
Automated verification of a Rust differential privacy
library

Master Thesis Project Description

Till Arnold
Supervised by Jonáš Fiala, Anouk Paradis, Prof. Dr. Peter Müller

Department of Computer Science
ETH Zürich

Zürich, Switzerland

I. Introduction and Background

Rust [1] is a system programming language which guar-
antees memory safety. While Rust eliminates common
classes of bugs and security vulnerabilities such as dangling
pointers, data races and buffer overruns, it does not ensure
the general functional correctness of programs. Functional
correctness can be checked by static verifiers, which tradi-
tionally, especially for system languages, require a formal
verification expert to provide complex program specifica-
tions.

Prusti [2] is a verifier for Rust which allows non-expert
users, such as programmers, to provide simpler specifica-
tions, syntactically close to regular Rust code. Internally
Prusti translates Rust code into the Viper [3] interme-
diate verification language. The functional correctness of
the Rust program then follows from the proof that the
translated Viper program is correct. Listing 1 shows a
simple example of a Rust program annotated with Prusti
attributes.

Differential privacy (DP) describes an approach which
allows for the computation of statistics while preserving
the privacy of individuals who contributed to the input
dataset. This is accomplished by introducing noise to the
result in such a way that, for any two datasets which are
“close” to each other, for some notion of closeness, such as
for example the datasets only differing by the answers of a
single individual, the results are approximately the same.
This inherently reduces the accuracy of the statistical
results. However, differentially private algorithms are able
to explicitly calculate this reduction in accuracy as well as
the amount of privacy which is afforded to each individual
and can often be parameterized to prioritize one over the
other.

OpenDP [4] is an open-source library of differentially
private algorithms implemented in Rust. In broad terms,
OpenDP works by constructing two kinds of operators:
transformations, which are deterministic functions from
datasets to datasets, and measurements, which are ran-
domized functions from datasets to outputs of arbitrary
types. Transformations have a stability parameter and

1 struct Account { bal: u32 }
2

3 impl Account {
4 #[pure]
5 fn balance(&self) -> u32 { self.bal }
6

7 #[ensures(self.balance() ==
8 old(self.balance()) + amount)]
9 fn deposit(&mut self, amount: u32) {

10 self.bal = self.bal + amount;
11 }
12

13 #[requires(amount <= self.balance())]
14 #[ensures(self.balance() ==
15 old(self.balance()) - amount)]
16 fn withdraw(&mut self, amount: u32) {
17 self.bal = self.bal - amount;
18 }
19

20 #[requires(amount <= self.balance())]
21 #[ensures(self.balance() ==
22 old(self.balance()) - amount)]
23 fn transfer(&mut self, other: &mut Account,
24 amount: u32) {
25 self.withdraw(amount);
26 other.deposit(amount);
27 }
28 }
29

Listing 1: Simple example for the attributes Prusti
uses to annotate functions. This example is taken from
account.rs from the Prusti tests.

measurements have a privacy loss parameter associated
with it. More complex operators can be constructed by
function composition of transformations with other op-
erators. The stability and privacy loss for operators con-
structed by function composition can directly be computed
from the stability and privacy loss of the underlying
operators. The OpenDP library keeps track of the stability

1



and privacy loss as well as the input and output domains
of each operator. Additionally a notion of closeness of
datasets in the input and output domains, called a met-
ric, is stored with the operator. OpenDP ensures that
the domains and metrics are compatible when applying
function composition, utilizing a mixture of compile time
and runtime checks. [5]

II. Problem Statement
An explicitly stated goal of the OpenDP project is

to “ensure that the only measurements and transforma-
tions that can be constructed by the OpenDP Library
have mathematically proven privacy properties” [5]. For
this purpose the OpenDP project contains textual proofs
for some operators written as LATEX documents stored
alongside their respective Rust implementation. Since the
correctness of the algorithms in OpenDP is of central
importance, the OpenDP project proposes that proofs
should be “verified by a human […] or by a computer […]
for components that are amenable to formal verification
techniques” [5]. Although there is currently no automatic
verification and the project relies solely on verification
by humans, it would be possible to leverage Prusti for
this purpose, especially since OpenDP does not heavily
utilize some more advanced Rust language features, such
as complicated borrow structures, unsafe code or inte-
rior mutability, which are currently not supported within
Prusti and would be difficult to implement. As such,
OpenDP is good candidate for verification with Prusti.

Preliminary investigation of the existing LATEX proofs
indicates that the proven transformations share similar
postconditions, in particular transformations are called
valid if they fulfill the following properties:

• Appropriate output domain: If an element is in the
input domain of a transformation, then applying this
transformation to the element either results in an
element of the output domain of the transformation
or alternatively raises a runtime exception.

• Stability guarantee: For any pair of elements u and
v that are d_in-close under the input metric and if
stability(d_in) ≤ d_out, the results of applying
the transformation to u and v are d_out-close under
the output metric. An analogous property called pri-
vacy guarantee exists for measurements.

• Data-independent runtime exceptions: The runtime
errors raised by transformations have to be data-
independent. This is to prevent leaking any informa-
tion about the data, similarly to how this property
would be desirable in a cryptography library.

The later two properties cannot simply be expressed as
a regular postcondition of the function. For example in
the case of the data-independent runtime exceptions we
are trying to show that for two different executions, which
share all the same parameters aside from the data, the
resulting errors cannot differ. Such properties, which relate
different executions of the same program, are referred

to as hyperproperties and are well understood in formal
verification, there is however currently no support for
this in Prusti. Potential solutions include constructing a
product program [6] or using information flow [7].

The function composition of operators which uphold
these properties should result in operators which them-
selves also uphold the properties. Thus operators con-
structed by function composition of valid operators are
themselves valid.[5]

Finally, while OpenDP is a good fit for verification
with Prusti, many features necessary to verify the above
properties are not currently implemented in Prusti.

III. Core Goals
The main goal of this thesis is to verify parts of the

OpenDP Rust library and to implement the Prusti fea-
tures needed to do so. For this purpose we define the
following core goals:

1) Decide on which parts of OpenDP to verify
and identify the correspondingly necessary
Prusti features. Identify the fundamental and
most useful operators within OpenDP, taking into
account their dependences and preexisting proofs
written by the OpenDP contributors.
Operators with existing proofs are better candidates,
not only because the known pre- and postconditions
lend themselves to a simpler verification process,
but also because more important transformations are
likely to be have been prioritized by the OpenDP
contributors.
From our preliminary investigation of the OpenDP
code, we selected the appropriate output domain
and data-independent runtime exceptions properties
as a focus for this thesis, based on both feasibility
of implementation and usefulness to the verification
process.

2) Implement the Prusti features needed for the
selected properties. Implement the specifications
for the properties and operators, and implement the
Prusti features needed to complete the verification.
This includes improving and extending existing fea-
tures and making them more robust to allow for the
verification of the selected properties to complete.
This might potentially include closures, as they are
contained within the transformation and measure-
ment data structures. Closures in Prusti have been
described and implemented before [8], but are not
supported in the current Prusti version.

3) Evaluate the work. Qualitatively evaluate the
work in regards to the number of verified functions,
the importance of the verified properties to the
OpenDP project, properties which cannot currently
be verified and the reason why this is not feasible
and whether or not actual privacy guarantees can
be made. Include the verified functions in the Prusti
tests.

2



IV. Extension Goals
1) Stability Guarantee: The stability guarantee

property as described above is important, but re-
quires significant implementation work in Prusti.
Once the stability guarantee property for transfor-
mations can be verified using Prusti, it may become
possible to show the analogous privacy guarantee
property for measurements. One potential problem
with the privacy guarantee property could be that
measurements by their nature include randomness,
which may require further reasoning.

2) Additional properties: The list of identified prop-
erties above might be non-exhaustive. If other rel-
evant properties are found during the implementa-
tion, they could also be implemented.

3) Verify more operators: In addition to those oper-
ators with pre-existing LATEX proofs, those without
may still be verified although the necessary precon-
ditions would have to be worked out first.

4) Pure functions returning owned objects: In
Prusti pure function can currently only return values
of types that implement the Copy trait, such as
primitive types. This in particular excludes types
that cause allocations, such as String. In real code
bases such as OpenDP this complicates verification
as many otherwise pure functions do return such
owned objects. For example the Errors returned in
OpenDP contain Strings that provide diagnostic
information, and as such these functions cannot be
treated as pure in Prusti and consequently cannot
be used in pre- and postconditions. Implementing
support for this could benefit the verification effort
on OpenDP.

V. Schedule
• Goal 1: 4 weeks for selection
• Goal 2: 12 weeks for implementation
• Goal 3: 2 weeks for evaluating results
• Extension Goals: 4 weeks
• Writing report: 4 weeks
For a total of 6 months.

References
[1] N. D. Matsakis and F. S. Klock, “The rust language,” in

Proceedings of the 2014 ACM SIGAda Annual Conference on
High Integrity Language Technology, ser. HILT ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p.
103–104. [Online]. Available: https://doi.org/10.1145/2663171.
2663188

[2] V. Astrauskas, P. Müller, F. Poli, and A. J. Summers,
“Leveraging rust types for modular specification and
verification,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA,
oct 2019. [Online]. Available: https://doi.org/10.1145/3360573

[3] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verifi-
cation infrastructure for permission-based reasoning,” in Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI),
ser. LNCS, B. Jobstmann and K. R. M. Leino, Eds., vol. 9583.
Springer-Verlag, 2016, pp. 41–62.

[4] The OpenDP Team, “OpenDP Library.” [Online]. Available:
https://github.com/opendp/opendp

[5] M. Gaboardi, M. Hay, and S. Vadhan, “A programming
framework for opendp,” 2020. [Online]. Available:
https://projects.iq.harvard.edu/files/opendifferentialprivacy/
files/opendp_programming_framework_11may2020_1_01.pdf

[6] M. Eilers, P. Müller, and S. Hitz, “Modular product programs,”
ACM Trans. Program. Lang. Syst., vol. 42, no. 1, nov 2019.
[Online]. Available: https://doi.org/10.1145/3324783

[7] W. Crichton, M. Patrignani, M. Agrawala, and P. Hanrahan,
“Modular information flow through ownership,” in Proceedings
of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, ser. PLDI
2022. New York, NY, USA: Association for Computing
Machinery, 2022, p. 1–14. [Online]. Available: https://doi.org/
10.1145/3519939.3523445

[8] F. Wolff, A. Bílý, C. Matheja, P. Müller, and A. J. Summers,
“Modular specification and verification of closures in rust,” Proc.
ACM Program. Lang., vol. 5, no. OOPSLA, oct 2021. [Online].
Available: https://doi.org/10.1145/3485522

3

https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/3360573
https://github.com/opendp/opendp
https://projects.iq.harvard.edu/files/opendifferentialprivacy/files/opendp_programming_framework_11may2020_1_01.pdf
https://projects.iq.harvard.edu/files/opendifferentialprivacy/files/opendp_programming_framework_11may2020_1_01.pdf
https://doi.org/10.1145/3324783
https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1145/3485522

	Introduction and Background
	Problem Statement
	Core Goals
	Extension Goals
	Schedule
	References

