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Advisors: Jonáš Fiala, Anouk Paradis, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zürich



Abstract

Differentially private algorithms allow for the computation of statistical
results without compromising the privacy of individuals. To accom-
plish this goal, differential privacy provides a mathematically rigorous
definition of privacy which ensures that no data subject can be affected
by being included in a dataset. However, implementations of differen-
tially private algorithms that even slightly deviate from this definition
can be prone to catastrophic data reconstruction attacks and thus dif-
ferential privacy libraries, such as the Rust-based OpenDP, are prime
candidates for formal verification.

In this thesis we identify important properties of differential privacy
transformations, including hyperproperties. In order to be able to
prove these properties we implemented and extended the necessary
features in Prusti, a Viper-based verifier for Rust. Due to an ongo-
ing rewrite of Prusti this not only involved implementing support for
hyperproperties, but also support for foundational Rust language fea-
tures.

While verifying the identified properties, we were able to show that
one of the properties does not hold in the OpenDP library.
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Chapter 1

Introduction

Differential privacy (DP) is a rigorous mathematical approach for ensuring
that publishing statistics does not compromise the privacy of the individuals
who are featured within the dataset. DP strives to apply the same degree of
rigorousness to privacy as the field of cryptography applies to secrecy. This
is accomplished by introducing noise to the result of the statistical analy-
sis, such that it can be mathematically proven that if one individual in the
dataset had answered differently, the statistical distribution of the results
would be nearly identical. Intuitively, this ensures the privacy of an indi-
vidual, since if one person’s answers can be completely changed without
affecting the statistical results, then it is not possible to learn anything about
that person’s answers from the resulting statistics.

OpenDP [1] is a open-source DP library, which is implemented in the mem-
ory-safe Rust programming language. OpenDP allows users to compose
differentially private algorithms out of transformations, which are determin-
istic computations on datasets, and measurements, which are randomized
functions responsible for adding the random noise as described above. A
series of transformations and a measurement can be composed into a new
measurement.

For a measurement to add the correct magnitude of noise, that is to say,
enough to ensure privacy, but not so much as to render the resulting statis-
tic meaningless, it is important to understand the properties of the dataset
passed by the transformations. Intuitively, the output domain of a transfor-
mation affects the magnitude of the required noise: The appropriate noise
for computing a differentially private sum of N numbers in the domain [0, 1]
is trivially insufficient for the same operation on the domain [1099, 10100].

Producing outputs which are not in the expected output domain can com-
promise the guarantees of a DP system [2]. As such, ensuring the correct-
ness of transformations is one of the requirements for ensuring that the en-
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tirety of a differentially private algorithm is correct. OpenDP aims to ensure
the correctness of their implementation by including handwritten proofs
in LATEX on the basis of pseudocode alongside their Rust implementation.
These proofs, however, are neither automatically verified nor directly linked
to the Rust implementation. Furthermore, although OpenDP applies static
and dynamic checks and uses Rust’s advanced type system to prevent some
implementation mistakes, it does not proof the correctness in an automated
way. To achieve this verification tools, such as Prusti [3], the Viper-based
verifier for Rust, can be used.

In this thesis we identify three central properties of OpenDP transforma-
tions, two of which being so-called hyperproperties, and describe how we
extended Prusti to allow us to prove these properties. The work in this thesis
focuses on transformations and does not verify any properties of measure-
ments, which would involve probabilistic reasoning in Viper and as such
exceeds the scope of this thesis.

At the time of this project a rewrite of Prusti was just started with the aim
of improving its maintainability. As such, many fundamental features were
re-implemented as part of this project, thus this project also serves to test out
the new architecture and serves as a basis for future Prusti projects which
will be able to utilize these same fundamental features. We refer to the
rewritten version simply as Prusti, while we call the previous implementa-
tion old Prusti.
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Chapter 2

Background

2.1 Viper

Viper [4] is a verification infrastructure for simplifying the development of
automated verifiers by providing an intermediate verification language, also
named Viper, which serves as a translation target for a variety of different
programming languages. The Viper language is a simple imperative pro-
gramming language with built-in support for objects, permissions and con-
tracts.

Viper’s built-in types include booleans Bool, unbounded mathematical in-
tegers Int, as well as references Ref to objects. Fields of objects can be
declared using field, as exemplified by field foo: Int, which declares a
field named foo of type Int. However, Viper has no built-in support for
structs or classes, instead accessibility predicates are used to describe the per-
mission to access a field on a Ref. The accessibility predicate acc(self.foo)

for example indicates the permission to read and write the field foo of an ob-
ject called self. Accessing a field on an object while not having the correct
permission causes the verification to fail. Viper permissions are exclusive:
Only one permission to the same location can be held at the same time. As
such, given that both acc(x.foo) and acc(y.foo) hold, this implies that
x != y. This allows the verifier to reason that modifying a field of one
variable does not affect any other variables, since the exclusive permissions
prevent aliasing between references. This approach is related to the sepa-
rating conjunction in separation logic [5] and Viper can express separation
logic [6].

Viper predicates can be used to abstract over assertions and accessibility
predicates. For example the predicate P, as can be seen below, asserts that
both the foo and bar field are accessible on self and the value of bar has
to be larger than 10. The bodies of predicates are not automatically visible
to code calling them, thus to use the fact that self.bar > 10 when P(self)
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2.1. Viper

holds, one needs to explicitly unfold P(self). The fold operation can be
used to obtain P(self) given that all the assertions in the predicate body
hold.

predicate P(self: Ref) {

acc(self.foo) && acc(self.bar) && self.bar > 10

}

Viper offers two ways to represent computations: methods and functions,
which both can have preconditions, denoted by requires, and postcondi-
tions denoted by ensures. Viper formally verifies that, given the precon-
ditions, the postconditions hold after executing the body of the function or
method. We refer to the pre- and postcondition together as the contract or
specification of a method or function.

Viper methods consist of a body which is a sequence of operations such as
assigning to local variables, branching or calling other methods or functions.
Methods are modular: When calling a method the caller can only rely on
what is specified in the contract of the called method, but the implementa-
tion is not visible to the caller. The values of arguments can be modified in
the body of a method, which necessitates the old(...) syntax in order to
allow us to refer to a variable’s state at the beginning of a method execution.
For example a postcondition which guarantees that a field f of an argument
A is not modified is written as ensures A.f == old(A.f).

Viper functions have a body consisting of a single expression and, as op-
posed to methods, the implementation of a function is visible at the call
site and can be used there for reasoning. Viper functions cannot modify
arguments and represent pure computations; as such they cannot call meth-
ods but are able to call other functions and can be used in specifications, as
opposed to methods. A Viper function without a body is an abstract func-
tion, which informs Viper that it should assume that the specifications of the
function hold.

domain s_i8 {

function read(s_i8): Int

axiom s_i8_bounds {

forall self: s_i8 :: {read(self)} -128 <= read(self) <= 127

}

}

Viper domains allow the user to define new types with associated functions
as well as axioms, which specify the behavior of the functions. The example
seen above declares a new type called s i8, which models an 8-bit signed
integer, and defines a total function read and an axiom s i8 bounds which
ensures that read always returns a value within a particular range. The ex-
pression in curly braces in the forall quantifier is a trigger, and informs
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2.2. Rust

the underlying SMT solver when to instantiate the quantifier. Incorrect trig-
gers can lead to long verification times or even failure to verify an otherwise
correct program.

2.2 Rust

Rust [7] is a systems programming language developed with the goal of
eliminating common problems inherent to other systems programming lan-
guages, such as undefined behavior, memory-unsafety and data races. Rust’s
type system ensures this by utilizing the concepts of ownership and borrow-
ing: At any point in time there can exist either one mutable reference or any
number of immutable references to the same data, as such there can neither
be both immutable and mutable references, or multiple mutable references
to the same data at any given point in time. Rust provides a solid type sys-
tem including structs, sum types called enums, as well as traits which define
interfaces similarly to type classes in Haskell.

2.3 Prusti

Rust’s language design and type system can be used to detect some pro-
gramming errors at compile time, however, Rust is not able to guarantee the
general functional correctness of programs: Listing 1 shows an incorrectly
implemented clamp function which will return incorrect results, since the
return values for the last two branches have been swapped. To solve this
problem Prusti, a verifier for Rust, introduces pre- and postconditions in
the form of #[ensures(...)] and #[requires(...)] attributes. Prusti for-
mally verifies that the conditions hold by translating Rust into Viper code,
which is then verified by the Viper infrastructure. For this example function
verification expectedly fails, since Viper cannot prove the postcondition.

Prusti leverages Rust’s type system to simplify the verification process by
mapping Rust’s ownership rules to exclusive Viper permissions. Viper-
based verifiers for other languages make the use of Viper permissions and

1 #[ requires(min <= max) ]

2 #[ ensures(result <= max) ]

3 fn clamp(value: i32, min: i32, max: i32) -> i32 {

4 if value < min { min }

5 else if value > max { value }

6 else { max }

7 }

Listing 1: Incorrectly implemented Rust function to clamp an integer, anno-
tated with Prusti attributes
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2.4. Differential Privacy

predicates explicit while in Prusti this is already expressed by the regular
Rust types. As such, Prusti is suitable to be used by programmers who
may not be experts in formal verification, since pre- and postconditions are
specified using regular Rust syntax. Similarly, this also simplifies the imple-
mentation of Prusti since Rust programs translate more naturally to Viper
code.

2.4 Differential Privacy

The Fundamental Law of Information Recovery states that “overly accurate an-
swers to too many questions will destroy privacy in a spectacular way” [8].
While the precise mathematical reasoning is not in scope for this project, a
wide range of research has shown that heuristic solutions attempting to en-
sure privacy can fail spectacularly and are often vulnerable to reconstruction
attacks.

Differential privacy provides a mathematically rigorous definition of pri-
vacy by precisely specifying how an attacker would be unable to tell apart
the statistical results obtained from neighboring datasets. There are two ma-
jor definitions for neighboring datasets: In unbounded DP two datasets are
considered neighboring if one can be obtained from the other by adding or
removing a single entry, while in bounded DP two datasets are considered
neighboring if one can be obtained from the other by changing one entry.

One of the metrics that is used to assess the closeness of two datasets
is the symmetric distance, which for two multisets A and B is defined as
dsym(A, B) = |A∆B| where ∆ is the symmetric difference, which is defined as
A∆B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (B ∩ A). It holds that dsym(A, B) =

∑ |hA(z)− hB(z)| where hx(z) is the multiplicity of z within the multiset x.

For a vector V we write Ms(V) for the multiset interpretation of V: hMs(V)(e)
is equal to the number of times the vector V contains the element e. We also
define the symmetric distance and difference for vectors as the correspond-
ing function of the multiset interpretation of the vector: For two vectors V
and U it holds that dsym(U, V) = |U∆V| = |Ms(U)∆Ms(V)|.

2.5 OpenDP

Rust was chosen as the implementation language for OpenDP due to its
performance and reliability, memory- and type-safety and ease to reason
about. While the core is implemented in Rust, bindings for Python and R
are available.

OpenDP transformations have an associated stability function and they keep
track of the input- and output domain. OpenDP also stores a metric with
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2.5. OpenDP

1 type Fallible<T> = Result<T, ()>;

2 struct Function(Rc<dyn Fn(&Vec<i32>) -> Fallible<Vec<i32>>>);

3 struct StabilityMap(Rc<dyn Fn(u32) -> u32>);

4 struct AtomDomain { bounds: Option<Bounds> }

5 struct VectorDomain { element_domain: AtomDomain }

6

7 struct Transformation {

8 input_domain: VectorDomain, output_domain: VectorDomain,

9 function: Function, stability_map: StabilityMap,

10 }

Listing 2: Transformation type in OpenDP

the transformation, which is a notion of closeness of datasets in the input
and output domains. OpenDP is designed to be generic enough to serve
many different definitions of differential privacy. As such data formats such
as dataframes and many different primitive datatypes are supported and
OpenDP includes support for a variety of different metrics. For simplic-
ity’s sake we consider a simplified OpenDP in which the only datatypes
are vectors of 32 bit signed integers and the metric is always the symmetric
distance.

Listing 2 shows how we define a transformation in this case. The input

domain and output domain keep track of the bounds of the values, while
the function field contains the actual transformation and stability map

contains a function which computes the stability. A transformation T is c-
stable if for two datasets x and y it holds that:

dsym(T(x), T(y)) ≤ c · dsym(x, y)

This definition is described in terms of a factor c and the stability_map in
OpenDP allows for nonlinear stability. However in this thesis we constrain
ourselves to the linear case.

Listing 3 shows how a clamping transformation is implemented. Many op-
erations such as clamping function on a row-by-row basis, that is in the case
of a vector on a element-by-element basis. As such fn make_clamp declares
that its output domain will be constrained to the given bounds and then
passes a closure that clamps an i32 to the make_row_by_row_fallible func-
tion. This function in turn constructs a new instance of the Transformation

type and defines the struct field function as a closure that iterates over all
the elements of the vector while applying the passed clamping function to
each element. make_row_by_row_fallible also sets the stability map to
be the multiplication with a factor of one, which is equivalent to the identity
function, since the clamping transformation is 1-stable.
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2.5. OpenDP

1 fn clamp(value: i32, bounds: &Bounds) -> Fallible<i32> {

2 if bounds.min > bounds.max { Err(())}

3 else if value < bounds.min { Ok(bounds.min) }

4 else if value > bounds.max { Ok(bounds.max) }

5 else { Ok(value) }

6 }

7

8 fn make_row_by_row_fallible(

9 input_domain: VectorDomain,

10 output_row_domain: AtomDomain,

11 row_function: impl 'static + Fn(&i32) -> Fallible<i32>

12 ) -> Transformation {

13 let output_domain = VectorDomain {

14 element_domain: output_row_domain

15 };

16 Transformation {

17 input_domain,

18 output_domain,

19 function: Function(Rc::new(move |arg: &Vec<i32>| {

20 arg.iter().map(&row_function).collect()

21 })),

22 stability_map: StabilityMap(Rc::new(

23 move |d_in: u32| d_in*1

24 ))

25 }

26 }

27

28 fn make_clamp(input_domain: VectorDomain, b: Bounds)

29 -> Transformation {

30 let output_row_domain = AtomDomain {

31 bounds: Some(b.clone())

32 };

33 make_row_by_row_fallible(

34 input_domain,

35 output_row_domain,

36 move |arg: &i32| { clamp(*arg, &b) }

37 )

38 }

Listing 3: Definition of a clamping transformation in OpenDP
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2.6. Modular Product Programs

Many of the transformations covered in the OpenDP LATEX proofs share the
same postconditions. We have chosen to verify the following properties, due
to their common occurrence and central importance in OpenDP:

• Appropriate output domain: Applying a transformation to an element
of the input domain results in an element of the output domain or
alternatively raises a runtime exception. For example after applying a
clamping transformation to a vector of integers, all elements contained
in it have to be within the specified clamping bounds or a runtime
error is raised.

• Stability guarantee: Let u and v be any two vectors which have a sym-
metric distance of d, then the results of applying the transformation
to u and v have a symmetric distance of stability(d) or less. For a
c-stable transformation T this is equivalent to the symmetric distance
dsym(T(u), T(v)) having an upper bound of c · dsym(u, v) and as such is
exactly equivalent to the definition of being c-stable.

• Data-independent runtime exceptions: If a transformation raises a run-
time error, that error cannot be dependent on the data passed to the
transformation, only on the transformation itself. This ensures that no
information about the data is leaked through this side channel.

2.6 Modular Product Programs

The stability guarantee and data-independent runtime exceptions properties
are hyperproperties, as they do not describe properties of just one execution
but relate two executions. For example, the data-independent runtime ex-
ception property can be expressed as follows: For two executions of the
same function, where all parameters are the same except for the data, both
must either return the same error or no error.

Hyperproperties are well-studied in formal verification and one approach
for verifying them are product programs, which work by constructing a func-
tion that combines two or more executions of the original function, and
afterwards applying regular verification tools. This approach however suf-
fers from not being modular, and as such does not allow us to reason about
each function separately.

The paper modular product programs [9] presents a refinement of product
programs which allows for modular verification of hyperproperties. The
implementation is available for use in Viper in the form of a plugin1 which
provides a rel keyword that allows us to refer to a variable in one of two
executions. This can be seen in Listing 4 for the example of a Viper method

1https://github.com/viperproject/silver-sif-extension
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2.6. Modular Product Programs

implementing the function f (x) = x3. The ensures postcondition encodes
the definition of monotonicity (∀x∀y x < y =⇒ f (x) < f (y)) by asserting
that, given that the argument x in a first execution (rel(x,0)) is less then
the argument x in a second execution (rel(x,1)), then the result of the first
execution is less than the result of the second execution (rel(res, 0) <

rel(res, 1)). Due to this approach, which supports modular verification,
a method returning 2 * cubic(x) also fulfills the monotonicity property by
only using the specification of cubic without taking its implementation into
account.

1 method cubic(x: Int) returns (res: Int)

2 ensures rel(x,0) < rel(x,1) ==> rel(res, 0) < rel(res, 1)

3 { res := x * x * x; }

Listing 4: Using the rel keyword to show that a cubic function is a mono-
tonically increasing function
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Chapter 3

Implementation

The goal of this project is to verify the properties of OpenDP as outlined in
Chapter 2. To achieve this goal a range of Prusti features, including support
for fundamental Rust language features, as well as Prusti-specific function-
ality, are required. Since Prusti was being rewritten while this project was
taking place, these features were implemented as part of this project.

The implementation of these features makes up a major part of this project.
While the strategies for encoding types and functions draw inspiration from
old Prusti, the code can not simply be copied and adapted from old Prusti
due to the significant design improvements made to Prusti. As a result, in
most cases the code is written without consulting the source code of old
Prusti. Because Prusti is being rewritten as a collaboration between multiple
contributors, not everything described in this chapter is implemented by us.
Wherever applicable, the sections of this chapter denote which functionali-
ties predate our work and how we extended them.

This chapter describes the implementation work done as part of this project
by first presenting a high level description of the architecture of Prusti and
then describing the implemented features. By starting with simple exam-
ples of primitive types and moving on to more involved Rust features such
as structs and enums, as well as mutability and their corresponding encod-
ing in Viper, we construct an approximation of OpenDP’s clamping trans-
formation. The chapter concludes with how hyperproperties, such as data-
independent runtime exceptions, are proven using Prusti.

3.1 Architecture of Prusti

Prusti and old Prusti share an overall design of using the Rust compiler
(rustc) as a library. By doing so we avoid parsing Rust code manually and
ensure that Prusti is always dealing with valid Rust programs. That is, if
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3.1. Architecture of Prusti

rustc rejects a program due to syntax or type errors, or invalid lifetimes,
we never run Prusti on it. Prusti works by offering a rustc-compatible
command-line interface and as such integrates into the regular build system
for Rust projects. Prusti translates Rust’s Mid-level Intermediate Representation
(MIR) into Viper code. MIR is a simplified representation of Rust code, in
the form of a control-flow graph with all types being explicit.

Prusti features such as #[requires(...)] , #[ensures(...)] , forall(...
) and old(...) are implemented through a crate called prusti contrac

ts, which exposes these features as regular functions and macros to Rust
programs. As such, if a Rust project with Prusti annotations is compiled
without Prusti enabled, these annotations have no effect. Since Prusti aims
to make formal verification accessible to developers, as opposed to being pri-
marily targeted at formal verification experts, regular Rust syntax is used in
Prusti specifications. However, some minimal syntactic extensions are made
available in specifications, which are implemented using the standard pro-
cedural macro facilities provided by Rust. For example Prusti offers an ===

operator which does not exist in standard Rust; this is detected by Prusti’s
macros and is rewritten as a function call.1

To encode the Viper type representation of a struct, Prusti needs to know
the type representation of each field. However, we cannot simply fully re-
cursively encode all the types as that might lead to infinite loops. In old
Prusti the mechanisms to avoid this caused code duplication and maintain-
ability issues. Prusti solves this with a pattern called the TaskEncoder. The
trait TaskEncoder is implemented on individual encoders, each responsi-
ble for a small task, such as an encoder for constants or an encoder for types.
Each of the TaskEncoder implementations has three main associated types:

• TaskKey: A complete description of the task to be performed. For the
type encoder this would be the MIR representation of that type.

• OutputFull: The result of the encoding. For the above encoder this is
the resulting Viper domain including all functions and axioms.

• OutputRef: A partial result of the encoding that suffices to refer to it.
In the case of the type encoder this is the name of the resulting Viper
domain.

In addition to these types each TaskEncoder implements a method do encod

e full which has a parameter of type TaskKey and produces an OutputFull.
The implementations of do encode full are required to call the emit out

put ref method to produce an OutputRef. There is no explicit separation
between generating the OutputRef and the OutputFull, both are created
while the encoders are recursively calling each other. However, we avoid

1This snapshot equality operator will be explained in Section 3.9.
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3.2. Encoding Primitive Type Snapshots

infinite loops, as long as emit_output_ref is always called by an encoder
before its output is needed in the recursion.

The TaskEncoders use a thread-local cache, with the Viper expressions be-
ing stored in an allocation arena2. Note that the TaskEncoder as presented
here is simplified, in reality it also handles encoding errors and the function
signatures contain lifetimes dependent on the allocation arena. The pattern
was not designed by us as part of the project, but is utilized in the code
written by us.

Once all TaskEncoders have finished executing, Prusti produces the textual
representation of Viper code and the Viper command-line tools are then
manually ran on these text files. This is only a temporary solution and the
aim is to eventually use the Java Native Interface (JNI) to directly create the
Viper expressions as Java objects in memory, as is already the case in old
Prusti.

The following sections describe how Rust types, expressions and functions
are translated into Viper. In broad terms we define two encodings: The snap-
shot encoding for mathematically pure computations and immutable values,
which uses Viper domains and functions, and the predicate encoding for
mutable values, which uses Viper predicates, permissions and methods. For
each Rust type T we define a snapshot type s T and a predicate type p T . As
mentioned in the previous section, Prusti operates on MIR and not directly
on the Rust source code. The examples in this section however are shown as
Rust source code, since this is easier to understand and the concepts apply
in the same way.

3.2 Encoding Primitive Type Snapshots

As described before, the OpenDP library uses transformations to determin-
istically transform data. A simple but realistic transformation is the one
which clamps all integers in a vector between two integers. This will be
our running example. As such we first define a function to clamp a single
integer, as shown in Listing 5, annotated with a Prusti contract.3

In order to translate any Rust function to Viper we need to encode all the
types used by the function. Since all the arguments as well as the return
value of the clamp function are of the type i32, it suffices to encode that
type. Fundamentally, primitive types such as integers and booleans are
modeled utilizing their corresponding Viper type. Note however that we
cannot directly use a Viper Int to model a Rust i32, since the Viper Int is

2Using the bumpalo crate https://github.com/fitzgen/bumpalo
3The postcondition min ≤ result would also hold but it was left out for simplicity’s

sake.
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3.2. Encoding Primitive Type Snapshots

1 #[ pure ] #[ requires(min <= max) ] #[ ensures(result <= max) ]

2 fn clamp(value: i32, min: i32, max: i32) -> i32 {

3 if value < min { min }

4 else if value > max { max }

5 else { value }

6 }

Listing 5: Rust function to clamp a 32-bit integer annotated with Prusti
attributes

1 domain s_i32 {

2 function s_i32_cons(Int): s_i32

3 function s_i32_read(s_i32): Int

4

5 axiom ax_i32_cons_read {

6 forall val: Int :: {s_i32_cons(val)}

7 s_i32_read(s_i32_cons(val)) == val

8 }

9 axiom ax_i32_cons {

10 forall self: s_i32 :: {s_i32_read(self)}

11 s_i32_cons(s_i32_read(self)) == self

12 }

13 axiom s_i32_bounds {

14 forall self: s_i32 :: {s_i32_read(self)}

15 -2147483648 <= s_i32_read(self) <= 2147483647

16 }

17 }

Listing 6: Snapshot encoding of an i32

1 function f_clamp(value: s_i32, min: s_i32, max: s_i32): s_i32

2 requires s_i32_read(min) <= s_i32_read(max)

3 ensures s_i32_read(result) <= s_i32_read(max)

4 {

5 s_i32_read(value) < s_i32_read(min) ? min

6 : s_i32_read(value) > s_i32_read(max) ? max : value

7 }

Listing 7: Viper encoding of the clamp function from Listing 5
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a mathematical, and thus unbounded integer, while Rust integer types are
constrained by their fixed size. We instead define a snapshot type using
Viper domains: For each primitive Rust type T we define a Viper domain

called s T . In this domain we define a constructor function named s T cons

which, given an argument of the primitive Viper type which corresponds
to T , returns a value of the snapshot type s T . We also define a function
s T read which is the inverse of s T cons. Furthermore we define axioms
to ensure that these functions behave as intended. Values of snapshot types
are intended to represent Rust values at a specific point in time and as such
do not support in-place mutation.

An example of a primitive type encoded as a snapshot can be seen in List-
ing 6, which shows the constructor function s i32 cons, that, given an Int,
constructs an s_i32, while s i32 read produces an Int when given an
s_i32. The axioms ax i32 cons read and ax i32 cons ensure that these two
functions are in fact inverses of each other. Finally, the axiom s i32 bounds

encodes that an i32 has a bounded size.

With the encoding of i32 completed, we are now able to encode the clamp

function as shown in Listing 7. The Viper function’s signature mirrors the
one of the Rust function: Where the Rust parameter and return types are
i32, the Viper function in turn utilizes s_i32 snapshot types. The if,
else if, else expression in Rust is encoded as a pair of Viper ternary op-
erators. To perform the comparisons in the if conditions the s_i32_read

function is used to convert the snapshot type into a Viper Int, since there is
no concept of performing order comparisons on values of the type s_i32, be-
cause s_i32 is a Viper domain. The precondition and postcondition of the
Rust clamp function were encoded as Viper requires and ensures. Note
how the conditions are encoded in the same fashion as the body of the func-
tion.

The snapshot encoding is used for this function since it is annotated with the
Prusti #[pure] attribute. When our work on the Prusti code base started,
the snapshot encoding of primitives and the fundamental functionality to
translate Rust code into Viper expressions were already implemented and
used to encode contracts. We implemented an encoder for #[pure] func-
tions which builds upon this existing implementation. Furthermore, we
extended the implementation with functionality needed in function bodies
such as support for comparison operators, and by improving the generation
of the ternary chains from if else expressions. In addition, we also con-
tributed bug fixes to the thread-local cache, to the mechanism for querying
rustc for the bodies of functions, and to allow functions without pre- or
postconditions.

15



3.3. Encoding Struct Snapshots

3.3 Encoding Struct Snapshots

One of the main composite data types in Rust is the struct. We can adapt
our fn clamp example from Listing 5 to take a struct Bounds instead of
two separate i32 arguments for minimum and maximum value as seen in
Listing 8. For this we need to encode structs in Prusti as can be seen in
Listing 9. This encoding is similar in structure to the one of primitive types.
A domain s Bounds is created for the struct with a constructor function
which takes one parameter for each field. We also define a snapshot field
function for each field, that, given a parameter of type s Bounds, returns a
snapshot of the corresponding field. Axioms ensure that the constructor and
snapshot field functions behave as expected.

Now that we have encoded the type, we can discuss the encoding of the
actual function, as can be seen in Listing 10. The structure is the same as
in the primitive case, using two ternary operators, primarily differing by
the function arguments: Instead of taking two arguments min and max of
type s_i32, the function takes one argument bounds of type s Bounds and
retrieves the values of the fields min and max by using the function calls s

Bounds field min(bounds) and s Bounds field max(bounds) respectively.
The s_i32_read function is still called on the result of the snapshot field
functions since the function calls return s_i32.

The encoding of structs as snapshots was already implemented when we
started our work on the project. We implemented support for expressions
using structs such as constructing them and accessing fields. We also needed
to change some of the triggers of the axioms to allow verification to com-
plete.

1 struct Bounds { min: i32, max: i32 }

2

3 #[ pure ]

4 fn clamp(value: i32, bounds: Bounds) -> i32 {

5 if value < bounds.min { bounds.min }

6 else if value > bounds.max { bounds.max }

7 else { value }

8 }

Listing 8: Rust function to clamp a 32-bit integer using a struct to pass the
bounds
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1 domain s_Bounds {

2 axiom ax_s_Bounds_cons_field_min {

3 forall f0: s_i32, f1: s_i32 :: {s_Bounds_cons(f0, f1)}

4 s_Bounds_field_min(s_Bounds_cons(f0, f1)) == f0

5 }

6 axiom ax_s_Bounds_cons_field_max {

7 forall f0: s_i32, f1: s_i32 :: {s_Bounds_cons(f0, f1)}

8 s_Bounds_field_max(s_Bounds_cons(f0, f1)) == f1

9 }

10 axiom ax_s_Bounds_cons {

11 forall self: s_Bounds ::

12 {s_Bounds_cons(s_Bounds_field_min(self),

s_Bounds_field_max(self))}↪→

13 s_Bounds_cons(s_Bounds_field_min(self),

s_Bounds_field_max(self)) == self↪→

14 }

15

16 function s_Bounds_cons(s_i32, s_i32): s_Bounds

17 function s_Bounds_field_min(s_Bounds): s_i32

18 function s_Bounds_field_max(s_Bounds): s_i32

19 }

Listing 9: Snapshot encoding of the struct Bounds from Listing 8

1 function f_clamp(value: s_i32, bounds: s_Bounds): s_i32 {

2 s_i32_read(value) < s_i32_read(s_Bounds_field_min(bounds))

3 ? s_Bounds_field_min(bounds)

4 : s_i32_read(value) > s_i32_read(s_Bounds_field_max(bounds))

5 ? s_Bounds_field_max(bounds)

6 : value

7 }

Listing 10: The Viper encoding of the function seen in Listing 8

3.4 Encoding Enum Snapshots

In Rust exceptional control flow is not modeled by using a language con-
struct such as exceptions, but instead by using a Result<T, E> enum. Enums
are disjoint union types (or sum types) and as such each variant has an as-
sociated integer discriminant which is used at runtime to distinguish values
of different variants. An idiomatic approach to handling the case where
the Bounds are invalid, specifically where the minimum is larger than the
maximum, can be seen in Listing 11, which shows the clamp function ex-
tended with a check for the validity of the bounds. The listing also defines a
postcondition which, using a match expression, ensures that if the result is
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1 enum Result { Ok(i32), Err }

2

3 #[ pure ]

4 #[ ensures(match result {

5 Result::Err => true,

6 Result::Ok(value) => value <= bounds.max

7 }) ]

8 fn clamp(value: i32, bounds: Bounds) -> Result {

9 if bounds.min > bounds.max { Result::Err }

10 else if value < bounds.min { Result::Ok(bounds.min) }

11 else if value > bounds.max { Result::Ok(bounds.max) }

12 else { Result::Ok(value) }

13 }

Listing 11: Clamping function returning an enum

Ok(value), then the condition value <= bounds.max holds, whereas in the
case that the result is an Err this trivially cannot hold as there is no value.
Usually the generic Result<T, E> from the Rust standard library would
be used, but due to limitations in Prusti this is not yet supported and we
instead define a Result type specific to this use case.

Listing 12 shows how this enum is encoded in Viper. We define a function
s Result discr to get the discriminant of an enum instance, as well as a
constructor function for each of the variants. An axiom ensures that the
discriminant is always valid, while for each variant an axiom ensures that
the discriminant of the constructor is as expected. For the variant with a
field, the snapshot field function s Result Ok read 0 (Line 18) is defined
similarly to how it is defined for structs, consequently, if the enum variant
had more fields or other variants had fields, then more such functions would
be defined. Additional axioms are defined to establish the relation between
the constructor and the snapshot field function.

The body and the contract of the function are then encoded in the same
way as in the struct case, while match expressions are encoded as ternary
chains using comparisons of the discriminant.4 Listing 13 shows this on
the example of the postcondition. A function called p_Bool_unreachable

is used to model the fact that the last branch of the ternary chain is not
reachable. p_Bool_unreachable is simply a nullary function returning an
s_bool with pre- and postconditions of false. Such a function is generated
for all snapshot types.

Explicit discriminants Note how the s_Result_discr function returns an
s_isize instead of a Viper Int. This is the case since accessing the discrimi-

4This is the case because conditional jumps in MIR are translated to such ternary chains.
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1 domain s_Result {

2 function s_Result_discr(s_Result): s_isize

3 function s_Result_Ok_cons(s_Int_i32): s_Result

4 function s_Result_Err_cons(): s_Result

5

6 axiom s_Result_discr_bounds {

7 forall self: s_Result ::

{s_isize_read(s_Result_discr(self))}↪→

8 0 <= s_isize_read(s_Result_discr(self)) &&

s_isize_read(s_Result_discr(self)) <= 1↪→

9 }

10 axiom ax_s_Result_Ok_cons_discr {

11 forall f0: s_i32 :: {s_Result_discr(s_Result_Ok_cons(f0))}

12 s_Result_discr(s_Result_Ok_cons(f0)) == s_isize_cons(0)

13 }

14 axiom ax_s_Result_Err_cons_discr {

15 s_Result_discr(s_Result_Err_cons()) == s_isize_cons(1)

16 }

17

18 function s_Result_Ok_read_0(s_Result): s_i32

19 axiom ax_s_Result_Ok_cons_read_0 {

20 forall f0: s_i32 :: {s_Result_Ok_cons(f0)}

21 s_Result_Ok_read_0(s_Result_Ok_cons(f0)) == f0

22 }

23 axiom ax_s_Result_Ok_cons {

24 forall self: s_Result ::

{s_Result_Ok_cons(s_Result_Ok_field_0(self))}↪→

25 s_Result_Ok_cons(s_Result_Ok_field_0(self)) == self

26 }

27

28 }

Listing 12: Snapshot encoding of the Result enum as seen in Listing 11
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1 function f_clamp(value: s_i32, bounds: s_Bounds): s_Result

2 ensures s_Bool_read(

3 s_isize_read(s_Result_discr(result)) == 1

4 ? s_Bool_cons(true)

5 : (s_isize_read((s_Result_discr(result)))) == 0

6 ? s_Bool_cons(s_i32_read(s_Result_Ok_read_0(result)) <=

s_i32_read(s_Bounds_field_max(bounds)))↪→

7 : p_Bool_unreachable()

8 ) { /* ... */ }

Listing 13: Viper encoding of the clamping function returning an enum as
seen in Listing 11

1 #[ repr(i8) ]

2 enum Color { Red = 42, /* ... */ }

1 domain s_Color {

2 axiom ax_s_Color_Red_cons_discr {

3 s_Color_discr(s_Color_Red_cons()) == s_i8_cons(42)

4 }

5 // ... `cons_discr` axioms for other colors

6 axiom s_Color_discr_values {

7 forall self: s_Color :: {s_i8_read(s_Color_discr(self))}

8 s_i8_read(s_Color_discr(self)) == 42 ||

9 // other discriminants

10 }

11 function s_Color_discr(s_Color): s_i8

12 function s_Color_Red_cons(): s_Color

13 // other constructors ...

14 }

Listing 14: Rust enum with an explicitly set discriminant and the corre-
sponding Viper snapshot encoding
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nant is done directly in the MIR code and as such the discriminant needs to
be an actual Rust type. This is exemplified further in Listing 14 where the
discriminant is explicitly set to the value 42 and the type of the discriminant
is manually set to an i8.

We implemented enum support in Prusti in its entirety as part of this project:
This includes the snapshot type encoding, enum usage in #[pure] functions
and specifications, as well as refactoring the encoder for structs to allow for
code reuse.

3.5 Encoding Mutable Primitive Types

The functions we use as examples so far are labeled as #[pure] . This al-
lows us to use them in contracts, however #[pure] functions are not able to
mutate data and the entire function has to be able to be encoded as a single
Viper expression to be able to become a Viper function. This restricts which
language features are usable in #[pure] functions.

All Rust functions not labeled as #[pure] are encoded as Viper methods.
We need Viper methods if we want to be able to support Rust language
features such as loops, or if we mutate function arguments. For this we need
a second representation of types called the predicate encoding, as snapshots
types do not support in-place mutation.

A primitive type T is encoded by defining a field f T of type s T and a
predicate p T which allows access to the Viper field. Additionally, we de-
fine a snapshot function p T snap to convert a p T into an s T , which is
implemented directly by accessing the field. We define an abstract method
assign p T to convert a value of a snapshot type into its corresponding
value of the predicate type and store it in a Ref: The method takes a param-
eter self of type Ref as well as an s T and has postconditions ensuring that
after the method call p T (self) holds and that if self is converted back to
a snapshot using the snapshot function, it is equivalent to the second value
passed to the assign p T function. This can be seen in Listing 15 on the
example of an i32.

1 field f_i32: s_i32

2 predicate p_i32(self: Ref) { acc(self.f_i32) }

3 function p_i32_snap(self: Ref): s_i32 requires p_i32(self)

4 { unfolding p_i32(self) in self.f_i32 }

5

6 method assign_p_i32(self: Ref, self_new: s_i32)

7 ensures p_i32(self) && p_i32_snap(self) == self_new

Listing 15: Predicate encoding of an i32
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Listing 16 shows how our original primitive clamping function from List-
ing 5 is encoded with the predicate-based approach using a Viper method.
Note that instead of returning a value the first argument of the method is
a Ref which is used to pass back the result as can be seen on line 10. The
MIR basic blocks are converted to Viper labels and gotos are used to jump
to them. The user-provided pre- and postconditions are encoded by first
converting the arguments to their snapshot representation using their corre-
sponding snapshot functions and then encoding the conditions analogously
to #[pure] functions. Additionally, the methods also include specifications
that encode the type of the Ref arguments and return values using pred-
icates. Since the predicate-based encoding allows for mutation, the post-
conditions need to use old(...) correctly when referring to arguments, as
omitting the old(...) calls causes them to refer to the arguments in their
state after the execution of the method.

The encoding described here was already implemented before this thesis
started, however, for the clamping example to be successfully translated
into Viper, our previously described additions to the snapshot encoding of
primitive types, such as the implementation of comparison operators, are
required. Since it was not implemented as part of this project, we forego
a detailed explanation of the mechanism for encoding method bodies and
instead present an abstract overview of the process: The basic blocks of the
Rust MIR are each converted to a label in Viper, while the free place capability
summary analysis (freepcs) is used to determine where to insert fold, unfold
and exhale statements.5 Overall this process is guided by and made simpler
by Rust’s ownership rules.

Functions labeled #[pure] get Viper method encoding in addition to the
previously described function encoding. This allows for future features such
as verifying unsafe code and can be used to detect bugs in rustc: If the Rust
compiler erroneously allows code which violates the ownership rules, Viper
could reject that code, as it would lead to unsatisfied accessibility predicates.

3.6 Encoding Mutable Structs

Listing 17 shows how a struct is encoded as a predicate in Viper. For each
field of the struct we create a predicate field function, which is an abstract
Viper function with parameter and return type Ref. These predicate field
functions model accessing a field in the struct by taking a reference to the
struct and returning a reference to the field. We use abstract functions in-
stead of Viper fields to model struct fields because this resembles the real
memory representation of a Rust struct more closely: Unless explicitly de-

5The exhale statements where omitted from the listings as they do not aid in under-
standing.
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1 method m_clamp(return_value: Ref, value: Ref, min: Ref, max:

Ref)↪→

2 requires p_i32(value) && p_i32(min) && p_i32(max)

3 requires s_i32_read(p_i32_snap(min)) <=

s_i32_read(p_i32_snap(max))↪→

4 ensures p_i32(return_value)

5 ensures s_i32_read(p_i32_snap(return_value)) <=

s_i32_read(old(p_i32_snap(max))) {↪→

6 // ... declare temporary variables

7

8 assign_p_Bool(cond_tmp,

s_Bool_cons(s_i32_read(p_i32_snap(value_tmp)) <

s_i32_read(p_i32_snap(min_tmp))))

↪→

↪→

9 if (s_Bool_read(p_Bool_snap(cond_tmp)) == false){goto bb_1}

10 assign_p_i32(return_value, p_i32_snap(min))

11 goto end

12

13 label bb_1

14 assign_p_Bool(cond_tmp,

s_Bool_cons(s_i32_read(p_i32_snap(value_tmp)) >

s_i32_read(p_i32_snap(max_tmp))))

↪→

↪→

15 if (s_Bool_read(p_Bool_snap(cond_tmp)) == false) { goto bb_2

}↪→

16 assign_p_i32(return_value, p_i32_snap(max))

17 goto end

18

19 label bb_2

20 assign_p_i32(return_value, p_i32_snap(value))

21

22 label end

23 }

Listing 16: Predicate encoding of the primitive clamp function from Listing 5
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1 function p_Bounds_field_min(self: Ref): Ref

2 function p_Bounds_field_max(self: Ref): Ref

3

4 predicate p_Bounds(self: Ref) {

5 p_i32(p_Bounds_field_min(self)) &&

p_i32(p_Bounds_field_max(self))↪→

6 }

7

8 function p_Bounds_snap(self: Ref): s_Bounds

9 requires p_Bounds(self)

10 { unfolding p_Bounds(self) in

(s_Bounds_cons(p_i32_snap(p_Bounds_field_min(self)),

p_i32_snap(p_Bounds_field_max(self)))) }

↪→

↪→

11

12 method assign_p_Bounds(self: Ref, self_new: s_Bounds)

13 ensures p_Bounds(self) && p_Bounds_snap(self) == self_new

Listing 17: Predicate encoding of the Bounds struct from Listing 5

clared, the fields of a struct in Rust are not references, but are directly laid
out next to each other in memory as part of the struct. As such the predicate
field functions represent offsets into the struct. We then use the predicate
field functions to define the predicate p_Bounds for the struct. The body of
the predicate consists of the conjunction of the predicates of the field types
applied to the predicate field functions. In other words, p_Bounds(x) holds
if all the predicate field functions of Bounds applied to x satisfy the predi-
cate of the type of that field. As in the primitive case we define a snapshot
function to convert from the predicate encoding to the snapshot encoding,
which for structs is implemented by creating a snapshot of each field and
applying the snapshot constructor of the struct to them. The assign method
operates identically to the primitive case, ensuring that the Ref passed can
be converted to a snapshot correctly.

Listing 18 shows how the clamp function from Listing 8, which takes a
struct as a parameter, is translated to a Viper method. This is analogous to
the primitive case with the exception that it uses the predicate field func-
tions. Also note that unfold statements are needed to access the assertions
specified by the body of the predicate. The fold and unfold statements are
generated based on the freepcs analysis and were not implemented as part
of this project.

The predicate encoding of structs already existed in Prusti when this thesis
started, however we built upon this for the predicate encoding of enums.
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1 method m_clamp(return_value: Ref, value: Ref, bounds: Ref)

2 requires p_i32(value) requires p_Bounds(bounds)

3 ensures p_i32(return_value) {

4 // ... variable declarations

5 unfold p_Bounds(bounds)

6 assign_p_i32(min, p_i32_snap(p_Bounds_field_min(bounds)))

7 assign_p_Bool(cond_tmp, s_Bool_cons((s_i32_read_0(

p_i32_snap(value_tmp))) <

(s_i32_read_0(p_i32_snap(min)))))

↪→

↪→

8 if (s_Bool_read_0(p_Bool_snap(cond_tmp)) == false){goto bb_1}

9 assign_p_i32(return_value,

p_i32_snap(p_Bounds_field_min(bounds)))↪→

10 //...

11 fold p_Bounds(bounds)

12 }

Listing 18: Predicate encoding of the clamp function which takes a struct as
an argument from Listing 8

3.7 Encoding Mutable Enums

Listing 19 shows how the Result enum from the enum example is encoded
as a predicate. The discriminant is stored as a Viper field p_Result_discr.
A predicate for each variant is generated (p Result Ok, p Result Err) which
behaves similarly as if the variant was a struct, as such predicate field func-
tions are generated for the fields of the enum variants as can be seen with
p Result Ok field 0. A predicate for the entire enum p_Result is gen-
erated which bounds the value of the discriminant and includes a ternary
chain which calls the predicate for the variants depending on the value of
the discriminant.

The snapshot function p_Result_snap unfolds the predicate to access the
discriminant field and gain access to the inner predicates, which then are
unfolded depending on the value of the discriminant and, as with structs,
snapshots of each fields are created and the snapshot constructor of the
enum is called with the field snapshots as arguments. Finally assign p Res

ult is defined exactly the same as for structs.

The clamping function is translated to a Viper method analogously to the
struct case, differing only in returning an Err by assign p Result(return

value, s Result Err cons()) and wrapping each of the return values in
Ok such as assign p Result(return value, s Result Ok cons(p i32 snap

(. . .)).

The predicate encoding of enums was implemented in its entirety as part of
this project, while reusing parts of the predicate encoder for structs.
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1 field p_Result_discr: s_isize

2 function p_Result_Ok_field_0(self: Ref): Ref

3 predicate p_Result_Ok(self: Ref)

{p_i32(p_Result_Ok_field_0(self))}↪→

4 predicate p_Result_Err(self: Ref) {true}

5

6 predicate p_Result(self: Ref) {

7 (acc(self.p_Result_discr) && 0 <=

s_isize_read(self.p_Result_discr) &&

s_isize_read(self.p_Result_discr) <= 1)

↪→

↪→

8 && (

9 s_isize_read(self.p_Result_discr) == 1 ? p_Result_Err(self)

10 : s_isize_read(self.p_Result_discr) == 0 ? p_Result_Ok(self)

11 : false

12 )}

13

14 function p_Result_snap(self: Ref): s_Result

15 requires p_Result(self) {

16 unfolding p_Result(self) in s_isize_read(self.p_Result_discr)

== 0↪→

17 ? unfolding p_Result_Ok(self) in

s_Result_Ok_cons(p_i32_snap(p_Result_Ok_field_0(self)))↪→

18 : unfolding p_Result_Err(self) in s_Result_Err_cons()

19 }

Listing 19: Predicate encoding of the Result enum

3.8 Encoding Function Calls

We have described how both #[pure] and non-pure functions are encoded.
Calling a function from another function is directly implemented by a corre-
sponding Viper call. As described before for #[pure] functions we generate
both a Viper method and a Viper function. When calling a function in a
pure context, that is in a specification or in the body of a #[pure] function,
we have to call the Viper function as it is not possible to call Viper methods
in these contexts. Even when doing a call in an impure context we prefer to
call the Viper function and only call the method if the called function is not
#[pure] and thus has no Viper function. We prefer to use the Viper func-
tion since Viper can take the body of a function into account at the call site,
whereas with a method only the contract can be used. Listing 20 shows how
the call to a function in a Viper method is encoded depending on whether
the called function is #[pure] or not.
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1 fn client(i: i32) -> i32 { clamp(i, Bounds{min: 10, max: 20}) }

1 assign_p_i32(tmp_i, p_i32_snap(i))

2 assign_p_Bounds(tmp_bounds, s_Bounds_cons(s_i32_cons(10),

s_i32_cons(20)))↪→

3

4 // If the clamp function is not #[pure]

5 m_clamp(return_value, tmp_i, tmp_bounds)

6

7 // If the clamp function is #[pure]

8 assign_p_i32(return_value, f_clamp(p_i32_snap(temp_i),

p_Bounds_snap(tmp_bounds)))↪→

Listing 20: Function call encoding depending on whether the called function
is #[pure].

3.9 Snapshot Equality

In Rust the == and != operators are available for values of types which imple-
ment the PartialEq trait. Since it is desirable to be able to express structural
equality between values in Prusti specifications, even if the operands do not
implement PartialEq, Prusti introduces a snapshot equality operator (===)
which uses snapshot types to determine equality. The snapshot equality
operator is simply implemented by converting the two operands into their
snapshot representation, if they are not already, and then using the Viper ==
operator which is defined for types defined with a Viper domain.

Note that the macro preprocessing to implement the syntax for === was al-
ready implemented when our work on this project started. We did however
implement the translation of the operator to Viper.

3.10 Trusted Functions

While we were able to implement a significant number of features, there are
still many features that Prusti does not yet support. Even once all language
features are implemented in Prusti, there will still be correct functions which
we will not be able to verify due to their complexity, the use of unsafe or
the use of unstable language features. It is also desirable to be able to skip
verification for specific parts of a code base, which allows a user to focus
on particularly critical functions, such as central algorithms, while ignoring
less interesting parts of a program, for example code implementing a GUI.

For this case Prusti introduces the concept of #[trusted] functions. When
a function is annotated as #[trusted] Prusti will not check that the post-
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3.10. Trusted Functions

1 pub struct Vector { len: usize, contents: i32 }

2

3 impl Vector {

4 #[ pure ] #[ trusted ]

5 #[ requires(idx < self.len) ]

6 fn get(self, idx: usize) -> i32 {/* ... */ }

7

8 #[ trusted ]

9 #[ requires(idx < self.len) ]

10 #[ ensures(result.0 == self.get(idx)) ]

11 #[ ensures(result.1 === self) ]

12 fn impure_get(self, idx: usize) -> (i32, Self) {/* ... */ }

13

14 #[ trusted ]

15 #[ requires(idx < self.len) ]

16 #[ ensures(self.len == result.len) ]

17 #[ ensures(result.get(idx) == value) ]

18 #[ ensures(forall(|i : usize| (i < self.len && i != idx)

19 ==> result.get(i) == self.get(i))) ]

20 fn set(self, idx: usize, value: i32) -> Self {/* ... */ }

21 }

Listing 21: Implementation of a vector datatype using trusted functions

conditions of that function can be proven and will instead assume that they
hold.

We can use this for example to simulate having a Vector type, as can be
seen in Listing 21, despite Prusti not yet supporting arrays or the Vec<T>

type from the Rust standard library. We define a struct Vector as well as
a get method that, given an index of type usize, returns an element of
type i32. For this method we define only a precondition asserting that the
idx has to be within bounds. Usually, a function such as get would take
a shared reference &self instead of taking ownership of self, but shared
references are not yet supported in Prusti. With this signature get can only
be called once as it consumes the Vector argument. To work around this we
also define a method impure_get which has postconditions encoding that
the method will return the Vector unchanged as well as the result of calling
get. Both of these get methods are annotated with #[trusted] and as such
their implementations are ignored.

We also define a set method with postconditions such that the Vector

returned is the same at all indexes except at the index where the new
value was inserted. With this we have created an axiomatized equivalent
of a Vec<i32>. Note how the Vector struct has an unused i32 field called
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3.11. Verifying Hyperproperties

contents, which is necessary as otherwise for any two vectors u and v with
u.len == v.len it would hold that u === v by the definition of snapshot
equality, since all the snapshot fields are identical. As such, all vectors of the
same length would have the same contents. By giving the Vector an addi-
tional field which is never mentioned in any of the specifications we avoid
this issue. Intuitively this field models the actual contents of the vector.

#[trusted] is implemented by not emitting a body for the function, result-
ing in an abstract Viper function. It is important to note that #[trusted]
functions can cause unsoundness, for example if a function is annotated
with #[trusted] and #[ensures(false)] this function can be used to
prove anything. The syntax for #[trusted] attributes was already imple-
mented when this work started, detecting #[trusted] functions in Prusti
and emitting an abstract Viper function was implemented as part of this
project.

3.11 Verifying Hyperproperties

As described before, two of the properties we want to show are hyperprop-
erties. As such we cannot directly show them using regular Viper. However,
we can utilize the Viper plugin from the modular product programs paper
as described in the background chapter. The plugin provides a rel keyword
which can be used as rel(expr,0) or rel(expr,1) to refer to an expres-
sion expr in one of two executions. We implemented syntax in Prusti as
rel0(expr) and rel1(expr) which correspond to the plugin syntax. Note
that while these are regular functions in Rust syntax we cannot actually treat
them as regular functions: If rel1 was a regular function, then an expression
such as rel1(f(expr)) would be equivalent to let x = f(expr); rel1(x)

which in turn in Viper would then become let x = f(expr) in rel(x,1).
This is however semantically different from rel(f(expr),1) as this does not
refer to the expr from execution 1 and instead is equivalent to just f(expr).
As such we need preprocessing to mitigate this: An expression such as
rel1(expr) is translated to the expression { rel1_start(); let r = expr;

rel1_end(); r }. The marker functions rel0_start and rel0_end have no ef-
fect at runtime, but Prusti detects the occurrences of these marker functions
in its macros and changes its behavior to wrap all function parameters and
return values in the corresponding rel call, which for rel1(f(arg1, arg2))

where arg1 and arg2 are function parameters, results in Viper code equiv-
alent to f(rel(arg1,1), rel(arg2,1)). This works in particular since the
arguments at this point are snapshots. Corresponding rel0 marker func-
tions are used in the case when rel0 is used.

Listing 22 shows an example use case for rel, which verifies successfully.
If any of the Ok branches were changed to Err, verification would fail. The
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3.12. Optimizer

1 #[ ensures(rel0(&bounds) === rel1(&bounds) ==>

2 match (rel0(&result), rel1(&result)) {

3 (Result::Err,Result::Err) => true,

4 (Result::Ok(_),Result::Ok(_)) => true,

5 _ => false,

6 }) ]

7 fn clamp(value: i32, bounds: Bounds) -> Result {

8 if bounds.min > bounds.max { Result::Err }

9 else if value < bounds.min { Result::Ok(bounds.min) }

10 else if value > bounds.max { Result::Ok(bounds.max) }

11 else { Result::Ok(value) }

12 }

Listing 22: Prusti postcondition showing that the clamp function has data-
independent errors using the rel0 and rel1 syntax

postcondition encodes that if the two bounds are the same, that is the func-
tion calls only differ in their value parameters, then the result has to be
either an Err in both cases or in neither: The errors of the function are
independent from the value.

The same preprocessing also is also required for old as there too old(f(foo))

is not equivalent to let x = f(foo) in old(x).

3.12 Optimizer

To improve readability of the generated Viper code and potentially improve
performance, we implemented some basic optimizations including simple
boolean simplifications. In addition to this, for variables v1 and v2 and an
expression e, we transform expressions of the shape let v1 = e in v1 into e,
as well as let v1 = v2 in e into e[v1 7→ v2]. To work around some further
issues with triggering, we prototyped an optimizer pass which inlines all
variables. It also simplifies snapshot field function calls of constructors, for
example by transforming Foo field x(Foo cons(a,b,c,d)) into c, given
that the field x is the third parameter of the Foo constructor function. Note
that due to Viper bugs or missing triggers in our generated Viper code the
optimizer is currently required for some of the examples presented in this
thesis to verify.
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Chapter 4

Verifying OpenDP

This chapter discusses how the implemented Prusti features described in
the previous chapter are used to verify the desired properties of OpenDP.
As outlined in the background chapter, OpenDP uses numerous Rust fea-
tures which do not yet have support in Prusti, among them closures, loops,
iterators and generics.

This chapter starts by describing a simplified clamping transformation which
only uses features currently supported by Prusti. The code is then annotated
with Prusti specifications to verify the appropriate output domain as well as
the data-independent runtime exceptions properties. The chapter concludes
with an approach to verifying the stability guarantees once additional Rust
language features are supported by Prusti. This is illustrated with an imple-
mentation directly written as Viper code.

4.1 Simplified Clamping

Since Prusti does not yet support all the features needed for OpenDP, no-
tably closures, loops, iterators and generics, we further simplify the code
and reduce it down to its core functionality.

This implementation of clamping over all elements of a Vector can be seen
in Listing 23. Due to the lack of generics we utilize two separate enums for
errors instead of one generic one. Instead of using a generic transformation
holding a closure, the code is limited to just one fixed transformation with a
struct ClampTransform representing a clamping transformation containing
the Bounds. We define a clamp method on ClampTransform which clamps
the provided integer to the Bounds, as well as a clamp_impure method which
does the same while not being #[pure] , returning the ClampTransform for
further use and handling the case that the Bounds are invalid by returning
a FallibleI32. As such, the clamp functions is essentially the same as
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4.1. Simplified Clamping

1 struct Bounds { max: i32, min: i32 }

2 struct ClampTransform { bounds: Bounds }

3 enum FallibleVec { Ok(Vector), Err }

4 enum FallibleI32 { Ok(i32), Err }

5

6 fn apply_row_by_row(transform: ClampTransform, data: Vector)

7 -> (FallibleVec, ClampTransform) {

8 if data.len <= 0

9 { return (FallibleVec::Ok(data), transform); }

10

11 let l = data.len;

12 apply_row_by_row_rec(transform, data, l - 1)

13 }

14

15 fn apply_row_by_row_rec(

16 mut transform: ClampTransform, mut data: Vector, idx: usize,

17 ) -> (FallibleVec, ClampTransform) {

18 if idx >= 1 {

19 (data, transform) = match apply_row_by_row_rec(transform,

data, idx - 1) {↪→

20 (FallibleVec::Ok(vec), transform) => (vec, transform),

21 (FallibleVec::Err, transform) =>

22 return (FallibleVec::Err, transform),

23 };

24 }

25

26 let (cur, data) = data.impure_get(idx);

27 let (clamped, transform) = transform.clamp_impure(cur);

28 if let FallibleI32::Ok(clamped) = clamped {

29 let data = data.set(idx, clamped);

30 return (FallibleVec::Ok(data), transform);

31 }

32 (FallibleVec::Err, transform)

33 }

Listing 23: Simplified clamping transformation only using features sup-
ported by Prusti
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4.2. Appropriate Output Domain

the function seen in Listing 8, while clamp_impure is essentially the same
function as seen in Listing 22.1 The existence of clamp_impure is necessary,
due to a lack of support for references, as described for the impure_get

function on the Vector type and as such the ClampTransform passed to
clamp_impure is never modified.

Instead of looping over an iterator to apply the transformation to all ele-
ments of a vector, we use a recursive definition as can be seen in apply r

ow by row rec, which processes the vector starting from the end. At first
it recurses by calling itself with the index reduced by one and handles the
case that the recursive call fails by returning an error (Line 22). After the re-
cursion, the function processes the value at index idx by getting its current
value from the vector, applying clamp_impure to it and finally writing the
new value back to the vector. In the case that this call to clamp_impure fails,
an error is returned (Line 32). This function too takes a ClampTransform and
returns it unmodified, due to the lack of support for references.

The function apply row by row then wraps apply row by row rec to pro-
vide an easy to use signature.

4.2 Appropriate Output Domain

Recall the definition of the appropriate output domain property: Applying
a transformation to an element of the input domain results in an element
of the output domain or alternatively raises a runtime exception. For the
clamping transform presented here the input domain is the set of all i32
and the output domain are the integers which are within the bounds. As
such the appropriate output domain property holds in this case if after ap-
plying a clamping transformation to a vector, all elements contained in it
are within the specified clamping bounds or a runtime error is raised. Note
that unlike the original OpenDP implementation we do not keep track of
the input and output domains in the transformation type. However, we
can statically ensure that the appropriate output domain property holds,
using Prusti assertions to formally verify this. Listing 24 shows the specifi-
cation required. To work with the FallibleI32 type we define a function
unwrap i32 to access the value in the Ok case if we can prove that it is not an
Err; for this we define a function that we use to indicate that the Err branch
in unwrap_i32 is unreachable.2 The same is done for FallibleVec.

apply_row_by_row_rec is then annotated with a precondition on line 12,
ensuring that the idx is a valid index for the vector. The first postconditions
on line 13 ensures that the transformation argument is not modified. We also

1The exact definitions can be seen in the Appendix in Listing 33.
2In theory this should be possible by using the Rust unreachable!() macro. This is

however not yet supported in Prusti.
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4.2. Appropriate Output Domain

1 #[ trusted ] #[ pure ] #[ requires(false) ]

2 fn unreachable_i32() -> i32 { unreachable!() }

3

4 impl FallibleI32 {

5 #[ pure ] #[ requires(matches!(self, FallibleI32::Ok(_))) ]

6 fn unwrap_i32(self) -> i32 {

7 match self { FallibleI32::Ok(val) => val,

8 FallibleI32::Err => unreachable_i32() }

9 }

10 }

11

12 #[ requires(data.len >= 1) ] #[ requires(idx < data.len) ]

13 #[ ensures(result.1 === transform) ]

14 #[ ensures(transform.bounds.min <= transform.bounds.max <==>

15 matches!(result.0, FallibleVec::Ok(_))) ]

16 #[ ensures(matches!(result.0, FallibleVec::Ok(_)) ==>

17 result.0.unwrap_vec().len === data.len) ]

18 #[ ensures(matches!(result.0, FallibleVec::Ok(_)) ==>

19 forall(|i: usize| (i > idx && i < data.len) ==>

20 result.0.unwrap_vec().get(i) == data.get(i))) ]

21 #[ ensures(matches!(result.0, FallibleVec::Ok(_)) ==>

22 forall(|i: usize| (i <= idx && i < data.len) ==>

23 result.0.unwrap_vec().get(i) ==

transform.clamp(data.get(i)))) ]↪→

24 fn apply_row_by_row_rec(

25 mut transform: ClampTransform, mut data: Vector, idx: usize

26 ) -> (FallibleVec, ClampTransform)

Listing 24: Contracts ensuring the appropriate output domain property
property holds for the clampin transformation

guarantee that if and only if the min bound is less than or equal to the max
bound, then the function will return an Ok value with the postcondition
on line 14. The last three postconditions are conditioned on the function
returning an Ok result, as otherwise, the unwrapping of the vector is not
well-defined, because the precondition of the unwrap vec function would
not be fulfilled. The first of these three postconditions (Line 16) describes
that the returned vector has the same length as the argument vector. The
second postcondition (Line 18) asserts that all elements of the vector with
an index greater than idx remain unchanged. Finally, on line 21 the third
postcondition asserts that all elements of the vector with an index less then
or equal to idx have been clamped.

Listing 25 shows how the apply row by row function uses the guarantees
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4.3. Data-independent Runtime Exceptions

1 #[ ensures(result.1 === transform) ]

2 #[ ensures((transform.bounds.min <= transform.bounds.max ||

data.len == 0) <==>↪→

3 matches!(result.0, FallibleVec::Ok(_))) ]

4 #[ ensures(matches!(result.0, FallibleVec::Ok(_)) ==>

5 result.0.unwrap_vec().len === data.len) ]

6 #[ ensures(matches!(result.0, FallibleVec::Ok(_)) ==>

7 forall(|ip: usize|(ip < data.len) ==>

8 result.0.unwrap_vec().get(ip) ==

transform.clamp(data.get(ip)))) ]↪→

9 fn apply_row_by_row(transform: ClampTransform, data: Vector)

10 -> (FallibleVec, ClampTransform)

Listing 25: Contract for the appropriate output domain property of
apply row by row

provided by apply row by row rec to ensure that all values in the vector
have been clamped, provided that an Ok result is returned. This follows
directly from the postconditon of apply row by row rec, which is called
by apply_row_by_row with an idx equal to one less than the length of the
vector. Note that due to an implementation detail an additional data.len ==
0 option is needed on the ensures specification which asserts that the result
will be Ok if and only if the bounds are valid, as, in the case that the length of
the vector is 0, the bounds will never be checked. With this we have shown
that the appropriate output domain property holds for ClampingTransform.

4.3 Data-independent Runtime Exceptions

When introducing rel we showed in Listing 22 how a clamping function on
integers can be proven to have data-independent runtime exceptions. This
specification can be applied to the clamp_impure method on the ClampT

ransform to allow us to extend the data-independent runtime exceptions
property from clamping integers to clamping vectors. Listing 26 shows the
postconditions needed in addition to the contract from the appropriate out-
put domain property from Listings 24 and 25 to accomplish this. For app

ly row by row rec to the left of the implication we assert that in both exe-
cutions the idx and transform have to be the same or, in other words, that
only the data vector is allowed to differ between the two executions. Using
this contract this hyperproperty of the function can be verified using Prusti.

However, applying this postcondition to apply row by row results in a ver-
ification failure. This is because apply row by row does in fact not satisfy
the data-independent runtime exceptions property, since as stated before the
bounds are never checked for vectors of length 0. As such the implementa-
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4.3. Data-independent Runtime Exceptions

1 #[ ensures((rel0(idx) == rel1(idx) && rel0(&transform) ===

rel1(&transform)) ==>↪→

2 match (rel0(&result.0), rel1(&result.0)) {

3 (FallibleVec::Err,FallibleVec::Err) => true,

4 (FallibleVec::Ok(_),FallibleVec::Ok(_)) => true,

5 _ => false,

6 }) ]

7 fn apply_row_by_row_rec(mut transform: ClampTransform, mut data:

Vector, idx: usize)↪→

8

9 #[ ensures(rel0(&transform) === rel1(&transform) ==>

10 match (rel0(&result.0), rel1(&result.0)) {

11 (FallibleVec::Err,FallibleVec::Err) => true,

12 (FallibleVec::Ok(_),FallibleVec::Ok(_)) => true,

13 _ => false,

14 }) ]

15 fn apply_row_by_row(transform: ClampTransform, data: Vector)

Listing 26: Additional postconditions that together with the specifications
from Listings 24 and 25 ensure the data-independence of errors

tion can never raise an error if the vector is empty. While OpenDP mitigates
this issue by only allowing valid Bounds objects to be constructed this con-
stitutes a mistake in their LATEX proofs: While they do require that the row

function, which in our case is the clamp impure function, only produces
data-independent errors, this does not cover the case, that given that the row

function raised an error, we learn that the vector cannot have been empty.

To allow apply row by row to verify, we can introduce the additional re-
quirement that the two vectors in the two executions have to be of the
same length, by adding an additional requirement of rel0(&data.len) ===

rel1(&data.len) to the left of the implication. In addition to demonstrat-
ing that Prusti can in fact successfully verify this hyperproperty, this also
shows that for bounded DP, the data-independent runtime exceptions prop-
erty holds, as in bounded DP only vectors of the same length can be neigh-
boring. However, to show the property for unbounded DP, the implementa-
tion of the function would have to be modified.

This exemplifies that, even for simple functions, formally verifying hyper-
properties is a worthwhile endeavor: Despite the relative simplicity and sim-
ilarity between these functions, a small implementation detail in the wrap-
ping function leads to the property being violated in a subtle way.
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4.4. Stability Guarantee

4.4 Stability Guarantee

Due to missing Prusti features, including arithmetic operations in contracts,
we are unable to verify the stability guarantee property in Prusti. We are
however able to show the property directly in Viper as a proof of concept.
We directly write the Viper equivalent of our Vector type in the form of
a predicate Vec and get and len functions, as well as a set method. We
also define a valid_index(vec, idx) function as a shorthand for 0 <= idx

< len(v).3

Using this we define a Viper version of the clamping function as seen in
Listing 27. This function takes a Vec and uses a loop to clamp every element.
The function clamp(v: Int): Int, which is called in the loop, does not
have a body which demonstrates that everything in this section also holds
for arbitrary transformations as long as they are performed on a element-
by-element basis. The loop invariant of the clamp_vector function encodes
the same concept as the postconditions on apply_row_by_row_rec did.

Recall the definition of the stability guarantee for a 1-stable transformation,
such as clamp: For any pair of vectors u and v which have a symmetric
distance of d, the results of applying the transformation to u and v have a
symmetric distance of d or less.

To describe the concept of the symmetric distance between two vectors we
will utilize bijective functions, which we model using a Viper domain as can
be seen in Listing 28, where we define translate and translate_invert

1 method clamp_vector(V: Ref)

2 requires Vec(V) ensures Vec(V) && len(V) == old(len(V))

3 ensures forall i: Int :: valid_index(V, i) ==>

4 get(V, i) == old(clamp(get(V, i))) {

5 var i: Int := 0;

6 while(i < len(V))

7 invariant Vec(V) && len(V) == old(len(V)) && 0 <= i

8 invariant forall x: Int :: (valid_index(V, x) && x < i) ==>

get(V, x) == clamp(old(get(V, x)))↪→

9 invariant forall x: Int :: (valid_index(V, x) && x >= i) ==>

get(V, x) == old(get(V, x)) {↪→

10 set(V, i, clamp(get(V, i)))

11 i := i + 1;

12 }

13 }

Listing 27: Clamping of all values in a vector directly implemented in Viper

3The full listing of this can be seen in the appendix in Listing 32
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4.4. Stability Guarantee

1 domain Mapping {

2 function keys(self: Mapping) : Set[Int]

3 function values(self: Mapping): Set[Int]

4 }

5 function translate(m: Mapping, key: Int) : Int

6 requires |keys(m)| == |values(m)| && key in keys(m)

7 ensures result in values(m)

8 function translate_invert(m: Mapping, value: Int) : Int

9 requires |keys(m)| == |values(m)| && value in values(m)

10 ensures result in keys(m)

11

12 function is_bijection(m: Mapping) : Bool {

13 |keys(m)| == |values(m)| &&

14 forall v : Int :: v in values(m) ==>

translate(m,translate_invert(m, v)) == v↪→

15 }

Listing 28: Viper domain modeling a bijective function

functions, which are used to apply the mapping or its inverse respectively.
The domain defines functions keys and values which return the set that cor-
responds to the domain and range of the mapping function. We then define
a function is_bijection which uses the translate and translate_invert

functions to determine whether a function is in fact bijective.

Symmetric distance of 0 If for two vectors A and B it holds that dsym(A, B) =
0 then len(A) = len(B) and there exists a bijective function m from the
indexes of A to the indexes B such that B[m(i)] = A[i] for all indexes i of
A. Using this fact, the clamp vector method can be extended with pre-
and postconditions to model this case as seen in Listing 29. We introduce
a precondition requiring that the lengths of the two vectors in the different
runs are the same. We also require that the keys and values of the mapping
are the same and that the sets of keys and values is exactly the same as
the set of valid indexes for the vector. We then require that the symmetric
distance is 0 initially by asserting that our mapping m can map each index
of the rel0 vector to an equivalent one of the rel1 vector. We then simply
have the same assertion as a postcondition.

Symmetric distance of 1 The symmetric distance of two vectors A and B
can only be exactly 1 if they differ in length by exactly 1. In which case for
dsym(A, B) = 1 it must hold that Ms(A) ⊂ Ms(B) for the case that len(A) +
1 = len(B). We show the slightly more general case of len(A) ≤ len(B) ∧
Ms(A) ⊆ Ms(B). Listing 30 shows the case in which the rel0 vector is
longer and the rel1 vector is contained within it. We have preconditions
requiring that the rel0 vector is longer than or equal in length to the rel1
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4.4. Stability Guarantee

1 method clamp_0(V: Ref, m: Mapping)

2 requires Vec(V)

3 // ...

4 requires rel(len(V),0) == rel(len(V),1) && rel(m,0) == rel(m,1)

5 requires keys(m) == values(m)

6 requires is_bijection(m)

7 requires forall i: Int :: i in keys(m) <==> valid_index(V, i)

8 //Symmetric distance is 0

9 requires forall i: Int :: rel(valid_index(V, i),0) ==>

rel(get(V,translate(m,i)),0) == rel(get(V, i),1)↪→

10 // Mapping still holds

11 ensures is_bijection(m)

12 ensures forall i: Int :: rel(valid_index(V, i),0) ==>

rel(get(V,translate(m,i)),0) == rel(get(V, i),1)↪→

Listing 29: Additional specification for Listing 27 to show the stability guar-
antee for a symmetric distance of 0

vector. We then require that the values of m are a subset of the indexes
of rel0 and that the keys of m are exactly the same set as the indexes of
rel1. As such we can then require that each index of rel1 can be mapped
to an index in rel0 such that they share the same value. And since m is
a bijection this means that the symmetric distance must be the difference
in length between the two. By requiring that the mapping still holds as a
postcondition we prove that the symmetric distance does not increase.

Symmetric distance of 2 The previous section covers some of the cases in-
cluded in dsym(A, B) = 2. The left over cases are the ones where A and B
have the same length and each one has an element not in the other. We can
model this by allowing our mapping to not have a corresponding index in
the other vector in exactly one case. Listing 31 shows this with the extra
index stored in an argument extra B index.

In conclusion while we do not cover all possible cases for the stability guar-
antee, we do cover the most important ones, namely:

• dsym(A, B) = 0

• len(A) ≤ len(B) ∧ Ms(A) ⊆ Ms(B) which includes all cases of
dsym(A, B) = 1 except for switching A and B. The case of dsym(A, B) =
1 corresponds to unbounded differential privacy, where two datasets
are considered neighboring if one can be obtained form the other by
adding or removing one entry.

• len(A) = len(B) ∧ dsym(A, B) = 2 this corresponds to bounded
differential privacy, where we consider two datasets neighbors if one
can be obtained from the other by changing one entry.
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1 method apply_clamp_longer(V: Ref, m: Mapping)

2 requires Vec(V)

3 // ...

4 requires rel(len(V),0) >= rel(len(V),1) // rel0 is longer

5 requires rel(m,0) == rel(m,1)

6 requires is_bijection(m)

7 requires forall i: Int :: i in values(m) ==> rel(valid_index(V,

i),0)↪→

8 requires forall i: Int :: i in keys(m) <==> rel(valid_index(V,

i),1)↪→

9 requires forall i: Int :: rel(valid_index(V, i),1) ==>

rel(get(V,translate(m,i)),0) == rel(get(V, i),1)↪→

10 // Mapping still holds

11 ensures is_bijection(m)

12 ensures forall i: Int :: rel(valid_index(V, i),1) ==>

rel(get(V,translate(m,i)),0) == rel(get(V, i),1)↪→

Listing 30: Additional contract for Listing 27 to show the stability guarantee
for a symmetric distance of 1

1 method clamp_same_len(V: Ref, m: Mapping, extra_B_index: Int)

2 requires Vec(V)

3 // ...

4 requires rel(len(V),0) == rel(len(V),1)

5 requires rel(m,0) == rel(m,1) && rel(extra_B_index,0) ==

rel(extra_B_index,1)↪→

6

7 requires keys(m) == values(m)

8 requires is_bijection(m)

9 requires forall i: Int :: i in keys(m) <==> valid_index(V, i)

10 requires forall i: Int :: i in values(m) <==> valid_index(V, i)

11 // Symmetric distance is at most 2

12 requires forall i: Int :: rel(valid_index(V, i),0) ==>

(rel(get(V,translate(m,i)),0) == rel(get(V, i),1)) || i ==

extra_B_index

↪→

↪→

13 // Mapping still holds

14 ensures is_bijection(m)

15 ensures forall i: Int :: rel(valid_index(V, i),0) ==>

(rel(get(V,translate(m,i)),0) == rel(get(V, i),1)) || i ==

extra_B_index

↪→

↪→

Listing 31: Additional specifications for Listing 27 to show the stability guar-
antee for the case where the two vectors have the same length and each has
one element not contained in the other
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4.5. Performance Evaluation

In addition to the rel-based clamp vector method presented here we im-
plemented an alternative, more manual approach to show the stability guar-
antee property, by instead defining the clamp vector method as taking two
vectors and a Mapping without using the rel Viper plugin. In this case the
method applies clamping to both vectors and the Mapping relates the two
vector arguments. This is mostly equivalent to the internal encoding pro-
duced by the Viper plugin when using the rel keyword, as it constructs a
product program. However, this manual approach suffers from the down-
side that not all of the cases shown can share the same canonical body from
Listing 27, as for example in the case where the second vector is longer by
one element this last element of the second vector would have to be clamped
separately after the loop. The manual approach may be more intuitive to un-
derstand and allows for the method to be called directly, as the two vector
arguments are available to the caller and thus the mapping can be com-
puted. This is opposed to the clamp vector method using rel, where it is
impossible to directly construct such a Mapping, since it relates the elements
of rel0 and rel1, which represent the abstract concepts of vectors in dif-
ferent executions. The rel-based clamp vector method represents the idea
that, given that such a mapping exists, this property is upheld. We choose
to present the rel version here because it resembles the original clamping
method more closely, which takes a single vector argument and shares one
method body across all presented cases. Since both the rel-based and man-
ual approach verify correctly, we are convinced that this approach is correct.

4.5 Performance Evaluation

While performance has not been a focus of the implementation work in this
project, verification passing in a reasonable amount of time is still important.
We took approximate time measurements on an AMD Ryzen 7 5800X with
32GiB 3200 MHz DDR4 RAM using both of the available Viper backends,
the verification-condition-generation-based carbon as well as the symbolic-
execution-based silicon.

Verifying the appropriate output domain and data-independent runtime ex-
ceptions properties with Prusti using the silicon Viper backend takes around
2 minutes, while the carbon backend did not finish. On the other hand, the
stability guarantee property as shown directly in Viper takes around 6 sec-
onds to verify using the carbon backend and around 4 to 8 minutes when
using silicon.4

4Silicon version 1.1-SNAPSHOT (cb319dee@(detached))
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Chapter 5

Conclusion

As part of this project we implemented additions to the Prusti formal ver-
ifier, including support for foundational Rust language features as well as
hyperproperties utilizing a preexisting Viper plugin. We use the features we
implemented to verify properties, including hyperproperties, of a simplified
version of the OpenDP library’s clamping transformation. In particular we
show that the appropriate output domain property holds, while the data-
independent runtime exceptions property is not satisfied: The resulting vec-
tor is guaranteed to only contain values that are within the specified bounds,
but if the transformation results in an error, this error is not guaranteed to
be independent of the passed data vector. In particular, it is not possible
for the transformation to result in an error as a result of being given invalid
bounds if the given data is the empty vector. In OpenDP this bug is mit-
igated by only allowing valid bounds to be constructed, however, this still
technically constitutes a mistake in the manual OpenDP LATEX proofs in the
general case, since an attacker who observes an error message generated by
a transformation can learn that the data cannot have been the empty vector.

Using the underlying Viper mechanisms we also show the stability guaran-
tee property of the transformation: After applying the transformation to two
neighboring datasets, the two datasets remain neighboring. We show this
for the case of the symmetric distance for both bounded and unbounded dif-
ferential privacy. Showing that this property can be proven in Viper demon-
strates the feasibility of proving the stability guarantee in Prusti, given that
some additional features are implemented.

This work is part of an ongoing rewrite of Prusti and demonstrates that
the new Prusti architecture can be leveraged to swiftly implement new fea-
tures, encompassing Rust language features such as enums, Prusti-specific
features such as #[pure] functions and integration with an external Viper
plugin. It also demonstrates that applying formal verification tools, in par-
ticular Prusti, to differential privacy libraries is feasible and can uncover
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5.1. Future Work

subtle errors which are difficult to spot efficiently without the use of auto-
mated verification tools.

5.1 Future Work

Since the stability guarantee was shown directly in Viper and not in Prusti,
in a next step one can first implement the prerequisite Prusti features and
then verify this property in Prusti. Implementing additional Rust language
features in Prusti such as loops, iterators, generics and closures which are
heavily utilized by OpenDP, but not yet available in Prusti, will allow for
the verification of code which is closer to the original OpenDP code base.
The theoretical foundations of these features have already been established
in the previous implementation of Prusti.

Lastly, this thesis focused on verifying properties of transformations while
not considering measurements. To prove the correctness of differentially
private algorithms it is necessary to verify measurements as well. However,
verifying properties of measurements involves modeling their inherently
probabilistic nature, which poses a considerable challenge for both Prusti
and Viper.
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Appendix A

Appendix

A.1 Additional Listings

1 predicate Vec(v: Ref)

2

3 function valid_index(v: Ref, idx: Int): Bool

4 requires Vec(v) { 0 <= idx < len(v) }

5

6 function get(v: Ref, idx: Int): Int

7 requires Vec(v) && valid_index(v, idx)

8

9 function len(v: Ref): Int requires Vec(v)

10

11 method set(v: Ref, idx: Int, val: Int)

12 requires Vec(v) && valid_index(v, idx)

13 ensures Vec(v) && len(v) == old(len(v))

14 ensures get(v, idx) == val

15 ensures forall i: Int :: (i >= 0 && i< len(v) && i != idx)

==> get(v, i) == old(get(v, i))↪→

Listing 32: A vector datatype modeled directly in Viper
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A.1. Additional Listings

1 impl ClampTransform {

2 #[ ensures(result.bounds === bounds) ]

3 fn make_clamp(bounds: Bounds) -> Self {

4 Self { bounds }

5 }

6

7 #[ pure ]

8 #[ requires(self.bounds.min <= self.bounds.max) ]

9 fn clamp(self, data: i32) -> i32 {

10 if data < self.bounds.min {

11 (self.bounds.min)

12 } else if data > self.bounds.max {

13 (self.bounds.max)

14 } else {

15 (data)

16 }

17 }

18

19 #[ ensures(self.bounds.min <= self.bounds.max <==>

matches!(result.0, FallibleI32::Ok(_))) ]↪→

20 #[ ensures(self.bounds.min <= self.bounds.max ==>

result.0.unwrap_i32() === self.clamp(data)) ]↪→

21 #[ ensures(result.1 === self) ]

22 #[ ensures(rel0(&self.bounds) === rel1(&self.bounds) ==>

match (rel0(&result.0), rel1(&result.0)) {↪→

23 (FallibleI32::Err,FallibleI32::Err) => true,

24 (FallibleI32::Ok(_),FallibleI32::Ok(_)) => true,

25 _ => false,

26 }) ]

27 fn clamp_impure(self, data: i32) -> (FallibleI32, Self) {

28 if self.bounds.min > self.bounds.max {

29 (FallibleI32::Err, self)

30 } else if data < self.bounds.min {

31 (FallibleI32::Ok(self.bounds.min), self)

32 } else if data > self.bounds.max {

33 (FallibleI32::Ok(self.bounds.max), self)

34 } else {

35 (FallibleI32::Ok(data), self)

36 }

37 }

38 }

Listing 33: Full implementation of ClampTransform
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