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Abstract

Gobra is a program verifier for the Go programming language. It allows the
user to specify programs written in the programming language Go and to
verify them. If Gobra succeeds, then the program is guaranteed to satisfy
its specification; otherwise, an error message indicating the source of the
verification error is presented at the level of the source code. Apart from a
tutorial that focuses on the more advanced features of Gobra, there is a lack
of teaching material, especially for beginners.

With this thesis, we create new pedagogical material aimed at Go developers
without prior exposure to verification. Our approach involves translating
a subset of examples and exercises from the book Program Proofs, an
introductory book on program verification in Dafny, to Gobra. Furthermore,
we document the code to explain the features used and how they differ from
Dafny. We also devise a comprehensive comparison between Dafny and
Gobra based on the translated examples and exercises.
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Chapter 1

Introduction

When writing code, it is important to ensure that the program is correct. Even for
experienced programmers, this is very difficult to achieve, especially when working
on larger projects. Testing is one of the methods used to provide some correctness
guarantees. Unfortunately, testing techniques typically only cover a small subset of
all possible program behaviors, and thus are not suitable to prove that a program
is correct. In contrast to testing, program verification can be used to ensure that
all behaviours of a program comply with a formal specification. Verification is
performed by a tool called a program verifier, which receives as input the program
and its specification, which must be written formally and unambiguously, and
outputs whether the program satisfies the specification. Gobra [3], developed at the
Programming Methodology Group at ETH Zurich, is an example of such a program
verifier. It allows the user to specify programs written in the programming language
Go and to verify them. If Gobra succeeds, then the program is guaranteed to
satisfy its specification; otherwise, an error message indicating the source of the
verification error is presented at the level of the source code.

1 requires 0 <= n
2 ensures res == n*(n+1)/2
3 decreases n
4 func sum(n int) (res int) {
5 res = 0
6 i := 0
7 invariant i <= (n+1)
8 invariant res == (i-1)*i/2
9 decreases n-i

10 for ; i <= n; i++ {
11 res = res + i
12 }
13 return res
14 }

Figure 1.1: The function sum written in Go computes the sum of the first n natural numbers. This
function is annotated with a Gobra specification that restricts callers to only passing non-negative
values to n. The postcondition ensures that the result is n*(n+1)/2.
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2 1. Introduction

In Figure 1.1 we exemplify how to specify the function sum that computes the sum
of the first n natural numbers. To that end, we introduce preconditions, with the
requires keyword (line 1) which imply that this function can only be called with
non-negative values and we provide postconditions with the keyword ensures in
line 2, which establishes an obligation for the implementer of this function that
certain properties hold true when the function returns.

Finally, we specify that this function must terminate when it is called. To that end,
we introduce a decreases clause (line 3) which specifies a termination measure.

As typically seen in these kinds of tools, Gobra expects that the user provides loop
invariants to over-approximate the behaviour of the loop. To prove that the loop
terminates, we annotate the loop with a decreases clause that contains a variant,
i.e., an expression that decreases in every iteration of the loop.

Even though program verifiers are extremely effective at proving the absence of
bugs, program verification is still considered an obscure and difficult field with a
steep learning curve and a lack of learning resources aimed at absolute beginners.

With this project, we try to lower the entry barrier of program verification for
developers of mainstream programming languages. To that end, we plan to
provide new pedagogical material aimed at Go developers without prior exposure
to verification. As such, we will devise introductory examples and exercises written
in Go and verified in Gobra. To that end, we will analyse a subset of the examples
and exercises taken from an early draft of the book Program Proofs [10] on
Program Verification which uses Dafny [9] [2], a verification-oriented programming
language, and re-implement them in Go and Gobra. It is an introductory book
on program verification aimed at developers without any experience in program
verification. Given its target audience, the book presents verification from the
most basic concepts, and develops them at a slow pace in multiple examples and
exercises. The version of Dafny that is used in the book is prior to version 4.0 [1],
and thus the examples may differ from what the code would look like in the most
recent version.

The book is split up into three parts, with the first part teaching the basic concepts
like assert statements, method contracts, ghost code and inductive data types.
Additionally, this part introduces multiple features and idioms that help with struc-
turing proofs: it distinguishes intrinsic and extrinsic styles for specification, and
presents lemmas and calc-blocks. The second part of the book introduces features
to write purely functional programs, which are useful for specifying the behaviour
of programs, including those written in an imperative style. These techniques are
exemplified in several examples, that range from simple list modifications to the
implementation of complex data structures with invariants. The last part of the
book focuses on specifying and verifying imperative programs. We are shown how
to deal with programs with loops and programs that mutate the heap. An example
of such an algorithm would be sorting an array.



Chapter 2

Background

The focus of this chapter is to provide the technical background for the thesis.
Section 2.1 contains an overview of important features of Dafny used throughout
this project. Following this, we introduce the Gobra verifier and some of its most
important features.

2.1 Dafny

Dafny is a verification-aware programming language equipped with a static pro-
gram verifier, originally developed at Microsoft Research. It includes constructs
found in imperative programs, like loops and dynamic object allocation, but also
supports features typically seen in functional programming languages, such as
recursive functions and inductive data types. Dafny was used in several large
verification projects like Ironclad [7] and IronFleet [6]. An advantage of Dafny’s
ecosystem is the availability of excellent introductory material, which is aimed at
programmers with no previous exposure to program verification.

Dafny’s Features

The following section is an introduction to some of Dafny’s most important features.
We will refer back to it when talking about the translation in chapter 3 of the report.

Preconditions, Postconditions and Loop Invariants

Preconditions are defined using the requires clause and they are used to restrict
the input space of the method. Post conditions are annotated with the ensures

clause and they specify the expected output of the method. A loop invariant is a
condition that is true immediately before and immediately after each iteration of a
loop.

3



4 2. Background

1 method sum(n: int) returns (res: int)
2 requires 0 <= n
3 ensures res == n*(n+1)/2
4 {
5 res := 0;
6 var i := 0;
7 while(i <= n)
8 invariant i <= (n+1)
9 invariant res == (i-1)*i/2

10 {
11 res := res+i;
12 i := i+1;
13 }
14 }

Figure 2.1: Sum of the n first integers computed in Dafny.

Termination

By default, Dafny tries to prove that the program terminates and it fails if it is not
able to prove it. To that end, it uses heuristics to infer the termination measure
automatically. Unlike the example in Gobra in Figure 1.1 , the Dafny version does
not require a decreases clause. Nonetheless, such a clause can be explicitly
provided in cases where Dafny’s heuristics are insufficient to infer a termination
measure.

Algebraic Data Types

ADTs are types that are defined inductively. Inductive proofs of lemmas can take
advantage of this property by using case distinction and applying the lemma on
the smaller part recursively. Dafny’s ADTs are parameterizable, which means
that they allow generic data types. ADTs can be defined using the datatype

keyword. Figure 2.2 shows an example of an algebraic data type called List that
can represent a sequence of elements of some generic type T. It can either be an
empty list Nil , or a non-empty list Cons that consists of a head element and a tail.
The tail is a List data type as well and represents the rest of the sequence.

1 datatype List <T> = Nil | Cons(head: T, tail: List <T>)

Figure 2.2: A list represented as an ADT.

Lemmas

Figure 2.3 defines an algebraic data type called List. As mentioned in Section
2.1 , it can either be an empty list Nil , or a non-empty list Cons. Another function
that is defined is the Append function that takes two List arguments and returns a
List. The returned list represents the concatenation of the two arguments. The
definition from line 7 to 9 is a lemma called AppendNil that states that appending
Nil to any list xs is the same as xs.
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1 datatype List <T> = Nil | Cons(head: T, tail: List <T>)

2 function method Append <T>(xs: List <T>, ys: List <T>): List <T>
3 ensures Length(Append(xs , ys)) == Length(xs) + Length(ys)
4 {
5 match xs
6 case Nil => ys
7 case Cons(x, tail) => Cons(x, Append(tail , ys))
8 }

9 lemma AppendNil <T>(xs: List <T>)
10 ensures Append(xs, Nil) == xs
11 {}

Figure 2.3: Lemma stating that a list appended by an empty list is a list.

Lemmas are declared using the lemma keyword, and the ensures keyword is used
to specify the postcondition that the lemma needs to prove.

Automatic Induction

Dafny is often capable of automatic proofs by induction in a totally automatic
way. In some cases, the programmer still needs to help the tool by providing
additional facts and instantiating theorems/lemmas explicitly to complete the proof.
The lemma in Figure 2.3 is proven by Dafny’s automatic induction feature and,
therefore, the curly braces can be left empty. Figure 2.4 exemplifies how the proof
would be done with the automatic induction tool turned off.

1 datatype List <T> = Nil | Cons(head: T, tail: List <T>)

2 function method Append <T>(xs: List <T>, ys: List <T>): List <T>
3 ensures Length(Append(xs , ys)) == Length(xs) + Length(ys)
4 {
5 match xs
6 case Nil => ys
7 case Cons(x, tail) => Cons(x, Append(tail , ys))
8 }

9 lemma{: induction false} AppendNil <T>(xs: List <T>)
10 ensures Append(xs, Nil) == xs
11 {
12 match xs
13 case Nil =>
14 case Cons(x, tail) =>
15 calc {
16 Append(Cons(x, tail), Nil);
17 ==
18 Cons(x, Append(tail , Nil));
19 == {AppendNil(tail );}
20 Cons(x, tail);
21 ==
22 xs;
23 }
24 }

Figure 2.4: Manual induction proof of the AppendNil lemma.
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Calc Blocks

Dafny provides the possibility of writing proofs in a calculational style, where the
proof consists of a sequence of terms related by an operation, such as an equality
or an implication. The reasoning behind each of the steps can also be integrated
into the proof. Figure 2.4 shows the calc block feature (lines 15-23) that helps
to make the proof more readable. A calc block can be defined using the calc

keyword.

Function, Method and Function Method

Dafny offers many features that resemble an imperative programming language.
One of them is the method, which is a piece of imperative, executable code. A
method has a body that consists of a series of statements, and it can have multiple
parameters and return types. However, it does not necessarily have to return
something. Methods can receive mutable data structures as arguments and they
are allowed to read from and write to them. In other words, they are allowed to
modify a part of memory space. A method is defined using the method keyword.

Methods are very different from functions, because functions in Dafny define
mathematical functions. As a consequence, they can not have any side effects to
ensure that every time a function is called with the same input, the same output is
returned. Dafny’s functions can have multiple parameters and return types. By
default, functions are ghost and can therefore only be used in specifications. They
are defined using the function keyword.

Because functions are ghost by default, and can therefore not be compiled, Dafny
provides the concept of function methods. They are the non-ghost counterpart to
functions and have the advantage of being compilable.

Ghost Code

Ghost code is a feature of Dafny that helps programmers to write correct code.
Using ghost code, we can specify additional constraints that help Dafny to prove
the correctness of the program. Ghost code is only used for verification purposes
and cannot be compiled, which means that it does not add any additional overhead
at run time. The AppendNil lemma in Figure 2.4 is an example of ghost code.
Other examples of ghost code include ghost functions and ghost variables which
are declared like normal declarations, annotated with the ghost keyword.

Module System

The purpose of a module is to encapsulate methods, types, lemmas and other
definitions. They are used to create reusable components that can be accessed
from other programs. Each module contains an export set, which restricts the
visibility of the definitions to only those that are added to the set. By adding a
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provides clause to the name of the definition in the export set, as exemplified in
13 of Figure 2.5 , only the signature is accessible by the client. On the other hand,
if the reveals clause is added instead, both the signature and the body of the
definition become visible to the client.

1 module PriorityQueue {

2 ...

3 function method Empty (): PQueue {
4 Leaf
5 }

6 predicate method IsEmpty(pq: PQueue) {
7 pq == Leaf
8 }

9 predicate IsMin(y: int , s: multiset <int >) {
10 y in s && forall x :: x in s ==> y <= x
11 }

12 export
13 provides IsEmpty
14 reveals IsMin
15 }

Figure 2.5: Module containing one function method and two predicates.

Dynamic Frames

Typically, functional contracts describe how some locations in the memory are
changed by the call to the method, but rarely do they describe which values have
remained the same. This is problematic when not all memory locations in use are
known to the developer, and thus, the functional contract cannot enumerate all of
the memory locations whose value was unaffected. This problem is often called
the frame problem, and it is a crucial problem in program verification. To deal with
this, Dafny employs the theory of Dynamic Frames [8].

1 method SetToC(a: array <int >, c: int)
2 modifies a
3 {
4 var i := 0;
5 while i < a.Length
6 invariant 0 <= i <= a.Length
7 invariant forall j :: 0 <= j < i ==> a[j] == c
8 {
9 a[i] := c;

10 i := i + 1;
11 }
12 }

Figure 2.6: Dafny method that sets the values of the array to a certain value.

A method that reads from a mutable data structure, passed as an argument, needs



8 2. Background

to be annotated with a reads clause to indicate which parts of the memory are
accessed by the method. This way, Dafny is able to set up a read frame. When
a method writes to a specific heap location, the modifies clause has to be used
instead to specify which memory locations are modified. Dafny is able to set up a
write frame with this information. Figure 2.6 shows an example of a method that
writes to a mutable data structure. The annotation required is the modifies clause
in line 2.

2.2 Gobra

Gobra is an automated, modular verifier for heap-manipulating, concurrent Go
programs. It is a front-end of Viper and was developed at ETH Zurich. A large
subset of Go is supported by Gobra, which includes subtyping via interfaces in a
modular way, global variables and static initializers, closures, goroutines and many
primitive data structures. Advanced concurrency primitives like channels, Mutexes
and WaitGroups are also supported by Gobra. The verifier enforces properties
like memory safety, absence of panics, data-race freedom, as well as functional
correctness.

There are already teaching materials in Gobra like the tutorial [4] , which is a
quick-paced introduction to Gobra, with a big focus on its more advanced features
such as interfaces and concurrency.

As shown in Figure 1.1 , Gobra’s annotations are very similar to those of Dafny.
The following subsections introduce some of the features that are supported by
Gobra.

Functions and Methods

Go supports the concept of a function as well as the concept of a method. The
difference between the two is very subtle, in that a method has a receiver type
and a function does not. The receiver type is usually an object that can be used
and modified by a method. Functions and methods are both defined using the
func keyword.

Pure Functions and Methods

A function or a method in Gobra can be defined as pure if it is deterministic and
does not have side effects. Writing to memory space is therefore forbidden. An
advantage of pure definitions is that they can be used in specifications. In contrast
to pure definitions, non-pure ones are allowed to modify the memory space.

Defining functions and methods as pure brings some restrictions with it. One of
them is that they must have the from return e , where e is a single expression.
Another one is that they must have exactly one return type, and that pure functions



2.2. Gobra 9

or methods are only allowed to call other pure definitions. A function or a method
can be defined as pure using the pure keyword.

Ghost Code

Gobra’s notion of ghost code is similar to the one in Dafny, in that it is also only
used for verification purposes and cannot be compiled. If a whole function or
method is defined as ghost, it means that all of the in- and output parameters are
implicitly ghost. It also means that these functions and methods are allowed to use
constructs that are available in Gobra but not in Go, such as ADTs or sequences.
Ghost code can be defined using the ghost keyword.

Packages

Packages are a way to encapsulate definitions and reuse their functionality in
other programs, much like the module feature that Dafny provides. Go has two
levels of accessibility, public and private. Public functions or methods are indicated
by a name that starts with an uppercase letter, and they can be accessed from
outside the package. Unlike Dafny, the programmer does not have fine-grained
control over the symbols that he imports. Importing a package immediately brings
all public symbols such as methods, constants and variables into context. Private
functions or methods start with a lowercase letter.

Algebraic Data Types

In the course of our bachelor thesis, the implementation of ADTs was merged into
Gobra. It was developed by another student as part of his own bachelor thesis [5].
Unlike Dafny, this implementation does not support polymorphism yet. Due to the
fact that Go does not provide a feature for ADTs, they can only be used in ghost
code. Gobra supports defining ADTs using the type keyword to define new types
in Go, as exemplified in Figure 2.7.

1 type List adt {

2 Cons {
3 head int
4 tail List
5 }

6 Nil {}
7 }

Figure 2.7: A list represented as an ADT in Gobra.
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Domain

Domains can be used to axiomatize mathematical data-structures in Gobra. They
can contain multiple functions and domain axioms. Figure 2.8 exemplifies how a
domain can be used to define a pair of boolean types.

1 type boolPair domain {
2 func left(boolPair) bool
3 func right(boolPair) bool
4 func pair(bool , bool) boolPair

5 axiom {
6 forall p boolPair :: {left(p)} {right(p)} p ==
7 pair(left(p),right(p))
8 }

9 axiom {
10 forall l, r bool :: {pair(l,r)} l ==
11 left(pair(l,r)) && r == right(pair(l,r))
12 }
13 }

Figure 2.8: Domain used to define a boolean pair.

Let Binding

Having an expression that enables variable binding within its own scope can be
useful. The feature of Gobra that provides this functionality is the let binding. It is
shown in Figure 2.9 , where x stores the value of the expression expr1 and can
be used in expr2.

1 let x := expr1 in expr2

Figure 2.9: The Let binding in Gobra.

Implicit Dynamic Frames

Unlike Dafny, Gobra is based on the theory of Implicit Dynamic Frames [11] ,
which proposes a different way of specifying heap-manipulating code based on
permissions to memory locations. Each heap location is associated with an access
permission that can be held by a method execution. A method that currently has
permission to access certain heap locations is allowed to transfer them to another
method through a method call. The access permission is transferred back to the
caller when the called method returns.

Gobra differentiates between read and write permissions. Only a single method
can own a write permission to a memory location, and no other method is allowed
to own a read permission to it at the same time. A write permission to a memory
location x can be specified with the accessibility predicate acc(x, 1) , or in short-
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hand acc(x). In contrast, reading from memory does not require full permission.
A read permission to x is indicated with the accessibility predicate acc(x, f) ,
where f is a fractional value between 0 and 1.

Figure 2.10 exemplifies how the accessibility predicate can be used to get write
permissions to all memory addresses of the elements of a slice. Line 1 specifies
as a precondition that, in order to call the function, full access permission to all
memory locations of the slice needs to be provided. In line 2, a postcondition
makes the promise to the caller that all permissions will be returned. If the function
contains a loop, the invariant in line 5 is required as well.

1 requires forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
2 ensures forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
3 func SetToC(a []int , c int) {

4 invariant 0 <= j && j <= len(a)
5 invariant forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
6 invariant forall i int :: 0 <= i && i < j ==> a[i] == c
7 for j := 0; j < len(a); j += 1 {
8 a[j] = c
9 }

10 }

Figure 2.10: Gobra function that sets all elements of the slice to a certain number.





Chapter 3

Translating the Examples to Gobra

Whenever we translated the examples and exercises from Dafny to Gobra, we
made a clear distinction between a direct translation and a more idiomatic one.
We wanted to include idiomatic translations because they should be easily under-
standable by programmers that are already familiar with Go.

In the upcoming sections we will talk about the main challenges in the translation
of each chapter as well as the various solutions that we implemented.

Dafny Gobra
0 ≤ i ≤ 100 0 ≤ i && i ≤ 100
x.Name? to check if the x is an x.isName to check if the x is an
instance of the Name variant instance of the Name variant
if-else expression cond ? e1 : e2 operator

Table 3.1: Some of the syntactical differences between Dafny and Gobra.

3.1 Chapter 6: Lists

In this chapter, one of our challenges was to translate Dafny’s ADTs to Gobra.
Initially, we tried to create an ADT using the domain feature of Gobra because
the support for ADTs in Gobra had not been merged yet. We implemented
constructors, destructors and different variants. This worked quite well, but we
had to assume termination because there was no initial rank order defined on the
domain. In other words, Gobra could not infer that the part that we get by applying
the destructor on an ADT instance is strictly smaller than the instance itself, and
therefore could not prove termination. A bachelor thesis addressed this issue by
implementing a rank order on domains [5]. However, this made the code more
complicated, so we chose to simplify things by assuming termination.

Once the support for ADTs was made available in Gobra, we switched to the more

13
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idiomatic translation, where ADTs in Dafny were translated directly to ADTs in
Gobra. However, at the time of writing, Gobra still does not support parametric
ADTs. As such, all examples of ADTs with type parameters in the book have been
translated to a monomorphized version in Gobra, where all type parameters are
instantiated with int.

Additionally, Gobra was not able to prove termination of functions and methods
that used ADTs. We realized that this problem was similar to the rank order
problem on domains, and were able to make changes in the ADT implementation
that allows the built-in len function of Go to map an ADT instance onto a number.
We enforced that the len function must always map an ADT instance to a value
that is strictly greater than the value of any of its sub-ADTs. This allowed us to
use the len of the decreasing ADT instance as a termination measure.

Finally, we made one more compromise in the accuracy of the translation. As
already mentioned, ADTs are only available in Gobra but not in Go. Therefore,
we had to define all of the pure functions that used ADTs as ghost, making them
non-compilable. In Dafny, however, ADTs can be used for defining new types that
can be used for computing and for specification purposes.

3.2 Chapter 7: Unary Numbers

The main challenge of this chapter was to find a correct translation for Dafny’s
lemma. Initially, we thought that a lemma should be translated to a pure ghost
function. However, we soon realized that this approach was too restrictive, as
some lemmas might modify our view on predicates, making them non-pure in
Gobra. Therefore, we decided to translate lemmas to ghost functions instead.

Unfortunately, this led to problems when we encountered examples of Dafny
functions in the book that called a lemma. The translation to Gobra resulted in an
error because a pure ghost function, which is the equivalent to a function in Dafny,
is not allowed to call a ghost function in Gobra. This is because ghost functions are
not pure, and Gobra only allows calls from pure functions to pure functions. We
concluded that our initial approach of translating lemmas to a pure ghost function
was better. We adapted our code to use this translation. For the lemmas that
modified our view on predicates, we made a compromise and decided use ghost
functions.

As mentioned in Section 2.2, defining pure functions or methods comes with
certain syntactical restrictions. Although Gobra only allows one return type per
pure function, we were able to return multiple ones by returning a struct with
multiple fields. These fields contained the values that we wanted to return. Of
course, the return type of the example needed to be adjusted accordingly.

In order to call a lemma and return an expression within the same pure function,
we used an additional technique. As explained in Section 2.2, pure functions in
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1 datatype Unary = Zero | Suc(pred: Unary)

2 predicate Less(x: Unary , y: Unary) {
3 y != Zero && (x.Suc? ==> Less(x.pred , y.pred))
4 }

5 function Sub(x: Unary , y: Unary): Unary
6 requires !Less(x, y)
7 {
8 match y
9 case Zero => x

10 case Suc(y ) => Sub ( x . pred , y)
11 }

12 lemma SubStructurallySmaller(x: Unary , y: Unary)
13 requires !Less(x, y) && y != Zero
14 ensures Sub(x, y) < x
15 {

16 }

17 function DivMod(x: Unary , y: Unary): (Unary , Unary)
18 requires y != Zero
19 {
20 if Less(x, y) then
21 (Zero , x)
22 else
23 SubStructurallySmaller(x, y);
24 var (d, m) := DivMod(Sub(x, y), y);
25 (Suc(d), m)
26 }

Figure 3.1: Dafny function that calls a lemma and returns an expression.

Gobra are restricted to being of the form return e, where e is a single expression.
Since the lemma and the expression we wanted to return counted as two, we used
Gobra’s let binding to bring the context of the lemma call into the expression we
wanted to return, turning it into a single expression.

In this chapter, we also encountered Dafny’s predicate for the first time. It seemed
reasonable to assume that the translation from Dafny’s predicate to Gobra is the
predicate that Gobra provides. In fact, they are two totally different concepts. The
predicate in Dafny is defined as a pure function that returns a boolean value,
whereas Gobra’s predicate corresponds to a predicate in separation logic that can
abstract over resources like heap locations. Therefore, we decided to translate
Dafny’s predicate to a pure ghost function.

Figure 3.1 shows an example of a function in Dafny that calls a lemma before
returning. The Unary ADT can either be Zero, which represents the number 0, or
it can be a Suc, which represents the successor of the previous Unary. The Less

predicate returns true if the value of the first Unary, passed as an argument, is
closer to Zero than the value of the second one. The Sub function subtracts two
Unary values from each other, if the minuend is not smaller than the subtrahend.
SubStructurallySmaller is a lemma that requires the Unary value x to be greater
than the Unary value y and that y is not Zero. If this is given, the lemma ensures
that x minus y is smaller than x itself. DivMod is the function that calls a the
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1 type Unary adt {

2 Zero {}

3 Suc {
4 pre Unary
5 }

6 }

7 ghost
8 requires !x.Less(y)
9 ensures y == Zero{} ==> res == x

10 ensures y != Zero{} ==> len(res) < len(x)
11 decreases len(x)
12 pure func (x Unary) Sub(y Unary) (res Unary) {
13 return match y {
14 case Zero {}:
15 x
16 case Suc{?pre}:
17 x.pre.Sub(pre)
18 }
19 }

20 ghost
21 decreases len(x)
22 pure func (x Unary) Less(y Unary) bool {
23 return y != Zero{} && (x.isSuc ==> x.pre.Less(y.pre))
24 }

25 ghost
26 requires !x.Less(y) && y != Zero{}
27 ensures x.Sub(y).Less(x)
28 ensures res
29 decreases len(y)
30 pure func (x Unary) SubStructurallySmaller(y Unary) (res bool) {
31 return x.SubCorrect(y) && x.Sub(y). LessCorrect(x)
32 }

33 type PairOfUnary struct {
34 a, b Unary
35 }

36 ghost
37 requires y != Zero{}
38 decreases len(x)
39 pure func (x Unary) DivMod(y Unary) PairOfUnary {
40 return x.Less(y) ?
41 PairOfUnary{Zero{}, x} :
42 let _ := x.SubStructurallySmaller(y) in
43 PairOfUnary{Suc{x.Sub(y). DivMod(y).a},
44 x.Sub(y). DivMod(y).b}
45 }

Figure 3.2: Pure function calling a lemma and returning an expression in Gobra.

SubStructurallySmaller in line 23 before returning the value. DivMod is defined
to perform the modulo operation on two Unary values, and the call to the lemma
within the function is necessary to prove termination.

Figure 3.2 shows the Gobra version of the example in Figure 3.1. It features the
additional struct (lines 33 to 35) that is necessary to return multiple values in a
pure function and the let binding (lines 42 to 44).
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3.3 Chapter 8: Sorting

The main challenge of this chapter was that Gobra could not prove termination for
a method, even though we knew that it always terminates. Despite trying different
termination measures, Gobra returned the following error message: Function
might not terminate. Termination measure might not decrease or might not be
bounded. We came to the conclusion that the ADT implementation still needed
some further improvement to allow a more precise mapping of the len function,
and we decided to assume termination for this method. Figure 3.3 shows the
method with the termination measure that we added. Figure 3.4 provides the
same code snippet in Dafny. Unlike Gobra, Dafny is able to prove termination.

1 ghost
2 requires length >= 0
3 requires length == xs.Length ()
4 ensures xs.MergeSortAux(length ). Ordered ()
5 decreases len(xs) + length
6 func (xs List) MergeSortAuxOrdered(length int) {
7 if length < 2 {
8 xs.Split(length /2). left.MergeSortAuxOrdered(length /2)
9 xs.Split(length /2). right.MergeSortAuxOrdered(length -length /2)

10 } else {
11 xs.Split(length /2). left.MergeSortAuxOrdered(length /2)
12 xs.Split(length /2). right.MergeSortAuxOrdered(length -length /2)
13 xs.Split(length /2). left.MergeSortAux(length /2).
14 MergeOrdered(xs.Split(length /2). right.
15 MergeSortAux(length -length /2))
16 }
17 }

Figure 3.3: Gobra is not able to prove termination for MergeSortAuxOrdered.

1 lemma MergeSortAuxOrdered(xs: List <int >, len: nat)
2 requires len == Length(xs)
3 ensures Ordered(MergeSortAux(xs, len))
4 decreases len
5 {
6 if 2 <= len {
7 var (left , right) := Split(xs , len /2);
8 MergeOrdered(MergeSortAux(left , len/2),
9 MergeSortAux(right , len - len /2));

10 }
11 }

Figure 3.4: Dafny can prove termination of MergeSortAuxOrdered.

3.4 Chapter 10: Data-Structure Invariants

In this chapter we needed to find a translation for modules. We decided to translate
them to a package in Gobra, since it is also a construct used to encapsulate
definitions. We translated definitions that were included in the export set to public
functions and methods, and definitions that were not added to the set to private
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1 ghost
2 requires pq.Valid()
3 ensures pq.Insert(y).Valid () && (pq.Insert(y). Elements () ==
4 pq.Elements () union mset[int]{y})
5 decreases len(pq)
6 func (pq PQueue) InsertCorrect(y int) {
7 match pq {
8 case Leaf {}:

9 case Node{?x, ?left , ?right }:
10 if y < x {
11 right.InsertCorrect(x)
12 } else {
13 right.InsertCorrect(y)
14 }
15 }
16 }

Figure 3.5: Ghost function that proves the correctness of the Insert function in Gobra.

1 ghost
2 requires pq.Valid()
3 ensures pq.Insert(y).Valid () && (pq.Insert(y). Elements () ==
4 pq.Elements () union mset[int]{y})
5 ensures res
6 decreases len(pq)
7 pure func (pq PQueue) InsertCorrect(y int) (res bool) {
8 return pq == Leaf{} ||
9 (y < pq.x ?

10 pq.right.InsertCorrect(pq.x) :
11 pq.right.InsertCorrect(y))
12 }

Figure 3.6: Pure ghost function that proves the correctness of the Insert function in Gobra.

ones. Nonetheless, we had to make compromises in terms of accuracy because
Gobra does not differentiate between public functions that reveal their entire
implementation and public functions that only provide the functionality. Dafny uses
the reveals and provides keywords for this.

Another challenge we encountered in this chapter was that the lemmas that we
translated to pure ghost functions in Gobra could not be verified. Figure 3.5
presents one of the lemmas that we translated to a pure ghost function. The
lemma states that if an element is inserted into a valid Priority Queue, the resulting
Priority Queue will contain the same elements as the original one combined with
the inserted element. Although we were really confident that our implementation
was correct, Gobra was not able to verify it. Interestingly, the non-pure translation
of the lemma, which is shown in Figure 3.6, was verified by Gobra. We believe
that it is a limitation of Gobra and still requires further improvement.
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3.5 Chapters 11 & 12: Loops and Recursive Specifica-
tions, Iterative Programs

In these two chapters we were introduced to methods that were using while loops
in Dafny. We translated the while loops to for loops in Gobra. The two loops are
semantically equivalent if all loop variables are initialized to the same value and the
loop condition as well as the update rule are the same. Figure 3.7 exemplifies how
the integer square root of a non-negative number can be computed using a while
loop in Dafny, while Figure 3.8 shows the corresponding code in Gobra. Overall,
the translations were straightforward, and we encountered no major challenges.

1 method SquareRoot(N: nat) returns (r: nat)
2 ensures r*r <= N < (r+1)*(r+1)
3 {
4 r := 0;
5 var s := 1;
6 while s <= N
7 invariant r*r <= N
8 invariant s == (r+1)*(r+1)
9 {

10 s := s + 2*r + 3;
11 r := r + 1;
12 }
13 }

Figure 3.7: Dafny method that computes the integer square root.

1 requires N >= 0
2 ensures r >= 0
3 ensures r*r <= N && N < (r+1)*(r+1)
4 decreases
5 func SquareRoot(N int) (r int) {
6 r = 0
7 s := 1
8 invariant r*r <= N
9 invariant s == (r+1)*(r+1)

10 decreases N-r
11 for ; s <= N; {
12 s = s + 2*r + 3
13 r = r + 1
14 }
15 return r
16 }

Figure 3.8: Gobra function that computes the integer square root.

3.6 Chapters 13 & 14: Arrays and Searching and Modify-
ing Arrays

In these two chapters we encountered methods in Dafny that take arrays as
arguments. Since arrays are mutable data structures in Dafny, the methods
require additional annotation in order for Dafny to set up a frame. The annotation
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should indicate whether the method reads from the array or writes to it. Figure 3.9
exemplifies a method in Dafny that is annotated with modifies a, where a is an
array. This is required because, in line 11, the method is writing to the array.

1 method InitArray <T>(a: array <T>, d: T)
2 modifies a
3 ensures forall i :: 0 <= i < a.Length ==> a[i] == d
4 {
5 var n := 0;
6 while n != a.Length
7 invariant 0 <= n <= a.Length
8 invariant forall i :: 0 <= i < n ==> a[i] == d
9 {

10 a[n] := d;
11 n := n + 1;
12 }
13 }

Figure 3.9: Dafny method that initializes an array to a certain value.

Arrays are translated to slices in Gobra, which are also mutable data structures.
We translated methods that are annotated with modifies a to functions in Gobra
that request full permission to access all of the memory addresses of a. Figure
3.10 presents the translated version of Figure 3.9. Lines 1-3 show how we
could specify full access permissions to the memory locations using quantified

permissions. By using the forall quantifier, we were able to request permission
for every address of the slice’s elements, even though the concrete size of the
argument was unknown.

1 requires forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
2 ensures forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
3 ensures forall i int :: 0 <= i && i < len(a) ==> a[i] == d
4 decreases
5 func InitArray(a []int , d int) {
6 n := 0

7 invariant 0 <= n && n <= len(a)
8 invariant forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
9 invariant forall i int :: 0 <= i && i < n ==> a[i] == d

10 decreases len(a) - n
11 for ; n != len(a); {
12 a[n] = d
13 n = n + 1
14 }
15 }

Figure 3.10: Gobra function that initializes a slice to a certain value.

Although the specification style of Dafny looks simpler, the one used in Gobra has
its advantages. For example, in Gobra we can pass permission to only one element
of a slice in order to modify it, whereas in Dafny we need to transfer permissions
to the entire array using the modifies clause, and then add a postcondition that
states what remained the same.
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1 requires forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
2 ensures forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
3 ensures forall i int :: 0 <= i && i < len(a) ==>
4 a[i] == old(a[(i + 1) \% len(a)])
5 decreases
6 func RotateLeft(a []int) {
7 if len(a) <= 1 {
8 return
9 }

10 n := 1
11 head := a[0]

12 invariant 1 <= n && n <= len(a)
13 invariant forall i int :: 0 <= i && i < len(a) ==>
14 acc(&a[i])
15 invariant forall i int :: 0 <= i && i < n - 1 ==>
16 a[i] == old(a[i + 1])
17 invariant forall i int :: n <= i && i < len(a) ==>
18 a[i] == old(a[i])
19 decreases len(a) - n
20 for ; n < len(a); {
21 a[n - 1] = a[n]
22 n = n + 1
23 }
24 a[len(a) - 1] = head

25 assert forall i int :: 0 <= i && i < len(a) - 1 ==>
26 a[i] == old(a[(i + 1)])
27 assert len(a) > 0 ==> a[len(a) - 1] == old(a[0])
28 assert forall i int :: 0 <= i && i < len(a) - 1 ==>
29 (i + 1) \% len(a) == i + 1
30 assert ((len(a) - 1) + 1) \% len(a) == 0
31 assert forall i int :: 0 <= i && i < len(a) ==>
32 a[i] == old(a[(i + 1) \% len(a)])
33 }

Figure 3.11: Gobra function that rotates every element of a slice to the left.

Some of the examples that we translated to Gobra took a very long time to be
verified by Gobra. For example, Figure 3.11 ran for 10225 seconds on a Mac mini
2020 with 16GB RAM. It shows a function called RotateLeft, which takes a slice
as an argument and rotates every element to the left. Initially, we were not sure
whether Gobra was stuck, or whether it was just taking more time than expected.

Lastly, we needed to find a translation for Dafny’s sequences. In Dafny, a sequence
is an immutable data structure that represents an ordered collection of elements
of the same type. Due to the fact that a similar data structure is not supported in
Go, we decided to use slices. Additionally, each function or method that takes a
slice as an argument is only allowed to use fractional permission to access the
heap location, which ensures that the slice can never be modified. The element of
a slice can only be changed by creating a new slice with the appropriate values.
Rather than assigning a slice directly to a variable, we generated a copy and
assigned it. This ensures that the variable points to a new slice with the same
values, which models the immutability property of the sequence in Dafny.

An alternative approach could have been to use Gobra’s sequences instead of
Go’s slices, as they are very similar to sequences in Dafny. However, this would
have required us to declare the code as ghost.





Chapter 4

Evaluation

With the availability of examples and exercises in both Dafny and Gobra, we have
been able to devise a comparison between the two languages. This chapter
compares the programming capabilities of the underlying language, as well as the
expressiveness of the specification and verification features. Additionally, we point
out the features that were missing in Gobra and thus made the proof cumbersome
or even impossible. At the end of the chapter we compare the IDE of Dafny against
the one of Gobra to identify useful features that could be implemented in the Gobra
IDE as well.

4.1 Gobra vs Dafny

4.1.1 Inconsistency in the Ghost Code

Gobra and Dafny both define their notions of ghost code in a similar way. However,
one significant difference between them is that Gobra provides features that are not
available in Go, such as ADTs and sequences. As a consequence, the functions
and methods that use these concepts must be ghost, even though compilable
code would have been preferred. Dafny, on the other hand, does not have this
limitation, because the specification language and implementation languages are
the same and evolved in tandem, unlike Gobra which proposes an extension of
the Go syntax which is not supported by the compiler.

4.1.2 Correspondence Between Functions, Methods and Lemmas

During our translations we found that the following correspondences between
declarations in Dafny and declarations in Gobra hold.

• A function in Dafny is ghost by default and it does not have any side effects
because it models a function in a mathematical sense. This makes it
equivalent to a pure ghost function in Gobra. Defining it as pure is necessary,
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because it guarantees that the function can not have any side effects and
thus, can be used in specifications and proof annotations.

• The function method that Dafny provides is the compilable version of the
function, in that it is not ghost. The translation of a function method to Gobra
would be a pure function.

• Methods in Dafny are equivalent to functions or methods in Gobra, because
they are both allowed to have side effects and they are both compilable.

• Dafny’s lemmas can be thought of as pure ghost functions in Gobra. It is
necessary to define it as pure because this allows them to be called by other
pure functions. However, lemmas that might modify the view on predicates
must be translated to ghost functions in Gobra.

4.1.3 Differences in Annotation Overhead

During the translations we discovered that Dafny has various features to reduce the
annotation overhead. This section summarizes the specification and verification
features of Dafny that seem to be more expressive than the translated version in
Gobra.

Starting with termination, Dafny always checks for it by default and tries to infer
the correct termination measure automatically. Consequently, we do not have to
add any lines of code unless Dafny is unsuccessful in doing so, which was very
rare in the examples we worked with. This is different from Gobra, which does not
check for termination if we do not explicitly require it. From our experience, finding
the termination measure itself was mostly straightforward. However, adding the
decreases clause can easily be forgotten because Gobra does not complain about
non-termination.

Dafny also seems to be more efficient in terms of annotation required to set up a
frame. While Dafny only requires annotation that specifies whether the method
reads from the mutable data structure or writes to it, functions in Gobra need to
specify precisely which access permissions are required for each memory location
of the data structure. Figure 4.1 exemplifies the annotation required to initialize a
two dimensional array in Dafny, and Figure 4.2 shows the specification required to
initialize a two dimensional slice in Gobra.

As a last feature that can save annotation overhead, we would like to mention
the automatic induction tool of Dafny that is able to prove most of the lemmas
automatically. This feature is not available in Gobra and therefore we had to do the
induction proofs manually, resulting in many lines of code. Not only does automatic
induction reduce overhead, but it also eliminates the need to worry about how to
do the proof. All induction proofs follow a similar pattern where the cases have to
be split up and the lemmas can be applied recursively to smaller parts. This is a
lot of work that can be avoided.
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1 method InitMatrix <T>(a: array2 <T>, d: T)
2 modifies a
3 ensures forall i, j ::
4 0 <= i < a.Length0 && 0 <= j < a.Length1 ==> a[i, j] == d
5 {
6 var m := 0;
7 while m != a.Length0
8 invariant 0 <= m <= a.Length0
9 invariant forall i, j ::

10 0 <= i < m && 0 <= j < a.Length1 ==>
11 a[i, j] == d
12 {
13 var n := 0;
14 while n != a.Length1
15 invariant 0 <= n <= a.Length1
16 invariant forall i, j ::
17 0 <= i < m && 0 <= j < a.Length1 ==> a[i, j] == d
18 invariant forall j :: 0 <= j < n ==> a[m, j] == d
19 {
20 a[m, n] := d;
21 n := n + 1;
22 }
23 m := m + 1;
24 }
25 }

Figure 4.1: Initializing a two dimensional array to a certain value in Dafny.

1 requires forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
2 requires forall i, j int :: 0 <= i && i < len(a) &&
3 0 <= j && j < len(a[i]) ==> acc(&a[i][j])
4 ensures forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
5 ensures forall i, j int :: 0 <= i && i < len(a) &&
6 0 <= j && j < len(a[i]) ==> acc(&a[i][j])
7 ensures forall i, j int :: 0 <= i && i < len(a) &&
8 0 <= j && j < len(a[i]) ==> a[i][j] == d
9 decreases

10 func InitMatrix(a [][]int , d int) {
11 m := 0

12 invariant 0 <= m && m <= len(a)
13 invariant forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
14 invariant forall i, j int :: 0 <= i && i < len(a) &&
15 0 <= j && j < len(a[i]) ==> acc(&a[i][j])
16 invariant forall i, j int :: 0 <= i && i < m &&
17 0 <= j && j < len(a[i]) ==> a[i][j] == d
18 decreases len(a) - m
19 for ; m != len(a); {
20 n := 0

21 invariant forall i int :: 0 <= i && i < len(a) ==> acc(&a[i])
22 invariant forall i, j int :: 0 <= i && i < len(a) &&
23 0 <= j && j < len(a[i]) ==> acc(&a[i][j])
24 invariant 0 <= n && n <= len(a[m])
25 invariant forall i, j int :: 0 <= i && i < m &&
26 0 <= j && j < len(a[i]) ==> a[i][j] == d
27 invariant forall j int :: 0 <= j && j < n ==> a[m][j] == d
28 decreases len(a[m]) - n
29 for ; n != len(a[m]); {
30 a[m][n] = d
31 n = n + 1
32 }
33 m = m + 1
34 }
35 }

Figure 4.2: Initializing a two dimensional slice to a certain value in Gobra.
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To compare the annotation overhead of Gobra and Dafny, we created Table 4.1.
We defined the annotation overhead to be the number of lines of non-compilable
code divided by the number of lines of code and multiplied by 100. Non-compilable
code includes specifications, annotations, assert statements and other ghost
code. There is one exception. Gobra’s ghost functions that have to be defined as
ghost because they are using constructs, like ADTs, that are only available in the
extended Gobra language, are counted as compilable code.

Chapter Dafny Overhead Gobra Overhead Difference (Dafny-Gobra)
6 74 % 82 % -8 %
7 69 % 80 % -11 %
8 57 % 75 % -18 %
10 56 % 62 % -6 %
11 34 % 45 % -11 %
12 46 % 57 % -11 %
13 46 % 63 % -17 %
14 40 % 58 % -18 %

Average 53 % 65 % -13 %

Table 4.1: Compares the annotation overhead per chapter between Dafny and Gobra based on the
examples.

Our initial feeling that Dafny is less verbose than Gobra was confirmed by our
measurements in Table 4.1. Dafny requires approximately 13% less annotation
overhead on average.

To evaluate the effectiveness of Dafny’s automatic induction tool, we compared
the number of lines of code needed to prove a lemma in Dafny with and without
automatic induction. The comparison was based on all lemmas that were available
in both versions. We found that using automatic induction can significantly reduce
the amount of code the programmer needs to provide. The overhead in the number
of lines of code can be reduced by around 78% according to our measurements.

4.1.4 Missing or Incomplete Features

There were only a few examples of features in Gobra that were missing or not as
advanced as Dafny’s, and made the translation cumbersome or even impossible.
Gobra’s ADTs, for example, lack support for generic data types, which made it
impossible to translate the ADTs from Dafny accurately. As already mentioned,
we had to make a trade-off and decided to use int instead.
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4.2 Gobra IDE vs Dafny IDE

We compared the Gobra IDE to the Dafny IDE in the hope to find useful features
that could be implemented to the Gobra IDE as well. In this section, we introduce
two features currently available only in the Dafny IDE that could improve the
programming experience in Gobra.

Features only Supported by the Dafny IDE

Displaying Counter proof

The Dafny IDE has a feature that displays a counter example for a failing proof.
If the proof fails, programmers can request Dafny to return a set of values that
lead to an incorrect result. This information can be very useful to the programmer
to identify the source of the problem. We believe that its implementation in the
Gobra IDE could be very beneficial for the users of Gobra, as it would improve the
debugging experience. There is already some progress on this front in the form of
a bachelor’s thesis.

Go to Definitions

Another feature that is only offered by the Dafny IDE is to jump to the corresponding
definitions. This feature can be helpful for programmers that encounter a variable
or a function within the code and want to learn more about its implementation. It
can save a lot of time, especially when working on a larger project.





Chapter 5

Conclusion

The main goal of our thesis was to provide well-documented introductory exam-
ples and exercises to Go programmers interested in learning program verification.
During our work, we successfully translated numerous examples and exercises
from Dafny to Gobra with high accuracy. Some of them were translated in an
idiomatic way and others in a direct one. We documented the code well to ensure
its usefulness as teaching material. Additionally, we devised a comprehensive
comparison between Dafny and Gobra based on the book’s examples and ex-
ercises. Finally, we also compared the IDE of Dafny with the one of Gobra and
identified that it would be beneficial to implement a feature that displays a counter
example for a failing proof and a feature that allows to quickly navigate to the
corresponding definition.

Due to the lack of time, we were only able to translate one additional chapter as
part of our extension goals. We also did not manage to implement some of the
features in Gobra already, but they may be addressed in future work.

It is fair to say that writing code in Dafny is currently more convenient for the
programmer. Not only is it more concise, but it also supports the programmer
with features, like automatic induction, that can save a lot of time and effort.
However, it is amazing to see that we can translate almost everything to Gobra
with almost no compromises. We believe that Gobra is an excellent verifier for the
Go programming language, and with the ongoing improvements, it is becoming
even better. We also believe that it would be beneficial to provide even more
introductory material, such as an interactive tutorial or a book in the style of
Program Proofs.

Future Work

With this section we would like to keep track of some tasks that could be done in
the future to improve Gobra as well as its teaching materials even further.
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We plan to add support for polymorphism in the ADT implementation of Gobra.
Once this has been implemented, we can revisit the examples and exercises in
chapter 6 of the book and improve the translation to also use generic data types.

Due to the fact that the ADT implementation needed further improvement, we had
to assume termination in chapter 8. Our plan is to improve the implementation of
the ADT to a point where termination can be proven. Assuming that the ADT has
been improved, we can revisit chapter 8 and change the termination measure to a
correct one.

We found the automatic induction of Dafny to be very useful. Our plan is to add
this feature to Gobra as well. Additionally, we also want to implement the feature
that displays a counter example and the feature that allows to quickly navigate to
the corresponding definition in the Gobra IDE.
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