
Optimization of a Viper-based verifier
Bachelor Thesis Project Description

Till Arnold
Supervised by Prof. Dr. Peter Müller, Vytautas Astrauskas

Department of Computer Science
ETH Zürich

Zürich, Switzerland

I. Introduction

Rust is a system programming language that statically
guarantees memory safety through its type system. This
type system eliminates otherwise common classes of bugs
and security vulnerabilities such as dangling pointers,
data races and buffer overruns. However Rust’s type
system cannot ensure the general functional correctness
of programs. Such correctness can be checked by static
verifiers. Traditional static verifiers for system program-
ming languages require an expert to provide lengthy and
complicated program specifications to allow for the formal
verification of programs. In contrast, Prusti [1] — a verifier
for Rust — aims to require much simpler specifications
that can be provided by the programmers. To accomplish
this Prusti leverages Rust’s type system for translating
the Rust code into an intermediate verification language
called Viper [2]. The Viper suite of tools is then used
to verify the functional correctness of the original Rust
program. An example of a Rust program annotated with
Prusti attributes can be seen in Listing 1.

As Prusti is targeted at Rust programmers, with the
goal of allowing formal verification of Rust programs while
being as unobtrusive as possible, the quality of the Prusti
tool is of utmost importance. In particular the perfor-
mance of Prusti is crucial because slow verification times
discourage the use of the tool.

One of the main contributing factors to the verification
time in Prusti is the quality of the Viper code generated
by Prusti. Verification times of under 10 seconds would be
desirable. It is to be assumed that semantically equivalent
but more efficient code could be generated. Table I shows
some simple measurements of the average verification time
of the generated Viper code. These measurements were
obtained as described in section V Testing methodology.

This thesis aims to investigate the aforementioned pro-
cess of translating Rust to Viper and to identify, analyze
and mitigate sources of slowdown in the generated Viper
code.

As a starting point, we plan to look into two categories
of potential performance improvements:

1) Removal of unnecessary elements of a generated
Viper program:

• Removing unused predicates and bodies of pred-
icates that are never unfolded.

• Removing dead variables and trivial statements
such as inhale true or assert true.

• Merging and reordering control-flow graph
nodes. While the positive performance impact of
this is probably negligible it makes the generated
Viper code more human-readable and poten-
tially facilitates the discovery of more optimiza-
tion potential.

2) Purification: Reducing the number of heap allocated
variables. Since Rust allows calling functions with
references to stack variables, Prusti models nearly all
variables as allocated on the Viper heap. If no refer-
ence to a certain variable is ever created that variable
could be modeled without a heap allocation. It is to
be assumed that Viper code that uses regular Viper
variables that are pure instead of heap-allocated ones
would have better performance.

TABLE I
Verification Runtime of Selected Rust Examples

Filename Avg. runtime in seconds

account.rs 1.581
Binary_search.rs 7.738
fibonacci.rs 2.772
knapsack.rs 97.600
Knuth_shuffle.rs 2.816
Selection_sort.rs 16.313

II. Core Goals
The goal of this thesis is to identify which patterns of

the generated Viper code cause slow verification times,
analyze why these specific patterns are problematic, and
improve the Prusti implementation so that these patterns
are avoided.

1) Create a test suite that demonstrates the per-
formance issues: To investigate the performance
characteristics of the generated Viper code a suffi-
ciently large body of test cases is needed. These test
cases form the basis of all further analysis.

1



1 struct Account { bal: u32 }
2

3 impl Account {
4 #[pure]
5 fn balance(&self) -> u32 { self.bal }
6

7 #[ensures(self.balance() ==
8 old(self.balance()) + amount)]
9 fn deposit(&mut self, amount: u32) {

10 self.bal = self.bal + amount;
11 }
12

13 #[requires(amount <= self.balance())]
14 #[ensures(self.balance() ==
15 old(self.balance()) - amount)]
16 fn withdraw(&mut self, amount: u32) {
17 self.bal = self.bal - amount;
18 }
19

20 #[requires(amount <= self.balance())]
21 #[ensures(self.balance() ==
22 old(self.balance()) - amount)]
23 fn transfer(&mut self, other: &mut Account,
24 amount: u32) {
25 self.withdraw(amount);
26 other.deposit(amount);
27 }
28 }
Listing 1: Simple example for the attributes Prusti
uses to annotate functions. This example is taken from
account.rs from the Prusti tests

2) Analyze the test cases in the test suite and
identify potential sources of poor perfor-
mance. Utilizing the insights gained from the
analysis, add test cases to the test suite to
strengthen the understanding of the under-
lying performance issues: Identify patterns in
the generated Viper code that could be causing the
slow verification. For each of the identified patterns,
including the ones in the two categories of potential
performance improvements, propose reasons as to
how this slows down the Viper verifier. Steps 1) and
2) might have to be iterated multiple times to assure
sufficient insights into the source of the underlying
performance issues.

3) From the previously identified sources of poor
performance, select the most important and
promising ones and implement mitigations for
those: This might be accomplished by improving the
generation of Viper code directly or by introducing
an optimization pass on the Prusti intermediate
representation (VIR). This implementation should
aim to mitigate the performance issues by applying
the knowledge gained in the previous steps.

4) Test the implementation: Run the test suite on
the improved implementation, compare these results
to the results of the original implementation and
analyze why and by how much the performance
increased.

III. Extension Goals
1) Setup CI for testing performance regres-

sion: To avoid future changes to the code base
(re)introducing performance problems without this
being a conscious decision, a step in the CI could
be introduced to keep track of the performance over
time.

2) Implement other performance optimizations:
Aside from the quality of the generated Viper code
there are other aspects of the Prusti code base where
performance can be improved. For example, one
could profile Prusti to identify where it spends the
most time while generating the Viper encoding and
then improve the corresponding implementation or
algorithms.

3) Analyze performance impact on entire crates:
This allows measuring the improvements of the im-
plemented optimizations on real world code bases.

4) Implement a Clippy like tool to point out per-
formance sensitive patterns: Certain patterns
of Rust code may identifiably cause performance
issues in Prusti, with the implemented optimizations
providing little or no performance improvement. For
these cases a tool could be written which points out
to the programmer problematic sections of code that
will significantly slow down Prusti verification.

5) Reason about soundness of optimizations:
Variably formal reasoning about the correctness of
the implemented optimizations could be incorpo-
rated into the final thesis.

6) Investigate advanced optimization techniques:
It might be possible to split a Viper program into
multiple smaller Viper programs that are faster to
verify than the original Viper program. It would
be particularly interesting to find a way to split a
Viper program into (nearly) disjunct parts such that
there is little to no overlap. These smaller Programs
would potentially also benefit more from the speedup
gained from other optimizations.

7) Reduce the number of fold/unfold statements
by inhaling the permissions in the expected
shape: Some fold/unfold statements could be elim-
inated by, for example, inhaling the body of the
predicate directly instead of inhaling a predicate and
then unfolding it.

IV. Schedule
• Goals 1) and 2) 3 weeks for test creation and analysis
• Goal 3) 8 weeks for implementation
• Goal 4) 2 weeks for evaluating results

2



• Extension Goals 3 weeks
• Writing report 5 weeks

V. Testing methodology
The average runtimes in Table I where calcu-

late on an Intel i7-4790K CPU @ 4.00GHz with
24GiB DDR3 @ 1600 MHz running Fedora 32 (Ker-
nel 5.8.14-200.fc32.x86_64). Running ViperServer at
commit 8fea4ab61f2793dfbfbdc8ba82cc53df38363271
on OpenJDK 64-Bit 1.8.0_265, viper_client at
commit 728c039bfa67f5d438c4d0d9232738864d89ba5a
and Prusti at commit a147c2fced8bf4b1b7e38fb5eb00e
1827cff667e. The reported runtimes are the average of 18
tests ran with viper_client against ViperServer where
each time the 3 first test where discarded for warm up.
The Viper code was generated from the corresponding
Rust files using the above mentioned commit of Prusti.
Following is a list of links to the Rust files:

• https://github.com/viperproject/prusti-dev/
blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/
prusti-tests/tests/verify/pass/demos/account.rs

• https://github.com/viperproject/prusti-dev/
blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/
prusti-tests/tests/verify_overflow/pass/rosetta/
Binary_search.rs

• https://github.com/viperproject/prusti-dev/
blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/
prusti-tests/tests/verify/pass/quick/fibonacci.rs

• https://github.com/viperproject/prusti-dev/
blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/
prusti-tests/tests/verify/pass/quick/knapsack.rs

• https://github.com/viperproject/prusti-dev/
blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/
prusti-tests/tests/verify/pass/rosetta/Knuth_
shuffle.rs

• https://github.com/viperproject/prusti-dev/
blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/
prusti-tests/tests/verify_overflow/pass/rosetta/
Selection_sort.rs

References
[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers, “Lever-

aging Rust types for modular specification and verification,” in
Object-Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), vol. 3, no. OOPSLA. ACM, 2019, pp. 147:1–
147:30.

[2] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verifi-
cation infrastructure for permission-based reasoning,” in Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI),
ser. LNCS, B. Jobstmann and K. R. M. Leino, Eds., vol. 9583.
Springer-Verlag, 2016, pp. 41–62.

3

https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/demos/account.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/demos/account.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/demos/account.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify_overflow/pass/rosetta/Binary_search.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify_overflow/pass/rosetta/Binary_search.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify_overflow/pass/rosetta/Binary_search.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify_overflow/pass/rosetta/Binary_search.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/quick/fibonacci.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/quick/fibonacci.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/quick/fibonacci.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/quick/knapsack.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/quick/knapsack.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/quick/knapsack.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/rosetta/Knuth_shuffle.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/rosetta/Knuth_shuffle.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/rosetta/Knuth_shuffle.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify/pass/rosetta/Knuth_shuffle.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify_overflow/pass/rosetta/Selection_sort.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify_overflow/pass/rosetta/Selection_sort.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify_overflow/pass/rosetta/Selection_sort.rs
https://github.com/viperproject/prusti-dev/blob/a147c2fced8bf4b1b7e38fb5eb00e1827cff667e/prusti-tests/tests/verify_overflow/pass/rosetta/Selection_sort.rs

	Introduction
	Core Goals
	Extension Goals
	Schedule
	Testing methodology
	References

