations for
subsequently narrowed down filters. However in some cases this restricts
us too heavily. Suppose we extend our scenario to the case, that the value of
a comprehension can be arbitrary (but known) at the start of the program.
In this case, we would not be able to deduce the value of the comprehen-
sion anymore, after we have done two heap updates to different locations,
since the framing axiom 3.9 can no longer deduce that the comprehension
over the remaining locations has not changed, because the filter describing

20

3.4. Incompleteness and matching loops

the remaining locations is of the form narrow(narrow(f , r1), r2), i.e. it is nar-
rowed down twice. We could now say that this scenario does not matter to
us, however in the general case this will be one of the most basic scenarios
we would like to support.

The next idea might be to not use references in the existential of 3.10 or
in the axiom 3.7, but for framing we really need to check, whether all our
heap locations have remained the same value, which requires quantification
over references in some way. For the axiom 3.7 we also need the reference,
since we want to cover all possible accesses of heap locations and don’t
want to require a certain way of accessing / abstracting a heap location for
instantiating the axiom.

Since the matching loop only occurs, because the SMT-solver creates fresh
reference-typed functions, an idea, which will actually work, would be to
restrict the instantiation of axiom 3.7 to references which were not gener-
ated via skolemization. To exclude instantiation, if we have a certain term in
scope, we could introduce a new feature for SMT-solvers, which we will call
now anti-triggers: triggers which prevent instantiation if the term is in scope.
However Viper uses Z3 which does not support anti-triggers currently. This
means that we need to go the other way around and create something for ev-
ery reference typed expression ourselves and only trigger, if this something
is in scope as well. One possibility to realize this, is by using a new dummy
function

userMentioned : Ref→ Bool

, which indicates whether a reference is created by the user (and not by the
SMT-solver), or not. We can then assume userMentioned for every reference,
except for the one in the framing axiom 3.9 and add userMentioned(r) as an
additional triggering term to axiom 3.7.

Instead of the userMentioned function, a possibility is also to introduce a new
level of indirection for references via a function in a way that references will
be translated to valid references with a function

translate : Ref→ Ref

Then every expression e of type Ref in the program (also in triggers), except
for r in the framing axiom, can be replaced with translate(e), which will
prevent the skolemized reference to instantiate anything. For the remain-
der of this thesis we will however use the approach with the userMentioned
function.

No matching loops We have now prevented the above matching loop.
However one might think that we still have a matching loop, especially in
axiom 3.7, because the body of the quantifier creates a new filter, which can

21

3. The Singleton Case

instantiate the same axiom again. However the crucial part here is that the
creation of the new filter is on the right-hand side of the implication. For im-
plications, Z3 will only learn the right-hand side, if it can prove the left-hand
side. Indeed the axiom will get instantiated again for filter narrow(f , r), refer-
ence r and heap h, but the right-hand side will never be learned, because the
left-hand side checks whether r is covered by narrow(f , r), which is clearly
not the case, as we can see from the axiomatization of narrow 3.6. This
mechanism prevents the matching loop.

3.5 Summary

For this section, we rewrite and provide a summary for the axioms we have
created so far. In the end we will reason about why those axioms are com-
plete in our restricted scenario, illustrated in section 3.1, that is why the
axioms ensure that we can prove automatically what we wish to prove.

Note that even with the unique numbers for the formulas in this section, the
formulas are actually not new. Some have simply not been specified in this
way, because, for example, their trigger got changed in a subsection, while
others are repeated here and will be used as reference points later on in the
document.

We have created the two axioms which describe the value of a comprehen-
sion, according to formula 3.1.

∀h : Heap, f : Filter. {c(h, f)} empty(f)→ c(h, f) = 1 (3.11)

∀h : Heap, f : Filter, r : Ref. {dummy(f), r.hv, userMentioned(r)}
f iltering(f , e−1(r))→ c(h, f) = c(h, narrow(f , r)) ∗ r.hv (3.12)

For filters we have created an axiomatization of narrow, which produces
a filter by excluding a reference from a given filter, and of empty, which
indicates whether a filter covers any elements.

∀ f : Filter, r : Ref, a : A. { f iltering(narrow(f , r), a)}
f iltering(narrow(f , r), a)↔ f iltering(f , a) ∧ e(a) 6= r (3.13)

∀ f : Filter. {empty(f)}
empty(f)↔ (∀a : A. { f iltering(f , a)} ! f iltering(f , a)) (3.14)

Lastly we have created the framing axiom and the axiomatization of dummy.

∀ f : Filter, h1 : Heap, h2 : Heap. {c(h1, f), c(h2, f)}
(∀r : Ref. {r.h1 v, r.h2 v} f iltering(f , e−1(r))→ r.h1 v = r.h2 v)

→ c(h1, f) = c(h2, f) (3.15)

22

3.5. Summary

∀h : Heap, f : Filter. {c(h, f)} dummy(f) (3.16)

Completeness We will now prove via induction over the number of heap
locations covered by a filter that the above feature is complete in our scenario,
by comparing it to the definition of a comprehension from formula 3.1. We
define completeness by the possibility of an SMT-solver to prove an assertion
over the value of a comprehension at some point in a program, iff it could
be proved manually.

First consider an assertion over the value of a comprehension for an empty
filter. According to the comprehension definition, the value of the compre-
hension should then be 1. Since such an assertion contains an occurrence of
a comprehension call, the axiom 3.11 will be triggered which then triggers
axiom 3.14. So we get an implication of the form

(∀a : A. ! f iltering(f , a))→ c(h, f) = 1

Because f is empty, the left-hand side can be proved by the SMT solver and
we learn that the comprehension has indeed a value of 1. Note that this is the
only way of proving the value of the comprehension with our axioms, since
the only other axiom which could describe the value of a comprehension is
axiom 3.12, whose left-hand side, however, cannot be true, because the filter
is empty.

Now let us consider an assertion over the value of a comprehension c(h, f)
for a filter f which covers n + 1 elements (| f | = n + 1) while assuming that
the axioms are complete for a comprehension with a filter covering n ele-
ments. First let us observe that axiom 3.16 gets triggered by c(h, f). Axiom
3.11 will obviously also get triggered by c(h, f), however, the left-hand side
will be disproved, since the filter is not empty (and therefore when trying
to prove the right-hand side of axiom 3.14, the solver will find an argument
a, for which f iltering(f , a) is true). So, the only way to gain knowledge
about the value of the comprehension is via axiom 3.12. Now there are two
possibilities. The first one is that the value of every heap location covered
by the filter is unknown, because we either don’t have permission, or there
was never a value assigned to the location. The second possibility is that the
value of some heap location is defined, in which case there was an assign-
ment to the location, since assignments are the only possibility to update the
heap in our scenario.

If the value of every heap location of the filter is unknown, then obviously
an assertion about the value of a comprehension will be false. This is also
the case for our axioms, since the right-hand side of axiom 3.12 will not be
instantiated, because there will not be a heap access for a location covered
by the filter (or if there would be, the solver will fail to verify the program,

23

3. The Singleton Case

because there is not enough permission). Therefore the solver could not
prove the assertion and would fail.

If the values of some heap locations covered by the filter are defined, then
there will be assignments to those locations. Consider the heap location
of the most recent heap location update relative to h. Let h0 indicate the
heap, in which the update happened. The corresponding heap update will
now trigger axiom 3.12 and will also instantiate the right-hand side of the
implication, so we will learn the following formula:

c(h0, f) = c(h0, narrow(f , r)) ∗ r.h0 v.

Because r is the reference of the heap location with the most recent update
(in terms of h) of all the heap locations covered by f , we will now learn with
the framing axiom 3.15 that c(h, f) = c(h0, f). Now the solver will try to
derive the value of c(h, narrow(f , r)), which can be done iff the value can
proved manually, according to our induction hypothesis.

This showed for the scenario of this chapter, that an assertion over c(h, f)
can be automatically proved iff it can be manually proved.

24

Chapter 4

The General Case

4.1 Overview

In the previous chapter we have considered a restricted scenario, in which
we only allowed singleton heap updates. We also required that we don’t
have access to any part of the heap at the beginning of the program, which
resulted in a scenario, in which we knew at any time the value of every heap
location, to which we assigned value to once. In that scenario we were able
to provide an axiomatization for the value of a comprehension, for which we
also provided an informal proof about completeness. In this chapter we will
eliminate any restrictions on our programs, which means that we will now
additionally allow heap updates to multiple locations at once, and we will
allow the heap to be arbitrary in the beginning of the program. In Viper we
encode a heap update to multiple locations via quantified permissions. With
quantified permissions we can exhale permission to a certain set of heap
locations and inhale permission to this set again later. Since the program
lost permission to those heap locations, we however cannot guarantee that
the value of the locations didn’t change, so the comprehension over a filter,
covering parts of this set of heap locations, might have changed as well. One
way in which such a generalization will be applied is for method calls. A
method can take permission to an arbitrary number of heap locations and
modify those locations. When calling a method, we however simply exhale
the precondition and afterwards inhale the postcondition, so we won’t learn
anything about the method body.

To illustrate this scenario, consider the following example. Note that at the
beginning of method general, we don’t have any information about the
content of the heap locations in s, so we cannot state anything about the
value of the sum-comprehension over s. After line 12, the only statement
we can pose about the comprehension, is that it has increased by 2. This
should already be possible with our axioms from the singleton case. After

25

4. The General Case

Source Code 4.1: General updates

1 field val: Int

2

3 method modify(s: Set[Ref])

4 requires forall r: Ref :: r in s ==> acc(r.val)

5 ensures forall r: Ref :: r in s ==> acc(r.val)

6

7 method general(s: Set[Ref], r1: Ref)

8 requires forall r: Ref :: r in s ==> acc(r.val)

9 requires r1 in s

10 ensures forall r: Ref :: r in s ==> acc(r.val)

11 {

12 r1.val := r1.val + 2

13 modify(s)

14 }

line 13 however, we lost every information about the comprehension again,
since modify could have arbitrarily modified the heap for the locations in s.
This means that method modify should have some postcondition, describing
the change that happened to the heap locations, from which we can deduce
the value of the comprehension at the end of method general. Now the
problem however is that we don’t have a singleton heap update anymore
at line 13, which means that with our current axioms we wouldn’t be able
to deduce the value of the comprehension, even if we knew how the heap
changed. In this chapter we will now provide further axioms to our current
ones, to support such a general case.

4.2 Fundamental limitations

Before even starting the discussion about how we would provide an axiom-
atization for the general scenario, we can already state some limitations the
system will have. By stating those limitations now, we avoid having to worry
about some cases later and have a more concrete idea of why the axiomati-
zation we will provide will serve for what we want to support.

4.2.1 Automatic induction

Our first limitation has to do with how we specify changes to multiple heap
locations. For this we have multiple possibilities. We can quantify over heap
locations and impose a condition on every location, we can specify changes
via recursive predicates, or we can write how a comprehension has changed.
If we want to use this specification to deduce the value of a comprehension
we will however run into problems for most of the above approaches.

26

4.2. Fundamental limitations

As already stated in the introduction, recursive predicates are a feature for
different scenarios, especially for modelling data-structures which are tra-
versed in a specific order. With comprehensions we want to support data-
structures which can be traversed in multiple directions. Therefore we won’t
focus on compatibility with recursive predicates here.

Next, let’s consider what happens when we specify the changes for a com-
prehension other than the comprehension whose value we wish to deduce.
For example, we could state that the maximum comprehension (i.e. the
comprehension expressing the maximum value over a set of heap location
values) has value 5 after some method call over some filter f . From this we
could intuitively require from the axioms that the sum comprehension after
the call over f is at most 5 ∗ | f |. Such a deduction would however most
certainly require a proof by induction and since Viper does not support au-
tomatic deduction via induction, we consider this problem out of scope.

The same principle applies for the approach with a custom forall quantifier.
We can even interpret a forall quantifier as a comprehension, which compre-
hends over the truth values of the expression of the quantifier (and in this
case not over heap locations), and uses the logical and as the binary expres-
sion, together with true as the unit. So for arbitrary quantifiers, we would
also need a proof by induction and won’t support this approach as well. To
illustrate this in an example, consider a quantifier, which specifies that every
heap location has at least a value of 0. We could then argue that the sum
comprehension over a filter f must always be positive. However this is not
trivial to deduce, it actually requires a proof by induction, which is why we
won’t support deductions from arbitrary quantifiers.

This means that the only possibility to specify changes to the heap, if we
want to deduce the value of a comprehension c later, is by specifying how
the value of c has changed.

4.2.2 Losing permission

Imagine we want to deduce the value of the sum comprehension over filter
f and we lose and gain permission to a single heap location covered by f .
At first sight this might not be a real problem, since this is only a single heap
location. However this single heap location can have an arbitrary value x,
which might be huge, or very small. In such a case, our sum comprehension
would have a completely different value, depending on whether this heap
location is in f , or not and we won’t be able to prove anything concrete about
the value of the comprehension over f (other than that the value has changed
for this part of the comprehension), if we lost permission to this location and
did not learn how the value of the location changed. This means that for the
general case, we would need to specify every modification to heap locations
covered by f , to be able to deduce the value of a comprehension.

27

4. The General Case

Together with the previous limitation this means that for every modification
to heap locations of a filter f , we typically need to specify the change by
expressing the value of the comprehension for those locations after the mod-
ification. If the modification happens however to a single heap location, we
don’t have to mention the comprehension, since this is already covered by
the axiomatization from the singleton case.

4.3 Automatic deduction

This time we go back again to the original formula 2.1 for the value of a
comprehension.

ϕc(h, f) =

1 | f | = 0
e(a).hv, a ∈ f | f | = 1
ϕc(h, f ′) ∗ ϕc(h, f \ f ′) | f | > 1

for all f : Filter, h : Heap, f ′ ⊂ f

Notice how with this formula, we can split up filter f into ’subfilters’ f ′

and f \ f ′ of f , to inductively define the value of the comprehension. This
split will be practical for us in the general scenario, where we, for example,
know the value of the comprehension over f ′. In this case, the problem of
deducing the value of the comprehension over f is reduced to deducing the
value of the comprehension over f \ f ′.

Let us again create a draft for an axiom to support the third case of the above
value definition.

∀h : Heap, f : Filter, f ′ : Filter.
f ⊆ f ′ → c(h, f) = c(h, f ′) ∗ c(h, f \ f ′) (4.1)

At first sight this might seem to be incorrect, since we don’t check for | f | > 1
and check for f ⊆ f ′ instead of f ⊂ f ′. However, as one can easily prove,
this modification does not change the definition, because if | f | ≤ 1, then f ′

or f \ f ′ will be the empty set while the other subfilter will be f , and because
of the first case in the definition, we would therefore get ϕc(h, f) ∗ ϕc(h, ∅) =
ϕc(h, f). This means that removing the condition | f | > 1 does not alter the
definition, but it makes it more redundant. The reason on why we do it this
way, is because ⊆ is easier to axiomatize than ⊂. Also the ⊆ relation can be
used in some other axioms. Additionally since we can get rid of the check
| f | > 1, this approach is probably even better for performance.

Now we have again introduced some operators, for which we don’t yet have
an axiomatization, which we will need to provide, concretely the operators
⊆ (which we will call subfilter relation) and \.

28

4.3. Automatic deduction

Filter minus First we will consider the axiomatization of the \ operator,
which we will encode as a function with the following signature.

minus : (Filter, Filter)→ Filter

We can axiomatize minus, by stating the filtering condition of the result of
the function.

∀ f : Filter, f ′ : Filter, a : A. { f iltering(minus(f , f ′), a)}
f iltering(minus(f , f ′), a)↔ f iltering(f , a) ∧ ¬ f iltering(f ′, a) (4.2)

The trigger is chosen such that the axiom is instantiated whenever the fil-
tering condition is called, i.e. whenever something about the content of the
result of minus is requested.

Subfilter relation In set theory, the subset-relation is often defined as fol-
lows [7]

A ⊆ B :⇐⇒ ∀x(x ∈ A→ x ∈ B) (4.3)

For our subfilter relation, a straight-forward approach would therefore be, to
use this definition directly to write an axiomatization. The problem however
is that such an axiom would introduce a forall quantifier as the left-hand side
of an implication, which would turn into an existential quantifier during
SMT-solving. Existential quantifiers have several problems, one of which
is performance. Because an existential will be skolemized, the SMT-solver
will introduce a new free variable to its problem, increasing the problem
difficulty and therefore increasing the runtime. Remember that our way
of defining a filter is by defining membership of elements via a condition
for a type A. We encoded this via the f iltering function, which expresses
membership of a value a : A of a filter, so the f iltering encodes the ∈ relation.
The following theorem describes that detecting the subfilter relation between
two filters is difficult when the filters are defined via such conditions.

Theorem 4.1 (Subset is NP-hard) Given sets R and S with members of type A
(possibly a tuple), defined by membership conditions condR : A→ Bool and condS :
A→ Bool respectively, such that

∀a : A. (a ∈ R↔ condR(a)) ∧ (a ∈ S↔ condS(a))

Deciding whether R ⊆ S is NP-hard.

Proof (by reduction) We prove the theorem with a reduction to SAT. Let
Φ(a) be an arbitrary boolean formula for free variable a, which is a tuple of
Bool of size n. We get

¬Φ(a)⇐⇒ ¬true∨ ¬Φ(a)
⇐⇒ true→ ¬Φ(a)

29

4. The General Case

Let now condR(a) := true and condS(a) := ¬Φ(a), then

R ⊆ S
(4.3)⇐⇒ ∀a : A. (condR(a)→ condS(a))
⇐⇒ ∀a : A. ¬Φ(a)
⇐⇒ ¬∃a : A. Φ(a)

Note that the expression ∃a : A. Φ(a) expresses SAT for the n free boolean
variables in a. �

The above result might motivate us to still use the definition 4.3 to directly
write an axiom for subfilters, since we anyhow cannot expect nice perfor-
mance. However there is still a different option. We can eliminate the
problematic existential and reduce the problem to the empty check, which
already incorporates an existential. First we define a new function with the
following signature to encode the ⊆ relation.

subfilter : (Filter, Filter)→ Bool

Now with the above idea we get the following axiom.

∀ f : Filter, f ′ : Filter. {subfilter(f ′, f)}
subfilter(f ′, f)↔ empty(minus(f ′, f)) (4.4)

That this axiom is sound can be verified with a simple set-theoretical deriva-
tion.

A ⊆ B⇐⇒ ∀x. x ∈ A→ x ∈ B
⇐⇒ ∀x. x 6∈ A ∨ x ∈ B
⇐⇒ ∀x. ¬(x ∈ A ∧ x 6∈ B)
\ def⇐⇒ ∀x. ¬(x ∈ A \ B)
∅ def⇐⇒ A \ B = ∅

Triggering Remember that we wish to instantiate our new axiom, when-
ever we get to learn something about the value of a comprehension over a
subfilter f ′ of the filter f , for which we want to deduce the value of the com-
prehension. This happens whenever we have a call of the form c(h, f ′). So
a natural choice for the trigger would be the two terms c(h, f) and c(h, f ′),
which would then form the trigger {c(h, f), c(h, f ′)}. With those two triggers
we will however, similar to the previous chapter, limit ourselves to deduc-
tions in a single heap h. In the next section we will see, how we can prevent
this from happening.

30

4.4. Incompleteness

4.4 Incompleteness

4.4.1 Multiple heaps

By using the trigger {c(h, f), c(h, f ′)} for our axiom 4.1, we limit ourselves
to deductions in the heap h, similar to our problem we had for the singleton
case. This means that we can rely on the method that we used to solve
the similar problem earlier, in order to find triggers in the general case.
Remember that we replaced the term c(h, f) with the term dummy(f), to
not restrict the heap to the one we are trying to deduce the value of our
comprehension in. This principle is applicable here as well. If we use the
trigger {dummy(f), c(h, f ′)}, the deduction of the value of c over f will be
attempted in every heap h, in which a call to c happened over some subfilter
f ′ of f . The framing axiom 3.9 will then possibly deduce that the value of
the comprehension over f in the two different heaps has not changed.

4.4.2 Equal filters

For our next problem, imagine we had a simple scenario, where we knew
the values c(h, f1) and c(h, f2), we knew that f1 ∪ f2 = f (from the filtering
conditions), and we wanted to deduce c(h, f). Axiom 4.1 will then be in-
stantiated for f and f1 (or similar for f and f2) and the solver will learn the
term

c(h, f) = c(h, f1) ∗ c(h, f \ f1)

For the solver, it is however not clear that f \ f1 = f2, hence we cannot
deduce the value c(h, f) The problem is that there is no axiom which tries
to prove that two filters are equal. To solve this, let us first define a new
function

equiv : (Filter, Filter)→ Bool

, which indicates whether two filters are semantically equivalent to each oth-
ers and therefore encodes the ≡ relation between two filters. Semantical
equivalence means that the filtering conditions of the two filters have the
same truth values for the same parameters, so we could directly write an
axiom which would however, similar to the subfilter relation, again intro-
duce a forall quantifier as the left-hand side of an implication. To avoid this,
we choose a similar approach as for the subfilter relation and define filter
equivalence as follows.

f ≡ f ′ :⇐⇒ f ⊆ f ′ ∧ f ′ ⊆ f

From this definition we can directly write the following axiom

∀ f : Filter, f ′ : Filter. {equiv(f , f ′)}
equiv(f , f ′)↔ subfilter(f , f ′) ∧ subfilter(f ′, f) (4.5)

31

4. The General Case

h
f

f 0

f̄

Figure 41: Example of a problem where f is a subfilter

With equiv axiomatized, we can provide an axiom, which will try to prove
filter equivalence for every two filters whose comprehension values we are
interested in.

∀ f : Filter, f ′ : Filter. {dummy(f), dummy(f ′)} equiv(f , f ′)↔ f = f ′ (4.6)

This solves our problem from above, because the solver can now prove that
f \ f1 = f2 and therefore that c(h, f \ f1) = c(h, f2).

4.4.3 Combining filters

A very common case in practice for the binary operator ∗ is that it has
an inverse for every element and therefore (∗, 1) is a group. This means
that we could deduce the value c(h, f) if we knew the equation c(h, f̄) =
c(h, f) ∗ c(h, f̄ \ f) and knew the value of c(h, f̄) and c(h, f̄ \ f). In this
subsection we will provide axioms to support this case as well.

Currently we have only cared about splitting up filters to derive the value of
a comprehension over a filter through the value of the comprehension over
its subfilters. This is a natural approach if we consider the definition 2.1
of the value of a comprehension. However in our new scenario, we might
want to consider deductions based on ’superfilters’ f̄ as described above.
Figure 41 illustrates such a possible scenario. The heap h is illustrated as
a continuous sequence of heap locations, while the filters f , f ′ and f̄ are
illustrated as boxes, indicating which part of h they cover. We will use such
illustrations further on as well, to argue about specific scenarios.

In this example we assume that we know c(h, f̄) and c(h, f ′) and want to
derive c(h, f). This might seem to not be possible at first sight, because we
cannot split up f to derive c(h, f). But what the axioms allow is that f̄ is
split up by f ′ via axiom 4.1 into f ′ and f̄ \ f ′ and we learn the equation

c(h, f̄) = c(h, f ′) ∗ c(h, f̄ \ f ′)

which is enough to prove c(h, f), since with axiom 4.6 we can derive that
f̄ \ f ′ = f .

32

4.4. Incompleteness

h
f

f1

f2

f 0

Figure 42: Example of a problem where there is no subfilter relation

The real problem however occurs, when we don’t know c(h, f̄), but would
be able to deduce it via different filters. Figure 42 shows such an example,
where the comprehension value over f1, f2 and f ′ are known in h. Note
that there is no subfilter relation between any of the filters, so the axiom 4.1
won’t be instantiated. However we could manually derive c(h, f), because

c(h, f2) ∗ c(h, f1) = c(h, f ′) ∗ c(h, f)

So if we had an axiom, which was able to combine filters to express the
comprehension over the filter union, we would have solved this problem.
Let’s start with a draft for such an axiom.

∀ f1 : Filter, f2 : Filter. {dummy(f1), dummy(f2)} dummy(f1 ∪ f2) (4.7)

Remember that function dummy(f) indicates whether we are interested in
the value of the comprehension over f in some heap. Obviously this draft
makes use of the operator ∪, for which we don’t have an encoding yet. This
is done with the following function

union : (Filter, Filter)→ Filter

which we axiomatize with a similar approach to the one for the axiomatiza-
tion of minus.

∀ f1 : Filter, f2 : Filter, a : A. { f iltering(union(f1, f2), a)}
f iltering(union(f1, f2), a)↔ f iltering(f1, a) ∨ f iltering(f2, a) (4.8)

The draft 4.7 is however not really good. First of all we introduced a match-
ing loop, because we generate a new term dummy(f1∪ f2), which can replace
the trigger term dummy(f2), such that we get a sequence of instantiations of
the form

dummy(f1 ∪ f2), dummy(f1 ∪ f1 ∪ f2), dummy(f1 ∪ f1 ∪ f1 ∪ f2), . . .

33

4. The General Case

In addition we will allow the union of every pair of filters in scope, which
even if we solved the matching loop, would give us way more instantiations
than we actually needed. If we look at our problem scenario, we can see
that our problem is very specific to the case where we have two sets A and
B of disjoint filters, with

⋃· f∈A f =
⋃· f∈B f (the union of all filters in A and

the union of all filters in B are equal). In our problem we would want to
deduce the value of the comprehension over a filter in A from the value of
the comprehension over all other filters in A and all filters in B. This can
be achieved by combining all filters in B to deduce c(h,

⋃· f∈B f). With this
result we could then apply our general axiom 4.1 multiple times recursively
on c(h,

⋃· f∈B f) for filters in A. In our above example, A would be { f ′, f }
and B would be { f1, f2}.

To quickly summarize the scenario: We have two sets A and B of disjoint,
non-empty filters, with

⋃· f∈A f =
⋃· f∈B f for which we know the compre-

hension in h, except for one f ∈ A, for which we want to deduce the com-
prehension value. The non-empty requirement of the sets in A and B was
not discussed yet, but makes sense in our scenario, since adding an empty
filter to either A or B does not change the union over all filters. From this we
learn that every filter in B must have a non-empty intersection with some
filter in A.

Lemma 4.2 Let A and B be non-empty sets of disjoint sets of non-empty sets with⋃· f∈A f =
⋃· f∈B f . Then for every b ∈ B, there exists a ∈ A, such that a ∩ b 6= ∅.

Proof (by contradiction) Assume that there exists b ∈ B such that for all
a ∈ A, a ∩ b = ∅. Then we get

⋃
·

f∈A

f =
⋃
·

f∈B

f

⋃
·

f∈A

f

 \ b =

⋃
·

f∈B

f

 \ b

Since for all a ∈ A we know that a ∈ A, a ∩ b = ∅, we get⋃
·

f∈A

f

 ∩ b = ∅

and therefore ⋃
·

f∈A

f

 \ b =
⋃
·

f∈A

f

34

4.4. Incompleteness

This now means that

⋃
·

f∈A

=

⋃
·

f∈B

f

 \ b

⋃
·

f∈B

f

 \ b =
⋃
·

f∈B

f

∣∣∣∣∣∣
⋃
·

f∈B

f

 \ b

∣∣∣∣∣∣ =
∣∣∣∣∣∣⋃·f∈B

f

∣∣∣∣∣∣
Since B and b are non-empty, we however also get∣∣∣∣∣∣

⋃
·

f∈B

f

 \ b

∣∣∣∣∣∣ <
∣∣∣∣∣∣⋃·f∈B

f

∣∣∣∣∣∣
which is clearly a contradiction. �

The lemma requires that A and B are non-empty, which is the case for our
scenario, since we require that there is a filter in A, for which we don’t know
the value of the comprehension. We can even restrict ourselves more that
A and B must have a size of at least 2, since otherwise we would have a
scenario similar to figure 41. Those restrictions can be incorporated into the
draft 4.7 to fit the axiom to our scenario.

∀ f : Filter, f1 : Filter, f2 : Filter. {dummy(f), dummy(f1), dummy(f2)}
¬empty(f ∩ f1) ∧ ¬empty(f ∩ f2) ∧ empty(f1 ∩ f2)→ dummy(f1 ∪ f2) (4.9)

To make the connection to our formalized scenario, note that f1 and f2 would
be filters of set B and f would be a filter of set A. With multiple recursive
applications of the axiom we would therefore finally learn dummy(

⋃· f∈B f)
which would make the remaining axioms (especially axiom 4.1) to deduce
the value of c(h,

⋃· f∈B f). The two conditions ¬empty(f ∩ f1) and ¬empty(f ∩
f2) check whether f1 and f2 have a non-empty intersection with an element
in A and the condition empty(f1 ∩ f2) checks whether f1 and f2 are disjoint.
To be precise, we made the axiom a bit more restrictive in the sense that we
require for every filter f1 ∈ B to have a non-empty intersection with a filter
f ∈ A and that there is another filter f2 ∈ B which also has a non-empty
intersection with f . This is in contrast to the restriction that we only require
every element f1 ∈ B to have a non-empty intersection with an element f ∈
A. This restriction however does not restrict the capabilities of our axioms,
because the only case it disallows now, is that there is an element f1 ∈ B
and an element f ∈ A, such that f1 and f have a non-empty intersection,

35

4. The General Case

h
f

f 0

f1

f2

Figure 43: Example of a problem where only f1 has a non-empty intersection
with f

and every element different from f1 in B has an empty intersection with f .
Figure 43 shows an example of such a case. Note that f must now be a
subfilter of f1, because our scenario still requires that

⋃· f∈A f =
⋃· f∈B f . This

means that for this special case, we can use axiom 4.1 and split f1 up into
f and f1 \ f and therefore reduce the problem to deriving the value of the
comprehension for f1 \ f .

We have not yet provided an encoding and an axiomatization for ∩, which
we will do now. This is a very straight-forward task, similar to the encoding
and axiomatization of \ and ∪, based on the common definitions from set-
theory. The function encoding the operator has the following signature

intersect : (Filter, Filter)→ Filter

and the following axiomatizations

∀ f : Filter, f ′ : Filter, a : A. { f iltering(intersect(f , f ′), a)}
f iltering(intersect(f , f ′), a)↔ f iltering(f) ∧ f iltering(f ′) (4.10)

4.5 Matching loops

With the new axioms and triggers we now have introduced some matching
loops, which we will need to prevent.

4.5.1 General Axiom

First we have introduced a matching loop in the general axiom for the value
of a comprehension 4.1. Remember that our current trigger for this axiom
is {dummy(f), c(h, f ′)}. Now let’s say that the axiom gets instantiated for
filters f and f ′ with f ′ ⊆ f . From the instantiation, the solver will learn

c(h, f) = c(h, f ′) ∗ c(h, f \ f ′)

36

4.5. Matching loops

Now the axiom will however get instantiated again from the terms dummy(f)
and c(h, f \ f ′). The solver will then be able to prove that f \ f ′ ⊆ f and
therefore it will learn

c(h, f) = c(h, f \ f ′) ∗ c(h, f \ (f \ f ′))

This goes on forever, because the solver does not know f \ (f \ f ′) = f ′.

We could solve this by demanding yet another feature from the SMT-solver.
If there was a possibility to prioritize quantifiers when there are multiple
possible instantiations, we could prioritize the axiom 4.6 which would prove
that f \ (f \ f ′) = f ′ before the general axiom gets instantiated. With this
we would avoid this instantiation because of e-matching.

However Z3 does not include such a feature, so we will use a different
approach for this. The axiom relies on two filters: a base filter (which will
be split up by the axiom) and a subfilter. The axiom then creates a new
filter by subtracting the subfilter from the base filter and therefore creating
a diminished version of the base filter. We get a matching loop, because
we reuse the diminished version of the base filter as the subfilter in the
axiom. However intuitively it makes sense to only allow filters which were
created by the user (via calling the comprehension) as the subfilter. If we
then recursively apply the general axiom for multiple filters S, for which we
know the comprehension value, we eventually have the original base-filter
split up into all filters in S and one single filter, whose comprehension value
is unknown, which is the recursively diminished version of the original base-
filter. So we introduce a new function

userCreated : Filter→ Bool

which indicates whether a filter was created by the user, or by the SMT-
solver. We can now assume the userCreated function for every filter that
was indeed created by the user (i.e. every filter that appears in the form
of c(h, f) in the program) and trigger the general axiom 4.1 only upon ap-
pearance of userCreated(f ′) for subfilter f ′, which leads us to the new trigger
{dummy(f), c(h, f ′), userCreated(f ′)}.

Now there is still an additional matching loop. Let f ′ be an empty filter. In
this case, f ′ would satisfy the subfilter relation with any f , which means
that when the general axiom gets instantiated for base filter f and subfilter
f ′, the solver would learn

c(h, f) = c(h, f ′) ∗ c(h, f \ f ′) = c(h, f \ f ′)

So the general axiom could get instantiated again for base filter f \ f ′ and
subfilter f ′, since the solver does again not necessarily know that f \ f ′ = f .
Since this is however a very specific case, we can simply avoid this matching

37

4. The General Case

loop by adding an empty check for the subfilter to the left-hand side of an
implication. With those insights we now almost get our final version of the
general axiom.

∀h : Heap, f : Filter, f ′ : Filter. {dummy(f), c(h, f ′), userCreated(f ′)}
¬empty(f ′) ∧ ¬equiv(f ′, f) ∧ f ′ ⊆ f → c(h, f) = c(h, f ′) ∗ c(h, f \ f ′) (4.11)

We have not discussed yet the occurrence of the term ¬equiv(f ′, f) on the
left-hand side of the implication. This term is simply there for performance
reasons. First of all it is obvious that the case where ≡ (f , f ′) does not
contribute anything meaningful to the derivation of c(h, f), the solver would
simply learn

c(h, f) = c(h, f ′) ∗ c(h, f \ f ′) = c(h, f) ∗ c(h, f \ f) = c(h, f)

so this instantiation would be completely unnecessary. Next we know from
previous examples that we usually want to know the equivalence relation
between two filters as soon as possible, to allow e-matching.

Filter combinations From the axiom for combining filters 4.9 we also get
matching loops. The difference here is that we don’t get a matching loop
only because of this axiom, since the left-hand side of the implication is
already restricting enough that the right-hand side won’t produce a filter
which was used before for this axiom. This is because the right-hand side
allows neither f1, nor f2 to be empty, so the resulting filter will have a strictly
larger cardinality than f1 or f2.

However by creating a new filter f1 ∪ f2, and learning dummy(f1 ∪ f2), the
solver will instantiate the general axiom 4.11 for f1 ∪ f2 as base filter and
either f1 or f2 as subfilter. This will result in a diminished filter (f1 ∪ f2) \ f1
((f1 ∪ f2) \ f2 respectively) which is again not obviously equivalent to f1 and
will therefore again instantiate axiom 4.9.

A first approach might be to create a new function

base : Filter→ Bool

which is assumed for all filters which were not generated by axiom 4.9. To
avoid the matching loop, we could then add the term base(f) to the trigger
of the general axiom 4.11. The problem with this approach is however that
we have now eliminated the possibility to deduce the value for the compre-
hension over a subfilter of the combined filter, since we can not split up the
combined filter anymore.

Instead we will now use the userCreated function again to prevent a filter,
which was not user created, but generated by diminishing a base filter, to

38

4.5. Matching loops

h
f

f̄ 0

f1

f̄2

f 0

2

f 00

Figure 44: An example showcasing the new limitation

be combined. Since we however rely with the axiom for filter combinations
on the possibility to be instantiated recursively, we will also learn from the
axiom that the combined filter is user created, therefore rendering the name
’user created’ for the function inaccurate. The new axiom now looks as
follows.

∀ f : Filter, f1 : Filter, f2 : Filter.
{dummy(f), dummy(f1), dummy(f2), userCreated(f1), userCreated(f2)}

¬empty(f ∩ f1) ∧ ¬empty(f ∩ f2) ∧ empty(f1 ∩ f2)

→ dummy(f1 ∪ f2) ∧ userCreated(f1 ∪ f2) (4.12)

New limitation While avoiding the matching loop for the filter union ax-
iom, we also introduced a limitation: we can no longer combine filters,
which are not user created. To see that there are cases, for which this is
relevant, consider the example 44. First notice that there is no pair of filters,
which are disjoint, so the filter union axiom won’t get instantiated. Next
notice that there are only two pairs of filters, which form a subfilter relation,
which are f ′2 ⊆ f̄2 and f ′′ ⊆ f̄ ′. Those two pairs will therefore instantiate the
general axiom and will generate two new filters f2 := f̄2 \ f ′2 and f ′ := f̄ ′ \ f ′′,
which are not user created. Figure 45 shows the result of this subtraction.
Now we would like to combine f1 and f2 together to then subtract f ′ and
deduce the comprehension value for f . However such a combination is not
possible now, because the filters f2 and f ′ are not user created.

How relevant this limitation in practice really is, is however hard to tell.
Because it is rather complex, one might suppose that this will be rather a

39

4. The General Case

h
f

f 0

f1

f2

Figure 45: The example of figure 44, after subtraction

theoretical result and that most of the use-cases in practice won’t be affected
by it.

4.6 Summary

This section again provides a summary of the axioms and declarations of
this chapter. Remember that those axioms complement / replace the axioms
from the previous chapter.

First we created the general axiom to describe the value of a comprehension.

∀h : Heap, f : Filter, f ′ : Filter.
{dummy(f), c(h, f ′), userCreated(f ′)}
¬empty(f ′) ∧ ¬equiv(f ′, f) ∧ f ′ ⊆ f

→ c(h, f) = c(h, f ′) ∗ c(h, f \ f ′) (4.13)

We have created the new filter generating function minus, union, intersect,
along with their axiomatizations.

∀ f : Filter, f ′ : Filter, a : A. { f iltering(minus(f , f ′), a)}
f iltering(minus(f , f ′), a)↔ f iltering(f , a) ∧ ¬ f iltering(f ′, a) (4.14)

∀ f1 : Filter, f2 : Filter, a : A. { f iltering(union(f1, f2), a)}
f iltering(union(f1, f2), a)↔ f iltering(f1, a) ∨ f iltering(f2, a) (4.15)

∀ f : Filter, f ′ : Filter, a : A. { f iltering(intersect(f , f ′), a)}
f iltering(intersect(f , f ′), a)↔ f iltering(f) ∧ f iltering(f ′) (4.16)

40

4.6. Summary

Also for filters, we have created and axiomatized the two filter relations
subfilter and equiv.

∀ f : Filter, f ′ : Filter. {subfilter(f ′, f)}
subfilter(f ′, f)↔ empty(minus(f ′, f)) (4.17)

∀ f : Filter, f ′ : Filter. {equiv(f , f ′)}
equiv(f , f ′)↔ subfilter(f , f ′) ∧ subfilter(f ′, f) (4.18)

Next we have introduced the new dummy function userCreated to prevent
matching loops. We have created an axiom for proving that two filters are
equal.

∀ f : Filter, f ′ : Filter. {dummy(f), dummy(f ′)} equiv(f , f ′)↔ f = f ′ (4.19)

And we have created an axiom to support filter union.

∀ f : Filter, f1 : Filter, f2 : Filter.
{dummy(f), dummy(f1), dummy(f2), userCreated(f1), userCreated(f2)}

¬empty(f ∩ f1) ∧ ¬empty(f ∩ f2) ∧ empty(f1 ∩ f2)

→ dummy(f1 ∪ f2) ∧ userCreated(f1 ∪ f2) (4.20)

Completeness It might be striking that we only considered one single case
of the definition 2.1 of a comprehension and think that we are done. The
reason for this is that the axioms from the singleton case already cover the
first two cases of the definition.

The first case in the definition is exactly the same as it was for the simplified
definition 3.1 in the singleton case. This case was covered by the comprehen-
sion axiom 3.11, and will obviously cover it in the general case as well.

For the second case of the definition, consider the following thought. There
are always two possibilities to describe the value of a comprehension over a
singleton filter f : either by stating the value directly, or by stating the value
of the heap location, which f covers. The derivation of the value of a com-
prehension for f for the first possibility is then covered by axiom 4.13, while
the second one is covered by axiom 3.12. The second possibility describes
the second case of the definition, but with our encoding we don’t require
that the value of every heap location is known. Instead we can summarize
the value of multiple heap locations via the comprehension value.

To reason about completeness for the general case is hard, since it is already
hard to define what ’complete’ means. We could argue that we would be

41

4. The General Case

complete, iff we want to prove the value of a comprehension over f in some
heap, for which we knew the value of the comprehension for some filters,
with which we could express f in some way. The question then is, what
ways of expressing f from other filters would we allow. It gets obvious quite
soon, that we could only support expressions with applications of ∪· and \
(and \ only on filters with a subfilter relation), because other set operators
don’t fit our definition 2.1 for the value of a comprehension. This also makes
sense intuitively, if we consider an operator, such as ∩. Imagine we knew
the comprehension value for f and f ′ and want to derive the value for f ∩ f ′.
We would not be able to do it solely on this knowledge, because we don’t
know the comprehension value of the complement of f ∩ f ′ respective to f
or f ′. So for example if we knew that the sum comprehension of f was 5
and the sum comprehension over f ′ was 4, we have still no idea, what the
sum comprehension of f ∩ f ′ was. However if f and f ′ were disjoint, then
we could state that the sum comprehension of f ∪· f ′ is 9, or if f ′ ⊆ f , that
the sum comprehension of f \ f ′ is 1. Both of those cases are covered in our
axioms, as we have already discussed.

Such a definition of completeness would now however not take into account
that want to deduce the value of a comprehension in some heap via values
of comprehensions in different heaps, a case we have also covered.

A question that remains is, whether we really need the value of the compre-
hension for different filters to be able to deduce the value for the desired
filter, or whether we can also deduce the value of a comprehension via other
means. Indeed a different way is already supported by our axioms: we can
state the value for every heap location covered by the desired filter and from
this deduce the value of the comprehension. Other possible means, which
would require proofs by induction were already discussed in section 4.2 and
were considered out of scope for this thesis.

42

Chapter 5

Analysis

In this chapter, we will provide an informal analysis of the axiomatization
we created in the previous In chapters 4 and 3, we already reasoned about
the completeness of the singleton case and of the general case. Therefore
we will not talk about completeness in this chapter. While we have already
partly argued about matching loops in the previous chapters, we were there
mainly concert about avoiding specific matching loops. In this chapter we
will however discuss, why our axiomatization should not have any matching
loops. After the discussions about matching loops, we will take a closer look
at the performance of the axiomatization. In the end of the chapter we will
summarize all limitations together, which have resulted from our encoding.

5.1 Matching Loop Freedom

One way to reason about matching loops, is to look at what new trigger-
ing terms the axioms create during instantiation, and observe which other
quantifiers those triggering terms might instantiate.

Filters We start by looking at which axioms create new filters. The only
way to create new filters is via the filter generating functions minus, union,
intersect, and narrow. The only axioms which use them to create new filters
are:

• The general axiom 4.13 with minus

• The singleton axiom 3.12 with narrow

• The filter combining axiom 4.20 with intersect and union

• The subfilter axiom 4.17 with minus

The subfilter axiom creates the term empty(minus(f ′, f)). This term only in-
stantiates the empty axiom 3.14, instantiating an existential quantifier. The

43

5. Analysis

existential will then be skolemized, such that we gain a new argument in-
stance a : A, for which we learn the term f iltering(minus(f ′, f), a), which
will only trigger the axiomatization 4.14 of minus. This instantiation will cre-
ate the new terms f iltering(f ′, a) and f iltering(f ′, a), which however will
not trigger any other axiom.

The general axiom, which is triggered by dummy(f), base(f), c(h, f ′), and
userCreated(f ′), creates the terms empty(f ′), equiv(f ′, f) and subfilter(f ′, f),
and (for a verifiable left-hand side) the term c(h, minus(f , f ′)).

The term subfilter(f ′, f) will trigger the subfilter axiom, for which we know
from the previous paragraphs, that it does not introduce matching loops.

The term equiv(f ′, f) will trigger the equivalence axiom 4.18, creating the
term subfilter(f , f ′), for which does not cause a matching loop, as we have
just seen.

The term empty(f ′) triggers the empty axiom, which also does not introduce
matching loops, as we have seen for the subfilter axiom.

The term c(h, minus(f , f ′)) triggers the dummy axiom 3.16, creating the term
dummy(minus(f , f ′)).

It also triggers the empty comprehension axiom 3.11, which however only
instantiates the new term empty(f), which will not cause a matching loop.

Additionally it triggers the framing axiom 3.15, which will create an instance
of an existential quantifier. This existential will again be skolemized, creat-
ing a fresh constant r, for which the term f iltering(f , e−1(r)), r.hv will be
learned, which will not trigger anything in this case.

The terms dummy(minus(f , f ′)), c(h, f ′), and userCreated(f ′) will now again
trigger the general axiom, but the left-hand side will not be verified, because
f ′ 6⊆ minus(f , f ′). The terms that were instantiated on the left-hand side will
not cause any matching loops.

The singleton axiom, triggered by dummy(f), r.hv, and userMentioned(r) cre-
ates terms f iltering(f , e−1(r)), c(h, f) and c(h, narrow(f , r)). The first term
will not trigger anything. The second term will trigger the framing axiom,
which, as we have seen for the general axiom, will not introduce a matching
loop in this case. Otherwise, it will only trigger the dummy axiom and the
empty comprehension axiom, which will not introduce anything interesting.
The third term will trigger the same axioms as the second term, however
this time we learn a new term dummy(narrow(f , r)), which will instantiate
the singleton axiom again, but this time we will not instantiate the right-
hand side, since ¬ f iltering(narrow(f , r), e−1(r)).

The filter combining axiom instantiates three terms which check for empty,
which we have already seen, does not introduce a matching loop. The in-
teresting part here is the term dummy(f1 ∪ f2), which triggers the general

44

5.2. Performance

axiom. However, the newly created filter from the general axiom will not
trigger the filter combining axiom again, and, therefore, there will not be
a matching loop. The remaining instantiations are cases that were already
discussed.

Others Every other function that occurs in the axioms has return type Bool.
So, the only new constants that matter for matching loops are the ones gen-
erated by skolemization of existentials. There are two cases where we have
existentials: in the empty axiom, which was already shown to not be a prob-
lem, and in the framing axiom.

The framing axiom creates the terms f iltering(f , e−1(f)), r.h1 v, and r.h2 v via
skolemization. These terms however do not trigger anything. For the heap
access terms this is because there is no term userMentioned(r), and, therefore,
the singleton axiom will not be instantiated.

5.2 Performance

When we talk about performance, we are mainly interested in the number
of instantiations the axioms will produce on a specific program. For the
singleton case we would like to know the performance based on the number
of heap location specifications. We will quickly realize that the number of
instantiations is in the worst case exponential to the number of heap location
accesses. Imagine we have n heap location accesses via n heap updates and
want to deduce the value of a comprehension for a filter f which covers
exactly those n heap locations. The singleton axiom 3.12 will then instantiate
for f and for all n heap location specification in the heap where the heap
location update happened. Therefore we will get n filters with cardinality
n− 1, which will instantiate the axiom again for all the heap locations which
are still covered by the new filter. This goes on, until the resulting filters are
empty. In the end we have a series of instantiations for every permutation
of the n heap locations, resulting in a complexity of O(nn).

If we now look at which permutations can actually be used to prove the
value of the comprehension for f , we see that there is exactly one, namely,
the permutation in the reverse order of the heap location updates, since,
for all other permutations, framing could not be proved in between the n
heaps. However there does not seem to be an easy way to prevent this
bad performance, since we don’t have any possibility for Z3 to prioritize
instantiations.

If we look at the general case, we have the exact same problem. With the
general axiom, we will get with n specifications of comprehension values
for subfilters after heap updates, again O(nn) instantiations.

45

5. Analysis

5.3 Limitations

Even though our design is very general, it still has its limitations and cannot
support special cases, which a user might want to have. For some limitations
we will already provide some approaches for solutions, which will also be
discussed in more detail in chapter ??.

Limitations due to the encoding A limitation we already remarked and
discussed was the limitation, induced by the prevention of matching loops
for the filter combining axiom in subsection 4.4.3. There are certain scenar-
ios, for which the value of a comprehension cannot be deduce automatically,
but could be deduced ’by hand’. This is due to the mechanism we proposed
for avoiding matching loops. However if we had control over the order of
instantiations, if there are multiple possible instantiations, we could priori-
tize the equal filters axiom 4.19 above all other axioms to avoid the matching
loop. Since the matching loop occurred, because we generated a filter, which
already instantiated the general axiom 4.13, but which was specified differ-
ently during the first instantiation (and therefore the SMT-solver will not
automatically interpret it as the same as previously), which instantiates the
general axiom again. If we could prove before the second instantiation of
the general axiom that the two version of the filter are indeed equal, the
second instantiation will not happen. With our current approach we limit
the capability of our axiom, because we add additional restrictions to in-
stantiations with a more refined trigger. This approach however would not
restrict anything in terms of capabilities, it only specifies which axioms will
be instantiated in which order. Therefore this approach would eliminate this
limitation. Note that with such control over the SMT-solver, we could elimi-
nate the userCreated function completely, since we only created it to prevent a
matching loop for the general axiom, where we had the same problem that
the generated filter will not be recognized as a filter causing instantiation
earlier.

Another limitation we have in the implementation comes with the fact that
the userMentioned function will only be assumed on reference-typed expres-
sions outside of quantifiers, as will be presented in the next chapter. This
limits the capability of, for example, a reference-typed expression instanti-
ated from a forall-quantifier to trigger the singleton axiom 3.12, which might
miss an opportunity to prove the comprehension value over a singleton fil-
ter, which might be relevant for the comprehension value over a larger filter.
The userMentioned function is again a way to prevent matching loops, par-
ticularly caused by the generation of skolemized references from the fram-
ing axiom 3.15. In section 3.4 we already presented two alternative way of
avoiding this matching loop. One again requires a special feature from the
SMT-solver, while the other doesn’t and might actually cause less problems

46

5.3. Limitations

for the implementation.

The last and probably most grave issue with our axiomatization is the per-
formance issue, discussed in the previous section. While this is technically
no limitation in the sense that we cannot deduce comprehension values, it
still is a limitation in practice. We could avoid exponential performance for
the presented case again, if we had control over the order of instantiations,
but this time not in between quantifiers, but for the order of instantiations
for available constants which would trigger the quantifiers of the general
and the singleton axioms. We could create a relation between heaps, which
indicates for two heaps, which heap was part of the state before the other
heap (i.e. which heap is more recent). We then prioritize the quantifiers for
more recent heaps, giving us the correct permutation straight ahead, result-
ing in a linear number of instantiations. This however does not mean that
the resulting implementation would have a linear runtime.

Limitations due to the design Our comprehension definition already gives
rise to a number of limitations, especially from the requirements on the com-
ponents of a comprehension. The first limitation was already discussed in
the introduction. Our design only allows comprehensions over heap loca-
tions. This means that everything we want to comprehend over, requires us
to specify it on the heap. For example in the implementation we cannot com-
prehend directly over the values of a built-in Viper set. Instead we would
need to let the set contain references and specify the content of the set on
the heap via such a set of references. We could solve this issue by allowing
arbitrary expressions for the body of a comprehension. This will however
be no trivial generalization, since the axiomatization currently depends on
the injectivity of the receiver expression.

The next limitation we have is that the receiver expression of a comprehen-
sion cannot be heap-dependent. This prevents some interesting applications
of comprehensions. For example we could specify a multiset as a set of ref-
erences where the content of the multiset would be the values of the heap
locations of those references. A multiset of references would then be spec-
ified with reference-typed fields. Figure 51 illustrates such a multiset of
references. The first row of arrows indicates the references specifying the
multiset, while the second row of arrows indicates the references (the con-
tent) of the multiset. There might be scenarios, where we would want to
comprehend over the values of the final heap locations (the column of pure
dots in the figure). However since we don’t allow the receiver expression to
be heap-dependent, there is no trivial way to do this.

Another limitation we might get is based on the design of the implemen-
tation. As we will see in the next chapter, we do not allow so called outer
variables, variables other than the comprehension arguments to be used in

47

5. Analysis

Figure 51: Illustration of a multiset of references

the body. However this supposed limitation can be circumvented by adding
an additional comprehension argument a of the same type as the outer vari-
able o we wish to mention in the body and setting a = o in the filter. We can
then use a in the body where we would use o.

The next limitation has to do with the binary operator. We make certain
requirements on the binary operator, which however all intuitively seem
to be basic requirements for any comprehension definition. Still we could
make those requirements a bit less tight, such that they are only required for
the values which are evaluated while evaluating the comprehension value.
For example if we knew that the value of every integer heap location is at
least 0, we could require from the binary operator to be commutative only
for positive integers. This relaxation would not interfere with any axioms
we have provided and could easily be implemented. However for the user
this might cause confusing failures, when the comprehension value fails to
be deduced because some heap location didn’t have a correct value.

One of the more problematic limitations was discussed in section 4.2. We
discovered that we only support derivations of comprehension values via
direct assertions of heap locations, or via assertions of comprehension values
for different filters, but for the same comprehension. We argued that this is
because of the requirement of automatic induction proofs. This is definitely
no limitation that can be trivially solved.

48

Chapter 6

Implementation

The previous chapters provided a technique, encoding comprehensions for
SMT. In this chapter, we will look at how we could build a feature for com-
prehension support for the Viper infrastructure and discuss the implemen-
tation of such a feature for the Viper verifier, based on verification condition
generation for Boogie [5]. We will however not explain in detail how the fea-
ture is implemented, only specific challenges of the implementation process
will be discussed. An interested reader could look into the sources of the
implementation, which can be found at [3] [2].

6.1 Syntax

For simplicity, we will only provide a syntax for specifying the value of a
comprehension, with which we will provide all necessary information about
a comprehension. From the comprehension calls, the implementation will
then detect which comprehensions occur and will generate an axiomatiza-
tion for every comprehension. A comprehension call will be translated into
the simple function c(h, f). The syntax for specifying the value of a compre-
hension looks as follows:

comp[b, u] a: A :: { e(a).v | f(a)}

b denotes the binary operator, which is passed as a function name of an
interpreted function. u is the unit, an expression with a static value. e(a).v
is the body of the comprehension.. f(a) is the filter, a boolean-typed ex-
pression. a: A declare the arguments of the comprehension, the ’quantified’
variables.

The part of the syntax after :: should remind of the set-builder notation for
sets. The set described in this part is the set of the values the comprehension
comprehends over.

49

6. Implementation

Translation of filters We do not impose any restrictions on filters, which
means that they can contain arbitrary variables and even be heap-dependent.
To make this possible, we will create a new function f ilt : V → Filter for
every filter, which uses outer variables v : V, which are all the variables used,
other than the comprehension arguments. The filtering expression will be
assumed for f ilt with the following axiom.

∀v : V. { f ilt(v)}∀a : A. { f iltering(f ilt(v), a)} f iltering(f ilt(v), a)↔ f (a)

If the filter has no outer variables, then it will simply be translated into a
constant f ilt : Filter, which we axiomatize with the inner quantifier of the
above axiom:

∀a : A. { f iltering(f ilt, a)} f iltering(f ilt, a)↔ f (a)

6.2 Well-Definedness checks

The definition of a comprehension imposes some requirements on the prop-
erties of the components. Some requirements can be checked statically,
while others must be checked in the program. The requirements that can
be checked statically are

• Types of the components

• Arity of the operator

• Static value of the unit (i.e. the unit does not contain variables)

• Comprehension arguments as the only variables in the body

• Heap-independence of the body

Note that the requirement that the body does not contain outer variables
was not required by the comprehension definition, but makes sense, because
we don’t want to let the receiver expression depend on the state, for the
same argument as why we require heap-independence. This requirement is
however not a real limitation, as discussed in the previous chapter in section
.

For the requirements that need to be checked via verification conditions, we
have a few, which can be checked in a separate procedure via assertions.
The first one is the commutativity check of the binary operator, which can
be checked by asserting the following quantifier.

∀x1 : T, x2 : T. x1 ∗ x2 = x2 ∗ x1

The next check is the associativity check, which can be checked by asserting
the following quantifier.

∀x : T, y : T, z : T ((x ∗ y) ∗ z) = (x ∗ (y ∗ z))

50

6.3. Assumptions

Next we have the unit check, which can be checked by asserting the follow-
ing quantifier.

∀x : T. x ∗ 1 = x

The next check is the receiver injectivity check. At this point we however
weaken the restriction, making the feature more powerful. We check for
every comprehension call, whether the receiver is injective on the provided
filter. We could easily verify that this weakening does not conflict with any-
thing we have said so far, since only require the injectivity of the receiver to
be able to create a inverse function, which will only be used on references,
covered by the filter of a comprehension call. This weakening however also
means that we will make the injectivity check locally, for every comprehen-
sion call. This can again be done by asserting a quantifier that looks like
this.

∀a1 : A, a2 : A. f iltering(f , a1) ∧ f iltering(f , a2) ∧ a1 6= a2 → e(a1) 6= e(a2)

6.3 Assumptions

Next to the assertions for the definedness checks, there will be a few as-
sumptions. First we have the axiomatization of the inverse function. Since
this axiomatization does now depend on a filter, it will be assumed along-
side every comprehension call. There are two assumptions axiomatizing the
inverse function of a receiver.

∀a : A. {e(a)} e−1(e(a)) = a

∀r : Ref. {e−1(r)} e(e−1(r)) = r

The next assumption that will cause technical difficulties, is the userMentioned
assumption. It should be assumed for all reference typed expressions from
the user. However there is no obvious way to support reference-typed ex-
pressions inside quantifiers, since they might depend on the quantified vari-
ables. For this reason, we will only assume the userMentioned function for
’top-level’ reference-typed expressions. This will, of course, impose some
limitations on the feature, which we have, however, already explored in the
previous section.

51

Chapter 7

Evaluation

For the evaluation of our implementation, we created some unit tests, which
can be found at [3]. A selection of those tests can be found in the appendix A.
The code A.1 shows our standard encoding of an array in Viper. Comprehen-
sions over arrays are most commonly used, since they are one of the most
common datastructures and fit well into this scheme for comprehensions.

Our first test A.2 is a very basic test, incorporating only a single heap update
to a single location. We use here a sum comprehension over an array as
the comprehension of choice. However the value of the comprehension is
assumed in the precondition of the method via two complementing filters
over the array. In the end the comprehension value over the full array is
asserted. This example verifies, and if the comprehension is asserted to a
different number in the end, the example fails to verify. With this we already
showed that the singleton and the general axiom behave as assumed for at
least some cases.

Next up we have a simple test A.3, where we update the heap via a method
call. We again use a sum comprehension over an array. The change of the
comprehension value is specified in the post-condition of the method. The
comprehension at the start of the test again gets assumed via the precondi-
tion with two filters. The method however has a different footprint than the
two filters in the precondition, therefore we don’t have a simple comprehen-
sion value update, but the value of the comprehension over the full array
must be deduced before the method call, in order to be able to register the
change across the method call. This example also verifies, and fails to verify
for a wrong assertion. We have also tested method updates together with
singleton updates, which works as expected.

The last example A.4 in the appendix is a test for the limitation we have
for the union axiom, discussed in subsection 4.4.3 and in section 6.2. As
expected, the example won’t verify. However when testing the union axiom,

53

7. Evaluation

we got a new limitation, based on our axiomatization. The SMT-solver will
fail to prove the right-hand-side of the implication of axiom 4.20, especially
the two requirements, indicating that the intersection between f and f1 or
f2 must be empty, fail to be verified. The reason for this seems to be a
problem with quantifier instantiation. With some transformations, there will
eventually be a forall quantifier, which gives us, when instantiated, the right-
hand-side of the implication. However this requires a ’witness’ to trigger
the quantifier, in our case we need a comprehension argument, for which
we know that it is covered by the intersection between f and f1 and and
an argument, which is covered by the intersection between f and f1. Since
there will often be no such witness, we have a more major limitation in our
encoding.

54

Chapter 8

Conclusion and Future Work

Conclusion In this thesis we have provided a new definition of a compre-
hension. The provided definition is in many ways more general than previ-
ous definition approaches from other projects. We have then put together a
solid axiomatization for SMT to automatically reason about comprehension
values. Alongside with the SMT-encoding, we provided an in-depth anal-
ysis about the axiomatization, where we discussed the completeness, the
absence of matching loops, the performance, and the limitations of the en-
coding. Together with this axiomatization we induced a way of specifying a
comprehension value in SMT. We then implemented this axiomatization as
a new feature for the Viper language with a syntax to specify the value of
a comprehension in Viper. The axiomatization of the comprehension value
is then implemented to be generated by the verification condition generat-
ing verifier of Viper and tested. The implementation is tested on different
unit-test, which served as a proof of concept that the feature can be used
in practice. While the resulting encoding is very powerful, it must be used
with care, because of its supposed performance issues.

Future work With this thesis we have provided a technique for encoding
a very general form of a comprehension. There are however still a lot of
possible extensions, which could be explored further. The limitations sec-
tion 6.2 in chapter 5 already provided a list of possible extensions with basic
approaches how to realize them, to eliminate the limitations of the current
technique. In this section we will provide another powerful extension to our
system, which would allow the specification of more advanced comprehen-
sions, such as sortedness of an array.

One major problem of the current system is that the values of the heap
locations are fed directly into the binary operator to calculate the value of a
comprehension. In some cases it might be useful to preprocess those values
before giving them to the binary operator. This could be done with an

55

8. Conclusion and Future Work

additional function transform, which would be part of the comprehension
definition. We give this function the following signature.

transform : V → T

where V would be a new type, also part of the comprehension definition.
Fields would no longer have type T but now they would have type V, while
T is still the comprehension type. We call such a function transformer of a
comprehension.

If we would like to specify the sort comprehension over an array, we could
encode the array, such that every entry holds a tuple (c, n) with the value of
the current entry and the value of the next entry. A sort comprehension over
integer arrays would then use a transformer of type (Int, Int)→ Bool, which
indicates whether the tuple of an entry is sorted (e.g. the first entry is smaller
or equal to the second entry). The binary operator of the comprehension
would then be ∧ and the unit would be true.

The next step would however be to create a solid test suite for the proposed
feature, since only rough unit tests could be done until now.

In terms of implementation for the Viper project, the next step would be to
encode the feature for the verifier based on symbolic execution.

56

Appendix A

Appendix

Source Code A.1: Standard encoding of an array

1 domain Array {

2 function loc(a: Array, i: Int): Ref

3 function len(a: Array): Int

4 function array(r: Ref): Array

5 function index(r: Ref): Int

6

7 axiom allDiff {

8 forall a: Array, i: Int :: {loc(a, i)}

9 array(loc(a, i)) == a && index(loc(a, i)) == i

10 }

11

12 axiom lenNonNeg {

13 forall a: Array :: {len(a)}

14 len(a) >= 0

15 }

16 }

17

18 define in_range(i, a)

19 i >= 0 && i < len(a)

57

A. Appendix

Source Code A.2: Test for singleton update

1 field val: Int

2

3 function add(l: Int, r: Int): Int

4 ensures result == l + r

5

6 // test singleton heap update

7 method test1(a1: Array)

8 requires forall i: Int :: {loc(a1, i).val}

9 in_range(i, a1) ==> acc(loc(a1,i).val)

10 requires (comp[add, 0] i: Int, a: Array ::

11 {loc(a, i).val | in_range(i, a) && i%2 == 0 && a == a1}) == 5

12 requires (comp[add, 0] i: Int, a: Array ::

13 {loc(a,i).val | in_range(i, a) && i%2 == 1 && a == a1}) == 2

14 {

15 var i1: Int

16 assume in_range(i1, a1) && i1 % 2 == 0

17 var r: Ref

18 assume loc(a1, i1) == r

19 r.val := r.val + 5

20 assert (comp[add, 0] i: Int, a: Array ::

21 {loc(a,i).val | in_range(i, a) && a == a1}) == 12

22 }

58

Source Code A.3: Test for method updates

1 field val: Int

2

3 function add(l: Int, r: Int): Int

4 ensures result == l + r

5

6 method m(a1: Array)

7 requires forall i: Int :: {loc(a1, i).val}

8 i >= 0 && i <= len(a1) \ 2 ==> acc(loc(a1,i).val)

9 ensures forall i: Int :: {loc(a1, i).val}

10 i >= 0 && i <= len(a1) \ 2 ==> acc(loc(a1, i).val)

11 ensures (comp[add, 0] i: Int, a: Array ::

12 {loc(a,i).val | i >= 0 && i <= len(a) \ 2 && a == a1}) ==

13 old(comp[add, 0] i: Int, a: Array ::

14 {loc(a,i).val | i >= 0 && i <= len(a) \ 2 && a == a1}) - 5

15

16 // test general heap update

17 method test(a1: Array)

18 // access to full array

19 requires forall i: Int :: {loc(a1, i).val}

20 in_range(i, a1) ==> acc(loc(a1,i).val)

21 requires len(a1) > 0

22 requires (comp[add, 0] i: Int, a: Array ::

23 {loc(a, i).val | in_range(i, a) && i%2 == 0 && a == a1}) == 5

24 requires (comp[add, 0] i: Int, a: Array ::

25 {loc(a,i).val | in_range(i, a) && i%2 == 1 && a == a1}) == 2

26 {

27 m(a1)

28 assert (comp[add, 0] i: Int, a: Array ::

29 {loc(a,i).val | in_range(i, a) && a == a1}) == 2

30 }

59

A. Appendix

Source Code A.4: Test for exploring the limitation of the union axiom

1 field val: Int

2

3 function add(l: Int, r: Int): Int

4 ensures result == l+r

5

6 method test1(a: Array)

7 requires forall i: Int :: {loc(a, i).val}

8 i >= 0 && i < 7 ==> acc(loc(a, i).val)

9 requires len(a) == 7

10 requires comp[add, 0] i: Int, a1: Array ::

11 {loc(a1, i).val | a1 == a &&

12 (i == 0 || i == 6)} == 5 // f_2'
13 requires comp[add, 0] i: Int, a1: Array ::

14 {loc(a1, i).val | a1 == a &&

15 (i == 0 || i == 3 || i == 5 || i == 6)} == 5 // \bar{f_2}

16 requires comp[add, 0] i: Int, a1: Array ::

17 {loc(a1, i).val | a1 == a &&

18 (i == 0 || i == 1 || i == 2 || i == 4) } == 5 // f_1

19 requires comp[add, 0] i: Int, a1: Array ::

20 {loc(a1, i).val | a1 == a &&

21 (i == 2 || i == 3 || i == 6) } == 5 // f''
22 requires comp[add, 0] i: Int, a1: Array ::

23 {loc(a1, i).val | a1 == a &&

24 i >= 2 && i < 7} == 5 // f'
25 {

26 //:: ExpectedOutput(assert.failed:assertion.false)

27 assert comp[add, 0] i: Int, a1: Array ::

28 {loc(a1, i).val | a1 == a &&

29 i >= 0 && i < 4} == 5 // f

30 }

60

Bibliography

[1] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 337–340, 2008.

[2] Tierry Hörmann. Carbon bitbucket. https://bitbucket.org/

tierriminator/carbon, 2018. Accessed: 2018-10-02.

[3] Tierry Hörmann. Silver bitbucket. https://bitbucket.org/

tierriminator/silver, 2018. Accessed: 2018-10-02.

[4] K. R. M. Leino and P. Müller. Using the spec# language, methodology,
and tools to write bug-free programs. In P. Müller, editor, Advanced Lec-
tures on Software Engineering—LASER Summer School 2007/2008, volume
6029 of Lecture Notes in Computer Science, pages 91–139. Springer-Verlag,
2010.

[5] Rustan Leino. This is boogie 2. Microsoft Research, June 2008.

[6] Rustan Leino and Rosemary Monahan. Reasoning about comprehen-
sions with first-order smt solvers. March 2009.

[7] Ueli Maurer. Diskrete mathematik. ETH Zürich Departement Infor-
matik, 2015.

[8] MichałMoskal. Programming with triggers. In Proceedings of the 7th
International Workshop on Satisfiability Modulo Theories, SMT ’09, pages
20–29, New York, NY, USA, 2009. ACM.

[9] P. Müller, M. Schwerhoff, and A. J. Summers. Automatic verification of
iterated separating conjunctions using symbolic execution. In S. Chaud-
huri and A. Farzan, editors, Computer Aided Verification (CAV), volume
9779 of LNCS, pages 405–425. Springer-Verlag, 2016.

61

https://bitbucket.org/tierriminator/carbon
https://bitbucket.org/tierriminator/carbon
https://bitbucket.org/tierriminator/silver
https://bitbucket.org/tierriminator/silver

Bibliography

[10] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[11] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science, LICS ’02, pages 55–74, Washington, DC, USA, 2002.
IEEE Computer Society.

62

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Motivation
	Comprehension
	Background
	Viper
	Permission-based verification
	SMT-solving

	Notation
	Related Work

	Formal Specification
	Components of a comprehension
	Properties of the components
	Definition of a comprehension
	Definition of the value of a comprehension

	The Singleton Case
	Overview
	Simplification of comprehension value definition
	Automatic deduction
	Incompleteness and matching loops
	Summary

	The General Case
	Overview
	Fundamental limitations
	Automatic induction
	Losing permission

	Automatic deduction
	Incompleteness
	Multiple heaps
	Equal filters
	Combining filters

	Matching loops
	General Axiom

	Summary

	Analysis
	Matching Loop Freedom
	Performance
	Limitations

	Implementation
	Syntax
	Well-Definedness checks
	Assumptions

	Evaluation
	Conclusion and Future Work
	Appendix
	Bibliography

