
Optimization of a Viper-Based
Verifier

Bachelor Thesis

Till Arnold

Monday 22nd March, 2021

Advisors: Prof. Dr. Peter Müller, Vytautas Astrauskas

Department of Computer Science, ETH Zürich

Abstract

Prusti is a Viper-based static verifier which allows for the verification
of functional correctness for Rust programs. The adoption of Prusti as
a means to enable a broader user base to write correct system software
is currently being held back in part by its slow verification times. A
key contributing factor to this phenomenon is the time spent verifying
the Viper code generated by Prusti. In this thesis we propose and im-
plement potential performance optimizations aimed at improving the
generated Viper code, thus decreasing the verification time. Among
those proposed the most promising optimization is the purification op-
timization which reduces the number of heap-dependent variables and
leads to runtime reductions of up to two thirds in selected cases.

i

Contents

Contents iii

1 Introduction 1

2 Background 3
2.1 Rust . 3
2.2 Prusti . 5
2.3 Viper . 5

3 Optimizations 9
3.1 Remove predicates which are never used 9
3.2 Remove the bodies of predicates which are never folded or

unfolded . 9
3.3 Purifying local variables . 10

3.3.1 Motivation . 10
3.3.2 Purifying local variables in a simple function 10
3.3.3 Snapshots . 11
3.3.4 Purifying local variables with snapshots 12

4 Purification of functions 15
4.1 Motivation . 15
4.2 Background . 15

4.2.1 Prusti translation process 15
4.2.2 Viper . 16

4.3 Encoding the types . 18
4.3.1 Encoding primitive types 18
4.3.2 Encoding structs . 19
4.3.3 Encoding enums . 21

4.4 Encoding mirror functions . 24
4.4.1 Translation . 24

iii

Contents

4.4.2 Correctness . 26
4.4.3 Recursive types . 28

5 Evaluation 31
5.1 Implementation . 31
5.2 Benchmarks . 32

5.2.1 Methodology . 32
5.2.2 Results . 32

6 Conclusion 37

A Appendix 39
A.1 Benchmark data . 39

A.1.1 Overview . 39
A.1.2 Purification without predicate optimizations 40
A.1.3 Purification with predicate optimizations 40
A.1.4 No Purification with predicate optimizations 41
A.1.5 No Purification without predicate optimizations 41

Bibliography 43

iv

Chapter 1

Introduction

Writing correct system software is an inherently difficult task. Traditionally
it is left up entirely to the programmer to ensure the correctness of their pro-
grams. The Rust programming language is a modern system programming
language which safeguards the programmer from many common classes of
vulnerabilities and bugs by statically ensuring memory safety using its type
system. While Rust’s type system prevents dangling pointers and buffer
overruns, it does not ensure the functional correctness of programs. How-
ever checking the functional correctness of programs is possible using static
verifiers. The use of a static verifier is particularly difficult in the case of
system programming languages, as such languages give the programmer
low level control. As a result, formal verification tools for system program-
ming languages often require in-depth expert knowledge of specification
languages and formal systems and thus such tools are not widely used.

Prusti [1], a static verifier for Rust, uses simpler specifications, which are
at the abstraction level of the programming language and thus suitable to
be used by programmers. The programmer specifies assertions and Prusti
uses the type information from the Rust compiler together with those as-
sertions to construct a formal proof of the correctness of the program. This
fully automatic construction and verification of proofs is directly enabled
by Rust’s memory safety guarantees: In a programming language without
such guarantees inferring all the necessary information might be infeasible.

A defining characteristic of Prusti is, that it is targeted at programmers and
aims to make formal verification accessible to a wide audience and as such
the quality and ease of use of Prusti is highly important. Effort has gone
towards improving the IDE experience and reducing the runtime with the
addition of a server mode [3]. Despite these improvements, the long veri-
fication times, even for simple programs, might discourage the use of and
hinder the adoption of Prusti.

1

1. Introduction

Prusti uses the Viper [5] intermediate verification language and suite of tools
in its verification process: Prusti translates Rust code with the user-provided
assertions into Viper and then uses the Viper infrastructure to verify that
generated code. The time spent verifying generated Viper code is a main
contributing factor to the total verification time. This thesis aims to improve
the performance of Prusti and thus reduce the verification time by improv-
ing the generated Viper code.

This thesis describes and implements optimizations, with a special focus on
the purification optimization, and implements the necessary infrastructure,
namely snapshots and mirror functions, to enable this.

We first introduce some necessary technical background on Rust, Prusti and
Viper in Chapter 2. Chapter 3 “Optimizations” describes the proposed op-
timizations, while Chapter 4 “Purification of functions” details the changes
and additions to Prusti which are necessary to implement the purification
optimization. We choose to first describe the optimizations, in particular
the purification optimization, as a motivation for the changes proposed in
Chapter 4. Lastly, Chapter 5 describes the implementation in Prusti and how
the optimizations impact performance.

2

Chapter 2

Background

This chapter introduces the technical background and some basic concepts
of Rust, Prusti and Viper which will be used throughout the thesis.

2.1 Rust
Rust is a system programming language which statically guarantees mem-
ory safety by using its type system, specifically the concepts of ownership
and borrowing. This will be explained with an example below.

Listing 1 shows a simple Rust program. It defines a struct List and a func-
tion len. The List contains two fields, the field value, which is a 32-bit
unsigned integer, and the field next, which is is an optional (as indicated by
Option) heap-allocated (as indicated by Box) List.

1 struct List {
2 value: u32,
3 next: Option<Box<List>>,
4 }
5 fn len(head: &List) -> usize {
6 match head.next {
7 None => 1,
8 Some(box ref tail) => 1 + len(tail)
9 }

10 }
11 enum Option<T> {
12 None,
13 Some(T),
14 }

Listing 1: Simple Rust program from the Prusti test suite

3

2. Background

1 fn prepend_list(x: u32, tail: List) -> List {
2 List {
3 value: x,
4 next: Some(Box::new(tail)),
5 }
6 }

Listing 2: Example demonstrating ownership

The enumerated type1 Option<T> is defined in the Rust standard library and
is included here solely for explanatory purposes.

The len function is a simple recursive function which computes the length
of a List. The argument head: &List declares head to be an immutable
reference to a List. In Rust terminology this is known as an immutable
borrow or shared borrow which allows the body of len to access, but not
modify, the data behind the reference for the duration of the function call.
A mutable reference would be written as head: &mut List. Such a mutable
borrow allows modification. For both kinds of borrows, once the function
returns, the borrow ends and the reference passed to the function may no
longer be used to access the data behind it. As a consequence, a borrow is
inherently temporary and constrained by its lifetime. Lifetimes are used by
the Rust compiler to guarantee that references are used only when they are
valid, however lifetimes are not relevant for understanding the rest of the
thesis; therefore, we will not further explain them here.2

At any point in time, Rust enforces that there can only be either multiple
immutable or one mutable borrow to a specific object. This is enforced at
compile time, which is of critical importance to the Rust compiler’s ability
to ensure memory safety.

Listing 2 shows the function prepend_list which take an argument tail
of type List and prepends an element to it. Because the type of tail is
List (and not &mut List or &List), any list passed to prepend_list will
be moved instead of borrowed. This means that the ownership of tail is
transferred to the callee prepend_list and can no longer be accessed in
the caller. For example the code prepend_list(42,a); len(&a); causes an
error at compile time because the ownership of the List a was moved from
the caller to prepend_list in the call to prepend_list and after the move,
a is borrowed by the call to len, which is not allowed.

Note that ownership is not moved for so called Copy types such as u32,
usize or bool, which are instead copied.

1https://doc.rust-lang.org/reference/types/enum.html
2For an introduction to lifetimes see https://doc.rust-lang.org/book/

ch10-03-lifetime-syntax.html

4

https://doc.rust-lang.org/reference/types/enum.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html
https://doc.rust-lang.org/book/ch10-03-lifetime-syntax.html

2.2. Prusti

2.2 Prusti

While Rust’s type system enforces memory safety using the above explained
mechanisms of ownership and borrowing, the general functional correctness
of programs cannot be ensured by the Rust compiler.

Listing 3 shows an incorrectly implemented len function. It is incorrect
because the base case for None returns 0 instead of 1. Such an error can-
not be checked for by the Rust compiler automatically. It can however be
checked by Prusti, a verifier for Rust, using the ensures(result > 0) at-
tribute which defines a postcondition for Prusti to verify, where result is a
special variable which stands for the return value of the function.

1 #[ensures(result > 0)]
2 fn len(head: &List) -> usize {
3 match head.next {
4 None => 0,
5 Some(box ref tail) => 1 + len(tail),
6 }
7 }

Listing 3: Incorrectly implemented len function with a Prusti ensures at-
tribute

2.3 Viper

To verify the functional correctness of Rust programs, Prusti leverages the
Viper infrastructure and the eponymous Viper intermediate verification lan-
guage. Prusti translates the Rust program with its type information and the
user-provided preconditions and postconditions to Viper code and subse-
quently verifies it with the Viper infrastructure.

Translating a Rust program into Viper involves translating Rust types. Viper’s
built-in types include booleans (Bool), unbounded integers (Int) and refer-
ences to objects (Ref). In Viper Bool and Int are pure values and as such
not fit to model mutable borrows. Thus we cannot model a Rust usize as a
Viper Int because we cannot use the later to model a mutable borrow. We in-
stead model a Rust usize as a Viper Ref with a field val_int which allows
us to model ownership using an accessibility predicate such as for example
acc(self.val_int, write), which indicates the permission to a read from
and write to a field val_int on an object called self. For abstracting over
permissions we use Viper predicates: A predicate is defined in terms of a
name, a list of parameters and a body which is an assertion. An example
for this using usize is:

5

2. Background

predicate usize(self: Ref) {
acc(self.val_int, write)

}

Such a Viper predicate is generated for each Rust type by Prusti. In a similar
vein acc(u32(self.value), write) indicates the permission to access the
u32 value self.value.

As a further example List and Box<List> are encoded as seen in Listing 4.

1 predicate List(self: Ref) {
2 acc(self.f$value, write) &&
3 acc(u32(self.f$value), write) &&
4 acc(self.f$next, write) &&
5 acc(OptionBoxList(self.f$next), write)
6 }
7

8 predicate Box$List(self: Ref) {
9 acc(self.val_ref, write) &&

10 acc(List(self.val_ref), write)
11 }

Listing 4: Encoding of List and Box<List> as Viper predicates

Enum types are encoded with a discriminant field indicating which vari-
ant the object represents. Listing 5 demonstrates this on the example of
Option<Box<List>>. Lines 2–4 encode the possible discriminant values
and lines 5–7 encode the fact, that if self is the Some variant then the en-
closed value can be accessed.

Viper supports a variety of statements including assignments, conditional
statements and assertions. In addition to these regular statements, Viper has
special statements for manipulating permissions: fold and unfold, inhale
and exhale.

At any point in a Viper program there are certain predicates that are cur-
rently being held by the program state. A Viper program is only allowed to
access memory for which it holds the relevant permissions. However Viper
predicates are not automatically unfolded, thus a Viper program is not al-
lowed access by permissions which are stored inside a predicate. That is
to say, a predicate P(x) and the body of P(x) are not equivalent. They can
however explicitly be transformed into each other using fold and unfold
statements. Unfolding a predicate replaces it with the assertion that is the
body of the predicate. Similarly folding a predicate does the opposite, re-
placing a number of assertions, which make up the body of said predicate,
with the predicate.

6

2.3. Viper

1 predicate OptionBoxList(self: Ref) {
2 acc(self.discriminant, write) &&
3 0 <= self.discriminant &&
4 self.discriminant <= 1 &&
5 acc(self.enum_Some, write) &&
6 (self.discriminant == 1 ==>
7 acc(OptionBoxList$Some(self.enum_Some), write))
8 }
9

10 predicate OptionBoxList$Some(self: Ref) {
11 acc(self.f$0, write) &&
12 acc(Box$List(self.f$0), write)
13 }

Listing 5: Encoding of enum types as Viper predicates

Informally, the statement inhale acc(self.val_int, write) adds the per-
mission to a read from and write to a field val_int on an object self. Cor-
respondingly the statement exhale acc(self.val_int, write) asserts that
the given permission is currently being held and removes the permission.
The inhale and exhale statement can not only be used for permissions but
also for values: The statement inhale x > 9 assumes that the variable x
has a value greater than 9 and the statement exhale x > 9 asserts that the
variable x has a value greater than 9.

Once all Rust types have been encoded as Viper predicates, the bodies of
Rust functions can be encoded as Viper methods. A Viper method consists
of a name, an output parameter and a body of statements. Listing 6 shows
exemplary parts of the generated Viper code for the len function. Lines 2
and 3 encode the head argument of the function. The inhale statement on
line 3 can be read as an assumption that the head variable is a List. Line
5 is the None match arm check. Lines 6–8 represent the body of the None
match arm: Lines 6 and 7 show that the return value is a reference to an int.
The builtin$havoc_ref function on line 6 returns a Ref with no known
properties, which can be seen as initializing the variable ret with an un-
known value.3 On line 8 we see the erroneous value 0 which is returned.
If line 8 were changed to be ret.val_int := 1 the verification would suc-
ceed. Line 12 is the direct translation of the user-provided post condition
(#[ensures(result > 0)]). This assertion will fail.

3In fact the entire implementation of builtin$havoc_ref is method
builtin$havoc_ref() returns (ret: Ref). That is a method with no body.

7

2. Background

1 method len() returns (ret: Ref) {
2 var head: Ref
3 inhale acc(head.val_ref, write) && acc(List(head.val_ref),

read$())↪→

4 unfold acc(List(head.val_ref), read$())
5 if (OptionBoxList$discriminant(head.val_ref.f$next) == 0)

{↪→

6 ret := builtin$havoc_ref()
7 inhale acc(ret.val_int, write)
8 ret.val_int := 0
9

10 fold acc(List(head.val_ref), read$())
11 fold acc(usize(ret), write)
12 assert (unfolding acc(usize(ret), write) in ret.val_int)

> 0↪→

13 exhale acc(List(head.val_ref), read$())
14 exhale acc(usize(ret), write)
15 }
16 }

Listing 6: Part of the encoding of the len function

8

Chapter 3

Optimizations

The overall goal of this project is to improve the performance of Prusti.
Three of the identified potential optimizations are discussed in this chapter.
The optimization work focuses on producing better Viper code and does not
take into account Viper configuration, performance issues within Viper itself
or optimizations of the Prusti code itself.

3.1 Remove predicates which are never used

Predicates which are never used in any Viper methods, predicates or func-
tions, can be trivially removed. For this we walk all expressions in the
generated Viper methods and functions and identify all predicates which
are used directly. We also compute a map of which predicates are used in
which predicate. We then identify all predicates that are either directly or
indirectly utilized and remove all the unnecessary predicates.

3.2 Remove the bodies of predicates which are never
folded or unfolded

As stated above Viper does not automatically unfold predicates. If there is a
predicate that is never folded or unfolded, the body of that predicate is not
necessary for the correct verification of the program and can be removed
as Viper allows predicates without bodies. When the body of a predicate
is removed this could potentially make more predicates entirely unused,
which is taken into account by the previous optimization.

9

3. Optimizations

3.3 Purifying local variables

3.3.1 Motivation

Rust types are modeled by Prusti in Viper using Ref and predicates. This
is done because Rust allows passing potentially mutable references to func-
tions and thus we model all variables, even the ones that in Rust only exist
on the stack and are never mutably borrowed, as heap-dependent. A heap-
dependent variable is modeled as a Ref with a predicate such as for example
acc(usize(_1), write). Opposed to this the equivalent mathematical vari-
able would be of type Int. It is to be assumed that it would be beneficial for
performance if some Rust values could be modeled as mathematical values.
This process of translating Prusti’s generated Viper code to such a mathe-
matical representation is referred to as purifying. This section describes the
process of purifying methods by translating the values of local variables.

3.3.2 Purifying local variables in a simple function

Recall the len function which is shown again for convenience in Listing 7.
Listing 8 shows the Viper code which is generated for the Some match arm.
The variable _4 represents the result of the len(tail) call. Prusti does not
generate a recursive call but instead generates an arbitrary value (builtin$
havoc int()) and then assumes the postconditions (line 2). Lines 3–5 create
a Ref to an integer with the value 1 + len(tail). On line 6 the value is
assigned to the return value. If ret and _6 were of type Int instead of Ref,
the code could look like Listing 9.

1 #[ensures(result > 0)]
2 fn len(head: &List) -> usize {
3 match head.next {
4 None => 1,
5 Some(box ref tail) => 1 + len(tail)
6 }
7 }

Listing 7: len function with postcondition

1 _4 := builtin$havoc_int()
2 inhale _4 > 0
3 _6 := builtin$havoc_ref()
4 inhale acc(_6.val_int, write)
5 _6.val_int := 1 + _4
6 ret := _6

Listing 8: Viper encoding of the Some match arm body

10

3.3. Purifying local variables

1 _4 := builtin$havoc_int()
2 inhale _4 > 0
3 _6 := 1 + _4
4 ret := _6

Listing 9: Purified version of Listing 8

This purification works because there is a built-in mathematical Viper type
for Rust’s usize. However, a similar optimization is possible for more com-
plicated types like Rust’s structs and enums. To facilitate this, we need a
mathematical representation of the types and cannot use the previous Ref-
based representation. This is allowed by snapshots in Prusti.

3.3.3 Snapshots

A snapshot is an alternative representation of a Rust type in Viper. The inner
workings of snapshots are explained in chapter 4. In this chapter it suffices
to understand the inherent properties of snapshots.

The snapshot type of a primitive type such as usize, u32 or bool is the
corresponding primitive Viper type Int, Int or Bool respectively. For each
compound Rust type T, such as structs, enums or tuples, we define a type
in Viper called Snap$T which represents that type as an immutable mathe-
matical value.

Snapshots allow most of the operations that the Ref-based representation
would allow, specifically for each type Snap$T there exists:

• A constructor function SnapTcons which constructs an instance of the
snapshot. For example in the case of a struct the function SnapTcons
takes an argument for each field of the struct and returns a Snap$T.
The types of the arguments are the corresponding snapshot types for
each field.

• A snapshot function snap$T which takes an argument of type T and
returns a corresponding snapshot of type Snap$T.

• For each field f of a type T there is a function SnapTfield$f which
takes a Snap$T and returns the value of the corresponding field. For
enums the function SnapTdiscriminant takes a Snap$T and returns
an Int corresponding to the discriminant.

Because snapshots are immutable they are not suitable as a representation
if mutable references are required. Thus only calling functions that do not
mutate the arguments is supported for snapshots. In Prusti such pure func-
tions can be marked as #[pure] . For each pure function f an equivalent
mirror function mirror$f is defined. The mirror function is equivalent to the

11

3. Optimizations

pure function except that the types of the arguments and return value have
been substituted for their corresponding snapshot type.

3.3.4 Purifying local variables with snapshots

The len function in Listing 7 can be marked as #[pure] and thus a corre-
sponding mirror function mirror$len can be constructed.

Listing 10 shows a function which constructs a list with one element, modi-
fies it and calls len on it. Listing 11 shows the non-purified Viper encoding
of that function.

1 fn main() {
2 let mut x = List { value: 10, next: None };
3 x.value = 30;
4 assert!(len(&x) == 1);
5 }

Listing 10: Client code for len

At first glance it appears that, by utilizing snapshots, purifying this function
should be a trivial matter as all operations can simply be substituted with
their corresponding snapshot version. Such a naive approach is shown in
Listing 12. Note that inhale is used to model assignments to fields, because
an assignment statement such as Snap$List$field$value(x) := 10 is not
valid in Viper, since we cannot assign to the result of a function call. This
naive approach however is unsound because snapshots are immutable: Thus
the statements on lines 9 and 11 contradict each other, which causes the
program to always verify as we have essentially assumed false.

To solve this, the Viper code has to be translated to static single assignment
form (SSA). Every time a snapshot variable is mutated we instead use a new
variable and create a copy of the snapshot as shown in Listing 13.

This translation to SSA solves a further issue with purifying local variables:
Old expressions. Old expressions are a Viper language feature used by the
Viper code generated by Prusti. The old expression old[l](e) evaluates to
the value which the expression e had at the label l. This language feature
however cannot be used once the method body has been purified because
snapshots are immutable and thus do not have an old value. However be-
cause we now translate method bodies to SSA, we can refer to the corre-
sponding SSA variable. Thus assert old[l](foo(x)) will be translated to
assert mirror$foo(x_n) where x_n is the SSA variable for x at label l.

12

3.3. Purifying local variables

1 var _none: Ref
2 var x: Ref
3

4 _none := builtin$havoc_ref()
5 inhale acc(OptionBoxList(_none),

write)↪→

6 inhale OptionBoxList$discriminant
(_none) == 0↪→

7

8 x := builtin$havoc_ref()
9 inhale acc(List(x), write)

10 unfold acc(List(x), write)
11 _aux_u32 := builtin$havoc_ref()
12 x.f$value := _aux_u32
13 inhale acc(x.f$value.val_int,

write)↪→

14 x.f$value.val_int := 10
15 x.f$next := _none
16 x.f$value.val_int := 30
17

18 //...
19 assert len(x) == 1
20 //...

Listing 11: Non-Purified

1 var _none:
Snap$Option$Box$List↪→

2 var x: Snap$List
3

4

5

6 inhale
Snap$Option$Box$List$discriminant
(_none) == 0

↪→

↪→

7

8

9 inhale
Snap$List$field$value(x)
== 10

↪→

↪→

10 inhale
Snap$List$field$next(x)
== _none

↪→

↪→

11 inhale
Snap$List$field$value(x)
== 30

↪→

↪→

12 //...
13 assert mirror$len(x) == 1
14 //...

Listing 12: Naively Purified

1 var _none: Snap$Option$Box$List
2 var x_1: Snap$List
3 var x_2: Snap$List
4 var x_3: Snap$List
5

6 inhale Snap$Option$Box$List$discriminant(_none) == 0
7 inhale Snap$List$field$value(x_1) == 10
8 inhale Snap$List$field$value(x_2) == Snap$List$field$value(x_1)
9 inhale Snap$List$field$next(x_2) == _none

10 inhale Snap$List$field$next(x_3) == Snap$List$field$next(x_2)
11 inhale Snap$List$field$value(x_3) == 30
12

13 //...
14 assert mirror$len(x_3) == 1
15 //...

Listing 13: Purified with SSA

13

Chapter 4

Purification of functions

4.1 Motivation
As mentioned in the previous chapter, purification of method bodies neces-
sitates a snapshot encoding of the relevant types. Furthermore the process
of purification requires mirror functions: Functions which are equivalent to
their corresponding pure functions, in all aspects except for their formal ar-
gument types and return types, which are snapshots instead. Not only are
snapshots and mirror functions essential for the optimization described in
the previous chapter, but they also allow Prusti to model pure functions that
return non-primitive types as opposed to the current implementation.

It is to be noted here that Prusti already contained an implementation of
snapshots which this thesis extends further. The existing implementation
supports creating snapshots from the Ref-based representation (snap$T), the
constructor function (SnapTcons) and discriminant access (SnapTdiscr
iminant).

4.2 Background

4.2.1 Prusti translation process
When the Rust compiler compiles a program it uses multiple intermediate
representations (IRs): After parsing, Rust code is translated to HIR (High-
Level Intermediate Representation) and later to MIR (Mid-Level Interme-
diate Representation) which is eventually translated into an executable bi-
nary.1

Prusti leverages the Rust compiler and operates on MIR instead of directly
operating on Rust code which simplifies its operations greatly. Prusti trans-

1For an overview of the Rust compiler see https://rustc-dev-guide.rust-lang.org/
part-2-intro.html in the Guide to Rustc Development

15

https://rustc-dev-guide.rust-lang.org/part-2-intro.html
https://rustc-dev-guide.rust-lang.org/part-2-intro.html

4. Purification of functions

lates MIR into a new IR called VIR before translating VIR into Viper code.
The process described in this chapter is technically implemented on the VIR
level, however in the following examples we chose to use Viper code instead
of VIR for the sake of visual clarity and simplicity while being, for the intent
of this chapter, equivalent.

4.2.2 Viper
To represent snapshots in Viper we utilize Viper functions, domains, domain
functions and axioms which are described in this section.

Viper functions

In the Ref-based representation Rust functions marked with Prusti’s #[pure]
attribute are translated to Viper functions, while impure Rust functions are
translated to Viper methods. Viper methods have been discussed in previ-
ous chapters. A Viper function consists of a name, a list of zero or more
parameters, any number of preconditions and postconditions, and a func-
tion body that is a single expression. Viper function can contain recursion
and evaluating a Viper function does not cause any side effects. Viper func-
tions are declared on the top-level of a Viper program. Listing 14 shows an
example Viper function for the Euclidean algorithm as well as a method that
demonstrates how the function can be used.

1 function gcd(a: Int, b: Int) : Int
2 requires a >= 0
3 requires b >= 0
4 ensures result <= a || result <= b
5 {
6 b == 0 ? a : gcd(b, a % b)
7 }
8

9 method test(x: Int, y: Int) {
10 assert gcd(22, 12) == gcd(12, 10)
11 assert gcd(12, 10) == gcd(10, 2)
12 assert gcd(10, 2) == gcd(2, 0)
13 assert gcd(2,0) == 2
14 assert gcd(12, 22) == 2
15

16 inhale x > 0 && y > x
17 assert gcd(x, y) == gcd(y, x)
18 }

Listing 14: Viper function implementing the Euclidean algorithm for the
greatest common divisor

16

4.2. Background

Viper Domains

Domains are a Viper language feature allowing the flexible modeling of new
types and mathematical functions operating on them. A domain has a name
and can contain any number of domain functions and axioms.

A functions declared inside of a domain is called a domain function and as
opposed to a standard Viper function cannot have preconditions, postcondi-
tions or a body. Since domain functions cannot have preconditions they are
total functions. The value of the evaluation of domain functions is defined
using axioms.

Listing 15 contains an example domain Nat, modeling natural numbers as
peano numbers, using the domain functions zero and succ, as well as a
domain function even that represents whether or not a Nat is even. The
properties of the even function are defined by the two axioms even_axiom_0
and even_axiom_1. The names of axioms have no significance and only aide
in visual clarity. The axiom even_axiom_1 contains an forall quantifier
which is used to declare that the contained assertion holds for all values n of
type Nat. The expression after the :: in the quantifier is known as the trigger
expression, the quantifier is only instantiated when a trigger expression is
encountered. The choice of triggers is critical as a bad choice of triggers can
lead to infinite loops or can cause Viper to fail the verification of a program.
As this example shows, a domain is not just a syntactic container for axioms
and domain functions but also declares a new type with the name of the
domain.

1 domain Nat {
2 function zero(): Nat
3 function succ(val: Nat): Nat
4 function even(val: Nat): Bool
5 axiom even_axiom_0 { even(zero()) }
6 axiom even_axiom_1 {
7 forall n: Nat :: { even(n) }
8 even(succ(n)) == !even(n)
9 }

10 }
11 method test() {
12 assert zero() == zero()
13 assert even(zero())
14 assert !even(succ(zero()))
15 assert even(succ(succ(zero())))
16 }

Listing 15: Viper domain encoding natural numbers

17

4. Purification of functions

4.3 Encoding the types
Following is a description of how snapshots are encoded for different kinds
of Rust types.

For all applicable types T we need to define the corresponding snapshot
type Snap$T and functions to operate on snapshots. In particular we need
to define the constructor function SnapTcons which allows the creation of
snapshots, as well as the snapshot function, snap$T which converts from a
Ref-based T to a corresponding snapshot of type Snap$T.

As we aim to model #[pure] functions with snapshots we need to ensure
that all properties that hold for the Ref-based encoding also hold for the
snapshot encoding. This also necessitates functions to access the values of
fields of stucts and enums as well as the discriminant values of enums.

Additionally we need to defined a validity function SnapTvalid with the
purpose of capturing the validity invariant [6] of a type. A validity invariant
is an invariant that always holds, for example that an enum is always one
of its variants. This validity function is needed because Viper domain func-
tions are total functions and as such one can call a domain function even
with an argument for which the validity invariant is violated. Using the
validity function we can ensure that mirror functions are only defined for
valid arguments.

4.3.1 Encoding primitive types
The simplest case for defining snapshots are primitive Rust types. As stated
before, the snapshot type of a primitive type such as u32 or bool is sim-
ply the corresponding Viper primitive type Int or Bool. We also do not
need a constructor function for primitive types as it, in the example of u32,
would be the identity function with the signature function Snap$u32$cons(
arg: Int):Int. Thus instead of defining a constructor function and calling
it as Snap$u32$cons(arg) we directly use arg.

The valid function Snap$bool$valid for booleans is defined in such a way
that Snap$bool$valid(x) == true for all x. This is correct as all validity
constraints of booleans are already captured by the Viper Bool type. For
integers however, further constraints are necessary as Viper Ints are un-
bounded as opposed to Rust integers. Listing 16 contains an axiom that
encodes this validity constraint for u32 such that Snap$u32$valid(self)
only holds for self in the valid range of a u32 namely from 0 to 232 − 1.

The snapshot function for a primitive type takes a Ref-based representa-
tion as an argument and reads the contained value and returns it. List-
ing 17 shows the snapshot function for a u32. The requires acc(u32(arg),
read$()) ensures that the argument is the Ref-based representation of a u32

18

4.3. Encoding the types

1 function Snap$u32$valid(self: Int): Bool
2

3 axiom Snap$u32$valid$axiom {
4 forall self: Int :: { Snap$u32$valid(self) }
5 Snap$u32$valid(self) == (self >= 0 && self <= 4294967295)
6 }

Listing 16: Valid function and axiom for u32

1 function snap$u32(arg: Ref): Int
2 requires acc(u32(arg), read$())
3 ensures Snap$u32$valid(result)
4 {
5 unfolding acc(u32(arg), read$()) in arg.val_int
6 }

Listing 17: Snapshot function for u32

which then allows us to use the unfolding expression to access the val_int
field of the argument and use that as a snapshot. Notice that the postcondi-
tion ensures that the returned snapshot is valid. All snapshot functions for
all types have the valid function as a postcondition as the validity constraints
hold for the Ref-based representation as enforced by the precondition.

4.3.2 Encoding structs

For a struct T, the snapshot type Snap$T is declared by defining a domain
with the coresponding name. Inside that domain the domain functions and
axioms are declared to allow for the following operations.

Constructor function

Listing 18 shows how the constructor for Snap$List is encoded as a domain
function. The Snap$List$injectivity axiom ensures that the constructor
is injective, that is to say that to construct two snapshots that are equivalent
their arguments have to be equivalent too.2

Field access

Listing 19 shows the domain function that defines access to the next field
of the List struct. The domain function Snap$List$field$next takes a
Snap$List as an argument and returns the value of the next field. This is en-
sured by the axiom Snap$List$field$next$axiom which defines the prop-

2As remarked above, this domain function and axiom were not developed as part of this
thesis and existed before.

19

4. Purification of functions

1 function Snap$List$cons(value: Int
2 , next: Snap$Option$Box$List): Snap$List
3

4 axiom Snap$List$injectivity {
5 forall value_1: Int,
6 next_1: Snap$Option$Box$List,
7 value_2: Int,
8 next_2: Snap$Option$Box$List
9 :: { Snap$List$cons(value_1, next_1)

10 , Snap$List$cons(value_2, next_2)
11 }
12 (Snap$List$cons(value_1, next_1)
13 == Snap$List$cons(value_2, next_2))
14 ==> value_1 == value_2 && next_1 == next_2
15 }

Listing 18: Constructor function and related axiom for Snap$List

1 function Snap$List$field$next(self: Snap$List):
Snap$Option$Box$List↪→

2

3 axiom Snap$List$field$next$axiom {
4 forall value: Int, next: Snap$Option$Box$List ::
5 { Snap$List$field$next(Snap$List$cons(value, next)) }
6 Snap$List$field$next(Snap$List$cons(value, next)) == next

Listing 19: Snapshot Viper encoding of the next field of List

1 function Snap$List$field$value(self: Snap$List): Int
2

3 axiom Snap$List$field$value$axiom {
4 forall value: Int, next: Snap$Option$Box$List ::
5 { Snap$List$field$value(Snap$List$cons(value, next)) }
6 Snap$List$field$value(Snap$List$cons(value, next)) == value
7 }

Listing 20: Snapshot Viper encoding of the value field of List

erties of Snap$List$field$value, namely the relation between the construc-
tor and field access: If a snapshot is constructed with Snap$List$cons(v, n)
then the next field of that snapshot has the value n. Listing 20 shows the
domain function and axiom for the value field of the List struct, which
work in the same way.

20

4.3. Encoding the types

Valid function

A struct is valid if all of its fields are valid. Listing 21 shows how this is
encoded as an axiom for the Snap$List$valid domain function.

1 function Snap$List$valid(self: Snap$List): Bool
2 axiom Snap$Snap$List$valid$axiom {
3 forall self: Snap$List ::
4 Snap$List$valid(self) ==

(Snap$u32$valid(Snap$List$field$value(self)) &&
Snap$Option$Box$List$valid(Snap$List$field$next(self)))

↪→

↪→

5 }

Listing 21: Valid function for List

Snapshot function

Listing 22 shows, on the example of the List struct, as first shown in List-
ing 1, how the snapshot function for Snap$List is contructed. The function
creates snapshots of each field of the Ref-based argument and uses the con-
structor function of Snap$List to create a snapshot.

1 function snap$List(arg: Ref): Snap$List
2 requires acc(List(arg), read$())
3 ensures Snap$List$valid(result)
4 {
5 unfolding acc(List(arg), read$()) in
6 Snap$List$cons(snap$u32(arg.f$value),

snap$Option$Box$List(arg.f$next))↪→

7 }

Listing 22: Snapshot function for List

4.3.3 Encoding enums

The snapshot type for enums is also encoded using Viper domains. In gen-
eral snapshots for enums are encoded similarly to snapshots for structs with
the main difference that an enum has multiple constructors.

Constructor functions

The snapshot of an enum has as many constructors as it has variants. List-
ing 23 shows this on the example of Option<Box<List>>. For each of the
two variants of Option a constructor function is generated. The constructor

21

4. Purification of functions

1 function Snap$Option$Box$List$cons$None(): Snap$OptionBoxList
2 function Snap$Option$Box$List$cons$Some(arg: Snap$List):

Snap$Option$Box$List↪→

3

4 axiom injectivity$Some {
5 forall arg1: Snap$List, arg2: Snap$List ::
6 { Snap$Option$Box$List$cons$Some(arg1),

Snap$Option$Box$List$cons$Some(arg2) }↪→

7 Snap$Option$Box$List$cons$Some(arg1) ==
Snap$Option$Box$List$cons$Some(arg2) ==> arg1 == arg2↪→

8 }

Listing 23: Constructor functions for Option<Box<List>>

function Snap$Option$Box$List$cons$None takes no arguments because
the None variant of Option has no fields while the constructor function Sna
p$Option$Box$List$cons$Some takes a Snap$List because the Some variant
of Option<Box<List>> takes one argument of type List. Notice that the Box
here is ignored, as for the purposes of snapshots the indirection of a Box is
of no consequence. The injectivity$Some axiom serves the same purpose
as in the case of a struct. In theory there also is an injectivity$None ax-
iom, but since None has no fields the axiom body is simply true and thus
the axiom can be omitted.

Discriminant function

The discriminant function is the snapshot equivalent of the discriminant
field in the Ref-based representation. Listing 24 shows on the example of
Option<Box<List>> how the discriminant function Snap$Option$Box$Lis
t$discriminant is defined: The None$cons$axiom and Some$cons$axiom
axioms encode that a snapshot constructed with a constructor function has
the corresponding discriminant.

Field access

Field access is implemented by essentially treating each variant as a struct.
The corresponding axioms are then only defined for the correct constructor
as seen in Listing 25 on the example of Option<Box<List>>.

Valid function

An enum value is valid when all the fields of its variant are valid. Listing 26
shows the valid function for Option<Box<List>> and the axiom Snap$Opti
onBoxList$valid$axiom which ensures that Snap$Option$Box$List$val
id(x) is true if the discrimiant of x is in the valid range and:

22

4.3. Encoding the types

1 function Snap$Option$Box$List$discriminant(s:
Snap$Option$Box$List): Int↪→

2 axiom None$cons$axiom {
3 Snap$Option$Box$List$discriminant(

Snap$Option$Box$List$cons$None()) == 0↪→

4 }
5 axiom Some$cons$axiom {
6 forall arg: Snap$List ::

{Snap$Option$Box$List$cons$Some(arg)}↪→

7 Snap$Option$Box$List$discriminant(
Snap$Option$Box$List$cons$Some(arg)) == 1↪→

8 }

Listing 24: Discriminant function for Option<Box<List>>

1 function Snap$Option$Box$List$Some$field$0(self:
Snap$Option$Box$List): Snap$List↪→

2

3 axiom Snap$Option$Box$List$_0$Some$field$axiom {
4 forall arg: Snap$List ::
5 { Snap$Option$Box$List$Some$field$0(

Snap$Option$Box$List$cons$Some(arg)) }↪→

6 Snap$Option$Box$List$Some$field$0(
Snap$Option$Box$List$cons$Some(arg)) == arg↪→

7 }

Listing 25: Field access function for Option<Box<List>>

1 function Snap$Option$Box$List$valid(self: Snap$Option$Box$List):
Bool↪→

2 axiom Snap$Option$Box$List$valid$axiom {
3 forall self: Snap$Option$Box$List ::
4 Snap$Option$Box$List$valid(self) ==
5 (
6 0 <= Snap$Option$Box$List$discriminant(arg) &&

Snap$Option$Box$List$discriminant(arg) < 2 &&↪→

7 (Snap$Option$Box$List$discriminant(self) == 0 ||
8 (Snap$Option$Box$List$discriminant(self) == 1 &&

Snap$List$valid(Snap$Option$Box$List$Some$field$0(self))))↪→

9)
10 }

Listing 26: Valid function for Option<Box<List>>

23

4. Purification of functions

• x has the discriminant 0: x represents a None value and since None has
no fields, no conditions except Snap$Option$Box$List$discriminant
(self)==0 has to hold for x to be valid.

• x has the discriminant 1 and Snap$Option$Box$List$Some$field$0(x)
is a valid List: This means that x represents a Some value and the con-
tained value is valid.

Snapshot function

Listing 27 shows how the snapshot function for an enum is constructed:
We match on the discriminant field and then construct the corresponding
variant with the correct constructor using snapshot functions recursively for
the fields. This is the same approach as used for structs, except for the
matching of the discriminant.

1 function snap$Option$Box$List(arg: Ref): Snap$OptionBoxList
2 requires acc(OptionBoxList(arg), read$())
3 ensures Snap$Option$Box$List$valid(result)
4 {
5 unfolding acc(OptionBoxList(arg), read$()) in
6 (arg.discriminant == 0)
7 ? Snap$Option$Box$List$cons$None()
8 : unfolding acc(OptionBoxList$Some(arg.enum_Some),

read$()) in↪→

9 unfolding acc(Box$List(arg.enum_Some.f$0), read$()) in
10 Snap$Option$Box$List$cons$Some(

snap$List(arg.enum_Some.f$0.val_ref))↪→

11 }

Listing 27: Snapshot function for Option<Box<List>>

4.4 Encoding mirror functions

Using the snapshot encoding as defined above we can now construct the
mirror functions.

4.4.1 Translation

Mirror functions are constructed by translating the existing standard Viper
functions which encode #[pure] functions. For this we need to define the
process of translating a Viper expression into an equivalent mirror expression
which can be used in the mirror function.

24

4.4. Encoding mirror functions

1 function mirror$f(arg: Snap$T): Int
2

3 axiom f$axiom {
4 forall arg: Snap$T :: { mirror$f(arg) }
5 (SnapTvalid(arg) && M(pre))
6 ==>
7 M(post) && (mirror$f(arg) == M(b))
8 }

Listing 28: Mirror function for an arbitrary function f with an argument of
type T and a body b. pre is the conjunction of all preconditions of f and post
is the conjunction of all postconditions of f.

Listing 28 shows how a function f which takes an argument of type T and
returns an Int is translated into a mirror function, under the assumption
that M is a function which, given a Viper expression, returns the corre-
sponding mirror expression. Assume that the body of f is the expression
b while pre and post are the conjunctions of all preconditions respectively
postconditions of f. The function mirror$f is declared as a domain function
which takes an argument of type Snap$T since f has an argument of type T.
The axiom f$axiom describes the properties of mirror$f in the form of an
implication for all arguments arg. For the implication to hold arg has to be
a valid Snap$T and the precoditions of f have to hold (line 5). If these two
conditions hold we can assume the postconditions as well as that the value
of mirror$f(arg) is equal to the function body.

Let M be a function that takes a Viper expression and returns the corre-
sponding mirror expression, then M for an expression e of type T is defined
as follows:

• M(unfolding(acc(...)) in e) = M(e), since the unfolding is no
longer necessary as we have no more predicates because we are using
snapshots.

• M(acc(...)) = true, for the same reason as the point above.

• M(e.val_bool) = M(e), since the val_bool field can only be ac-
cessed on an expression e that represents a Rust bool, the mirror ex-
pression of e must be of Vipers type bool.

• M(e.val_int) = M(e), for the same reason as M(e.val_bool).

• M(e.val_ref) = M(e), since snapshots are immutable the indirection
of references is no longer required.

• M(e.discriminant) = SnapTdiscriminant(M(e)), since this is the
snapshot equivalent of the discriminant.

25

4. Purification of functions

• M(e.f$foo) = Snap$T$field$foo(M(e)), because Prusti uses the
convention of prefixing Rust field names with f$ to form the Viper
field name.

• M(e.enum_Var.f$foo) = Snap$TVarfield$foo(M(e)), since e.en
um Var.f$foo represents accessing the foo field of the Var variant of
an enum and the snapshot equivalent is this field access function.

• M(f(e)) = mirror$f(M(e)), since a pure function can only call other
pure functions and thus a mirror function for f exists and can be called.

• M(result) = mirror$f(arg1, ..., argn) where f is the function
that is being translated. The special variable result is used in post
conditions of Viper functions to refer to the result of the function.
Since we are translating the body of the pure Viper function into
an expression to be used in a domain axiom, a postcondition like
ensures result > 0 for a function f(x) would be represented by
mirror$f(x) > 0.

• M(c ? builtin$unreach(): e) = M(c ? e : builtin$unreach())
= M(e) for a boolean expression c. One of the properties that Prusti
verifies is that the Rust macro unreachable! will never be called.
To accomplish this, Prusti translates unreachable! to a call to the
builtin$unreach function. The builtin$unreach function is a Viper
function with a precondition of false, thus calling builtin$unreach
causes the verification to fail. Since mirror functions are Viper domain
functions and thus total functions we cannot model the function call
failing and we thus ignore calls to builtin$unreach by translating a
conditional with an builtin$unreach() as one arm into the other arm.
This approach causes unsoundness, as this allows functions that can
potentially call unreachable! to verify. This issue is addressed later in
the chapter.

For a concrete example of a pure function and its corresponding mirror func-
tion see Listing 29 and Listing 30. In this particular example the precondi-
tion acc(List(x), read$()) was translated to true as it existed purely to
ensure that the argument was of the right type, which is already ensured by
the valid function. Informally speaking the valid function is the translation
of acc(List(x), read$()).

4.4.2 Correctness
To ensure that the translation process is sound two more steps are required.
Despite the fact that the precondition is on the left hand side of the im-
plication in the definitional axiom, verification will not fail if mirror$f is
called with a value e for which the precodition does not hold. We will sim-
ply have no information about the value of mirror$f(e). However such a

26

4.4. Encoding mirror functions

1 function len(x: Ref): Int
2 requires acc(List(x), read$())
3 ensures result > 0
4 {
5 (unfolding acc(List(x), read$()) in
6 (unfolding acc(OptionBoxList(x.f$next), read$()) in
7 (x.f$next.discriminant == 0 ?
8 1 :
9 (unfolding acc(OptionBoxListSome(x.f$next.enum_Some),

read$()) in↪→

10 (unfolding acc(Box$List(x.f$next.enum_Some.f$0), read$()) in
11 1 + len(x.f$next.enum_Some.f$0.val_ref))))))
12 }

Listing 29: Ref-based encoding of the pure len function

1 function mirror$len(arg: Snap$List): Int
2

3 axiom len$axiom {
4 forall arg: Snap$List :: { mirror$len(arg) }
5 Snap$List$valid(arg) && true ==>
6 mirror$len(arg) > 0 && mirror$len(arg) ==
7 (Snap$Option$Box$List$discriminant(Snap$List$field$next(arg))
8 == 0 ? 1
9 : 1 + mirror$len(Snap$OptionBoxList$Some$field$0(arg))

10)
11 }

Listing 30: Mirror function for Listing 29

function call should fail verification. As a mirror function is a domain func-
tion and thus a total function we cannot restrict for which values a mirror
function can be called. To address this we define a standard Viper function
caller$mirror$f, with the translated preconditions and postconditions of
f, which directly calls mirror$f. We then use caller$mirror$f instead of
mirror$f when calling f from a Viper method.

The second problem is, that if a user specifies a function where the precon-
dition and the function body together do not imply the postcondition Prusti
should fail verification. With the previous implementation using Viper func-
tions this was the case, as Viper automatically verifies the correctness of
functions. With the new domain function based implementation, Viper can
no longer verify this for us, as the function body becomes part of an ax-
iom. At first one might suspect that it would be enough to simply emit
both representations. The domain function mirror$f would then be used

27

4. Purification of functions

in all method bodies (indirectly via caller$mirror$f) while the standard
Viper function f would cause the verification to fail if the postcondition is
not valid. This does not work because if the postcondition is invalid then
the axiom derived from it might cause a global contradiction, which allows
Viper to prove false thus the verification of the standard Viper function f
might succeed. Note that such a global contradiction does not only influ-
ence the verification of the function f but also causes the entire program to
verify automatically. Instead one has to use a two phase approach where
in the first phase the standard Viper function f is verified and in a second
phase mirror$f is used. This two phase approach also solves the previously
mentioned issue of M ignoring calls to builtin$unreach in the translation
process as functions that might call unreachable! would be rejected in the
first phase.

4.4.3 Recursive types

A critical point that has not been mentioned so far is, that there is no automa-
tion for mirror functions: For standard Viper functions, Viper automatically
handles the instantiation of the function, for domain functions however this
has to be handled explicitly with the triggers for the quantifiers.

The approach as described in Listing 28 has the problem that the trigger is
contained in the body of the quantifier which might cause an infinite loop.

An approach for solving this is the use of limited functions as described in
[4]: For each mirror function we define a limited and an unlimited form.
They are logically equivalent, however only the unlimited form of the func-
tion causes the axiom to be instantiated because only the unlimited form
of the function is used in triggers, while the limited form of the function is
used in the body of the axiom. We however choose to use a more generalized
approach of limited functions inspired by the implementation in Dafny [2].
Instead of defining a limited and an unlimited form of a mirror function we
add a formal parameter count to the mirror function. This additional pa-
rameter indicates how many times the axiom should be instantiated. Thus
the signature of the mirror function for a function f with one parameter
would look like mirror$f(arg: Snap$T, count: Nat). Since count repre-
sents a natural number we define an encoding of natural numbers as peano
numbers as seen in Listing 31.

1 domain Nat {
2 function zero(): Nat
3 function succ(val: Nat): Nat
4 }

Listing 31: Viper domain for Nat

28

4.4. Encoding mirror functions

Following the change of signature of mirror functions we need to adjust
the definition of the axiom for the mirror function: In addition to all ar-
guments of a function we now also quantify over the additional variable
count of type Nat. And instead of the trigger {mirror$f(arg)} we use the
trigger {mirror$f(arg,succ(count))} . Recursive calls to mirror$f inside
mirror$f are translated to mirror$f(x, count). Intuitively a call to a mir-
ror function with a count argument of 33 would only contain recursive calls
with a count argument of 2. Since the axiom will not get instantiated once
count reaches 0 this approach successfully prevents the infinite loop.

An extra axiom is required to ensure that the count parameter does not
affect the result of a mirror function. We ensure this by declaring that
mirror$f(arg, count) == mirror$f(arg, succ(count)) for all arg and
count.

As mentioned above, standard Viper functions are instantiated automati-
cally: In particular Viper automatically instantiates a standard function each
time a predicate in its precondition is unfolded. Thus simply instantiating a
mirror function n times at each call site is not sufficient: To emulate this be-
havior of standard functions for mirror functions, we declare an additional
domain function SnapTUnfoldWitness for each type T, which will be used
for the sole purpose of causing additional instantiations of mirror functions.
This is accomplished by adding an additional trigger {SnapTUnfoldWitn
ess(arg,count),mirror$f(arg,zero())} to mirror functions and emitting
calls to SnapTUnfoldWitness in method bodies where appropriate.

With these changes in place the real mirror function for len is depicted in
Listing 32.

3Which would be encoded as succ(succ(succ(zero()))).

29

4. Purification of functions

1 function mirror$len(arg: Snap$List, count: Nat): Int
2 function Snap$List$UnfoldWitness(self: Snap$List, count: Nat):

Bool↪→

3

4 axiom len$axiom {
5 forall arg: Snap$List, count: Nat ::
6 { Snap$List$UnfoldWitness(arg,count),mirror$len(arg,zero())}
7 { mirror$len(arg, succ(count)) }
8 Snap$List$valid(arg) ==>
9 mirror$len(arg, succ(count)) > 0

10 && mirror$len(arg, succ(count)) ==
11 (Snap$Option$Box$List$discriminant(Snap$List$field$next(arg))

== 0 ? 1 : 1 +
mirror$len(Snap$OptionBoxList$Some$field$0(
Snap$List$field$next(arg)), count))

↪→

↪→

↪→

12 }
13

14 axiom len$nat_axiom {
15 forall arg: Snap$List, count: Nat ::
16 { Snap$List$UnfoldWitness(arg,count), mirror$len(arg,zero())}
17 { mirror$len(arg, succ(count)) }
18 mirror$len(arg, count) == mirror$len(arg, succ(count))
19 }

Listing 32: Real mirror function for len

30

Chapter 5

Evaluation

5.1 Implementation

In order to evaluate the impact of the proposed optimizations, they were im-
plemented within Prusti. The Implementation work consisted of two main
tasks: Implementing the optimizations in Prusti and creating a continuous
integration task which regularly benchmarks verification performance.

Significant efforts went towards the implementation of the snapshot fea-
tures and mirror functions as described in Chapter 4. As a consequence
parts of the “Purifying local variables” optimization were not fully imple-
mented; specifically the translation to SSA, the handling of old expressions,
the two phase approach and emitting SnapTUnfoldWitness in method
bodies. Due to the incomplete implementation, a sizable percentage of the
Prusti test suite causes an error when run with purification enabled, in par-
ticular test cases relying on old expressions and test cases where the axioms
are not instantiated a sufficient number of times because of the missing
SnapTUnfoldWitness calls.

Prusti’s source code is hosted on GitHub and uses GitHub Actions for con-
tinuous integration (CI). As part of the implementation work, a GitHub Ac-
tion was written to automatically benchmark Prusti when pull requests are
merged. This CI task verifies a set of benchmark cases multiple times, and
stores the time measurements in a file. This data can be used to estimate
the performance of Prusti, which can then be used to prevent unwanted
performance regressions.

It is to be noted that the benchmarks presented here were ran locally, because
using the results generated in the CI decreases reproducibility, as we cannot
control any external influences, such as the load on the CI system.

31

5. Evaluation

5.2 Benchmarks

5.2.1 Methodology

To evaluate the performance of the implemented optimizations, 16 tests from
the Prusti test suite were selected.

The time Prusti takes to verify a benchmark case was measured in two ways:

• total verification time: The time it takes Prusti to verify the benchmark,
including the time it takes to analyze the input and generate the Viper
code.

• Viper-only verification time: The time spent by Viper verifying the gen-
erated code.

First the total verification time was measured directly by warming up a
Prusti server instance and verifying the benchmark Rust files against it. The
Viper-only verification time was measured by using the generated Viper
files from the Prusti server and querying a warmed up ViperServer using
viper_client to measure the time Viper takes to verify the generated code.
The performance is measured in these two ways to see the impact Prusti
itself has on the verification time. For running Prusti and ViperServer the
same version of Viper was used. The servers were warmed up by running a
specific benchmark case for 6 iterations. Afterwards the same, now warmed
up, server instance was used to gather the benchmark data presented below,
by running each benchmark case for 10 iterations.

The benchmarks where ran on an Intel i7-4790K CPU @ 4.00GHz with 24GiB
DDR3 @ 1600 MHz running Fedora 33 (Kernel 5.10.22-200.fc33.x86 64)
on OpenJDK 64-Bit 11.0.10 and using the Prusti commit 508fc6e22f4b41e
10b9aed233bdb974bacdda79d and viper_client commit bb19f104daee74b
dc2fd57d75d687e7ae613a662. The Viper nightly build from the 16. March
2021 with the silicon backend was used.

5.2.2 Results

Figure 5.1 shows the average runtime of each benchmark case. The entire bar
represents total verification time while the colored part indicates the Viper-
only verification time. The chart suggests that the predicate optimizations
have a rather small impact in all cases. The impact of purification is more
significant, in nearly all cases it appears to decrease performance by a factor
of up to two. It is however notable that purification significantly improves
performance for the Knights_tour benchmark, where the average total veri-
fication time is reduced to a third from 65.024 to 21.499 seconds. This bench-
mark is of significance, as it has the longest runtime by a significant mar-
gin. Similarly, medium-sized benchmarks such as Binary_search_shared

32

5.2. Benchmarks

0.5 1 2 3 5 10 20 30 50 70
Average runtime in seconds

rosetta/Knuth_shuffle.rs (2.109s)

rosetta/Binary_search_shared.rs (4.111s)

demos/account.rs (1.136s)

rosetta/Knights_tour.rs (21.499s)

quick/fold-unfold.rs (1.145s)

quick/moves.rs (1.135s)

quick/mut-borrows.rs (1.278s)

quick/shared-borrows.rs (0.721s)

quick/trait-contracts-refinement.rs (1.428s)

quick/fibonacci.rs (3.033s)

pure-fn/len-lookup.rs (1.763s)

pure-fn/quantifiers.rs (1.732s)

pure-fn/recursive-pure-fn.rs (1.737s)

pure-fn/ref-mut-arg.rs (1.909s)

rosetta/Ackermann_function.rs (1.595s)

rosetta/Heapsort.rs (4.406s)

No Purification (without predicate optimizations)
No Purification (with predicate optimizations)
Purification (without predicate optimizations)
Purification (with predicate optimizations)

Figure 5.1: Benchmark results for the average runtime over 10 iterations on a log scale. The
entire bar represents the total verification time while the colored part indicates the Viper-only ver-
ification time. The time listed next to the file name is the total verification time for “Purification
(with predicate optimizations)”.

33

5. Evaluation

or Heapsort, although performing worse when using purification, suffer a
smaller performance decrease compared to small benchmarks.

Possible explanations for this behavior are:

• There is an overhead to creating snapshots, mirror functions and per-
forming the purification, which for the smaller benchmarks with run-
times < 10 seconds outweighs the performance gains of purification,
while larger and slower benchmarks such as Knights_tour signifi-
cantly benefit from the purification optimization. Additionally the pu-
rification optimization is not fully implemented, and as such there are
still potentially significant performance improvements to be achieved
by fully implementing it.

• In the current implementation both mirror functions and pure func-
tions are emitted for each #[pure] function, as mirror functions can-
not yet be used in some cases, which causes some overhead. Eventu-
ally Prusti can be switched to solely using mirror functions which will
allow the pure functions to be removed.

To show the performance benefits of purification a synthetic example was
created: Listing 33 shows a Rust function which takes an argument and
reassigns it to a variable 70 times. Using the purification optimization the
Viper-only verification time improves from an average of 48.209 seconds
down to 1.996 seconds. This program exemplifies which problem the current
implementation of the purification optimization successfully solves. The
non-purified version is slow since a lot of heap-dependent variables have to
be kept track of, while the purified version can avoid that.

It is possible that further implementation work on the purification optimiza-
tion can improve performance to the degree where runtimes are shorter or
equal to the non-purified version, even for the small benchmark cases. Even
if that is not possible, it might be an acceptable trade-off to increase veri-
fication time for programs with verification times of under 2 seconds, if in
exchange verification time of programs with long verification times of over
60 seconds can be significantly reduced.

34

5.2. Benchmarks

1 pub struct VecWrapperI32{
2 v: Vec<i32>
3 }
4

5 impl VecWrapperI32 {
6 //...
7 }
8

9 fn test(arr: &VecWrapperI32) -> usize {
10 let arr = arr;
11 let arr = arr;
12 let arr = arr;
13 // ... total of 70 repetitions
14 let arr = arr;
15 arr.len()
16 }

Listing 33: Rust program that reassigns a variable 70 times

35

Chapter 6

Conclusion

This thesis proposes and implements techniques to improve the perfor-
mance of the Prusti verifier.

The purification optimization presented is of particular interest, as it shows
promising performance results for larger programs, with reductions in exe-
cution time by up to two thirds. For small programs the purification op-
timization decreases the performance, which may be effected by the in-
complete implementation. Even under the assumption that the fully imple-
mented purification will slightly decrease performance for small programs,
this is an acceptable trade-off in exchange for the decrease in verification
time for large programs. The implementation of the purification optimiza-
tion required extending the functionality of snapshots and introducing mir-
ror functions. This not only enabled the optimization but also allows more
functions to be labeled as #[pure] in Prusti.

Since not all parts of the purification optimization as described in this the-
sis were implemented, finishing and extending it is left up to future work.
Once the implementation is finished and sufficiently mature the existing
pure function can be fully replaced by mirror functions.

37

Appendix A

Appendix

A.1 Benchmark data

The times in the tables are the total verification time in seconds.

A.1.1 Overview

This table shows a comparison of average total verification time. pur. stands
for purification optimization while pred. stands for predicate optimization.

Filename neither pred. pur. pur. + pred.

rosetta/Knuth_shuffle.rs 1.558 1.432 2.416 2.109
rosetta/Binary_search_shared.rs 4.745 4.587 4.920 4.111
demos/account.rs 0.796 0.797 1.266 1.136
rosetta/Knights_tour.rs 65.135 65.024 22.961 21.499
quick/fold-unfold.rs 0.534 0.546 1.275 1.145
quick/moves.rs 0.562 0.595 1.247 1.135
quick/mut-borrows.rs 0.732 0.784 1.413 1.278
quick/shared-borrows.rs 0.563 0.592 0.776 0.721
quick/trait-contracts-refinement.rs 0.942 0.985 1.599 1.428
quick/fibonacci.rs 1.643 1.682 3.445 3.033
pure-fn/len-lookup.rs 0.956 0.993 2.015 1.763
pure-fn/quantifiers.rs 0.897 0.960 1.974 1.732
pure-fn/recursive-pure-fn.rs 0.731 0.801 1.817 1.737
pure-fn/ref-mut-arg.rs 0.851 0.916 1.898 1.909
rosetta/Ackermann_function.rs 0.849 0.873 1.624 1.595
rosetta/Heapsort.rs 3.922 4.023 4.393 4.406

39

A. Appendix

A.1.2 Purification without predicate optimizations

Filename Min. Max. Avg.

rosetta/Knuth_shuffle.rs 2.175 2.695 2.416
rosetta/Binary_search_shared.rs 4.546 5.459 4.920
demos/account.rs 1.122 1.342 1.266
rosetta/Knights_tour.rs 22.172 23.396 22.961
quick/fold-unfold.rs 1.198 1.366 1.275
quick/moves.rs 1.171 1.411 1.247
quick/mut-borrows.rs 1.291 1.496 1.413
quick/shared-borrows.rs 0.655 0.922 0.776
quick/trait-contracts-refinement.rs 1.505 1.681 1.599
quick/fibonacci.rs 3.222 3.720 3.445
pure-fn/len-lookup.rs 1.856 2.268 2.015
pure-fn/quantifiers.rs 1.840 2.122 1.974
pure-fn/recursive-pure-fn.rs 1.638 1.975 1.817
pure-fn/ref-mut-arg.rs 1.690 2.149 1.898
rosetta/Ackermann_function.rs 1.531 1.699 1.624
rosetta/Heapsort.rs 3.978 4.739 4.393

A.1.3 Purification with predicate optimizations

Filename Min. Max. Avg.

rosetta/Knuth_shuffle.rs 2.043 2.242 2.109
rosetta/Binary_search_shared.rs 3.920 4.584 4.111
demos/account.rs 1.072 1.197 1.136
rosetta/Knights_tour.rs 20.615 22.158 21.499
quick/fold-unfold.rs 1.056 1.230 1.145
quick/moves.rs 1.057 1.215 1.135
quick/mut-borrows.rs 1.181 1.336 1.278
quick/shared-borrows.rs 0.671 0.823 0.721
quick/trait-contracts-refinement.rs 1.303 1.507 1.428
quick/fibonacci.rs 2.913 3.157 3.033
pure-fn/len-lookup.rs 1.650 1.839 1.763
pure-fn/quantifiers.rs 1.552 1.832 1.732
pure-fn/recursive-pure-fn.rs 1.529 1.906 1.737
pure-fn/ref-mut-arg.rs 1.714 2.084 1.909
rosetta/Ackermann_function.rs 1.469 1.735 1.595
rosetta/Heapsort.rs 3.970 4.882 4.406

40

A.1. Benchmark data

A.1.4 No Purification with predicate optimizations

Filename Min. Max. Avg.

rosetta/Knuth_shuffle.rs 1.337 1.594 1.432
rosetta/Binary_search_shared.rs 4.342 4.946 4.587
demos/account.rs 0.752 0.871 0.797
rosetta/Knights_tour.rs 62.800 67.303 65.024
quick/fold-unfold.rs 0.512 0.604 0.546
quick/moves.rs 0.552 0.635 0.595
quick/mut-borrows.rs 0.743 0.821 0.784
quick/shared-borrows.rs 0.530 0.669 0.592
quick/trait-contracts-refinement.rs 0.916 1.064 0.985
quick/fibonacci.rs 1.618 1.773 1.682
pure-fn/len-lookup.rs 0.887 1.053 0.993
pure-fn/quantifiers.rs 0.872 1.044 0.960
pure-fn/recursive-pure-fn.rs 0.716 0.869 0.801
pure-fn/ref-mut-arg.rs 0.864 0.993 0.916
rosetta/Ackermann_function.rs 0.814 0.933 0.873
rosetta/Heapsort.rs 3.899 4.156 4.023

A.1.5 No Purification without predicate optimizations

Filename Min. Max. Avg.

rosetta/Knuth_shuffle.rs 1.491 1.703 1.558
rosetta/Binary_search_shared.rs 4.547 5.116 4.745
demos/account.rs 0.759 0.868 0.796
rosetta/Knights_tour.rs 62.728 67.747 65.135
quick/fold-unfold.rs 0.509 0.580 0.534
quick/moves.rs 0.529 0.615 0.562
quick/mut-borrows.rs 0.695 0.767 0.732
quick/shared-borrows.rs 0.527 0.624 0.563
quick/trait-contracts-refinement.rs 0.875 1.043 0.942
quick/fibonacci.rs 1.557 1.754 1.643
pure-fn/len-lookup.rs 0.905 1.012 0.956
pure-fn/quantifiers.rs 0.850 0.957 0.897
pure-fn/recursive-pure-fn.rs 0.691 0.776 0.731
pure-fn/ref-mut-arg.rs 0.794 0.938 0.851
rosetta/Ackermann_function.rs 0.814 0.913 0.849
rosetta/Heapsort.rs 3.788 4.073 3.922

41

Bibliography

[1] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers. Leveraging Rust
types for modular specification and verification. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), volume 3,
pages 147:1–147:30. ACM, 2019.

[2] Dafny Developers. Dafny. https://github.com/dafny-lang/dafny.
[Online; accessed 15-March-2021].

[3] Julian Dunskus. Developing IDE support for a rust verifier, 2020.

[4] Stefan Heule, Ioannis T Kassios, Peter Müller, and Alexander J Sum-
mers. Verification condition generation for permission logics with ab-
stract predicates and abstraction functions. Technical Report / ETH Zurich,
Department of Computer Science, 776, 2012.

[5] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In B. Jobstmann and
K. R. M. Leino, editors, Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,
2016.

[6] R. Jung. Two kinds of invariants: Safety and validity. https:
//www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html,
2018. [Online; accessed 15-March-2021].

43

https://github.com/dafny-lang/dafny
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html
https://www.ralfj.de/blog/2018/08/22/two-kinds-of-invariants.html

	Contents
	Introduction
	Background
	Rust
	Prusti
	Viper

	Optimizations
	Remove predicates which are never used
	Remove the bodies of predicates which are never folded or unfolded
	Purifying local variables
	Motivation
	Purifying local variables in a simple function
	Snapshots
	Purifying local variables with snapshots

	Purification of functions
	Motivation
	Background
	Prusti translation process
	Viper

	Encoding the types
	Encoding primitive types
	Encoding structs
	Encoding enums

	Encoding mirror functions
	Translation
	Correctness
	Recursive types

	Evaluation
	Implementation
	Benchmarks
	Methodology
	Results

	Conclusion
	Appendix
	Benchmark data
	Overview
	Purification without predicate optimizations
	Purification with predicate optimizations
	No Purification with predicate optimizations
	No Purification without predicate optimizations

	Bibliography

