
Advancing Non-Standard Permission Utilisation

in Program Verification

Bachelor’s thesis

Tobias Brodmann
Supervisors: Prof. Dr. Peter Müller, Dr. Malte Schwerhoff

05.03.2018

1 Introduction

The Viper project [4], which is developed at ETH Zurich, provides an interme-
diate verification language and verification tools for encoding a wide variety of
concurrent verification problems. A key feature of Viper’s approach to verifica-
tion is the notion of permissions to control access to and formally reason about
resources: in Viper, each heap location is such a resource (e.g. this.val); as
are recursive predicates and magic wands, which can be used to control access
to and enforce orderly modification of complex data structures [1].
Viper includes two verifiers for automated reasoning about verification prob-
lems involving such resources: Silicon [2], which is based on a technique called
symbolic execution, and Carbon, which generates verification conditions.
Ultimately, both verifiers generate formulas which are discharged by an SMT
solver.

Viper’s support for standard utilisation of permissions, i.e. the checking
and transferring of permissions between verification contexts, is well-developed;
among other things, because the theory behind this kind of utilisation has been
extensively researched in the last two decades.
As more and more complicated and complex programs and systems need to be
verified, this standard use of permissions is no longer enough and new features
are needed.
For these new problems, Viper additionally also supports non-standard utili-
sation of permissions, such as forperm expressions which serve as a quantifier
over all objects for which a specified permission is currently held.
These are unique to Viper and have been shown to be immensely useful in recent
projects such as [3].
However, they are not yet fully compatible with already existing Viper features.
This can lead to unexpected errors for users, because some combinations of
features are allowed while others are not.

An example of this problem is permission introspection, the querying of
permissions and acting depending on their availability. Consider the following
code snippet:

1

if (perm(P --* Q) == write) {
exhale P --* Q

} else {
exhale R

}

Listing 1.1: Permission introspection

In this example, we want to exhale a permission, i.e. give away the access
permission to a resource, but which permission depends on the currently held
permission. This is useful because one permission might be more valuable or
more important to us, and therefore we want to control which permission is
exhaled. The --* operator in this example denotes the separating implication
or magic wand in separation logic. While permission introspection in general is
possible in Viper, this particular combination with a magic wand is not, which
leads to confusing issues for users.

Another example of such a problem is affecting the verification state by
making assumptions about the currently held permissions. For example:

//acc(y.f)
assume acc(x.f)
//acc(y.f), x = y

Listing 1.2: assume with non-pure assertion

Here, a client holds the permission to y.f before the assume statement (de-
noted by acc(y.f) in the preceding comment). Since that is the only permission
held, we learn that x = y, because we assume that permission to x.f is already
being held. Assuming that permissions are already held is not yet supported,
in contrast to assuming pure (non-permission) assertions.

2 Core Goals

• Fully support permission introspection with perm and forperm; in par-
ticular, fully support predicates, quantified permissions and magic wands.
Currently permission introspection can be used with the following Viper
features:

P perm forperm
e.f 3 3
P(e1,e2,. . .) 3 7
A --* B 7 7

Table 2.1: Current support for permission introspection

In this table, P denotes the resource that is used for the introspection.

• Develop a technique to use non-pure assertions with assume statements.
Similar to permission introspection, non-pure assertions can also already
be used in many cases, but not in the particular combination with assume:

2

Support for assertions
exhale P 3
inhale P 3
assert P 3
assume P 7 (if not pure)

Table 2.2: Support for non-pure assertions

Note that, in listing 1.2, it would be possible to simply replace the non-pure
assertion acc(x.f) by the pure assertion perm(x.f) == write. This
would lead to exactly the same result. But consider the following example:

//acc(a.f), acc(b.f), a != b
assume acc(x.f) && acc(y.f)
//acc(a.f), acc(b.f), a != b, (x = a && y = b) || (x = b

&& y = a)

Listing 2.1: assume with separating conjunction

If we used the same replacement strategy as in the previous example, this
would result in the following:

//acc(a.f), acc(b.f), a != b
assume perm(x.f) == write && perm(y.f) == write
//acc(a.f), acc(b.f), a != b, (x = a && y = b) || (x = b

&& y = a) || (x = y = a) || (x = y = b)

Listing 2.2: assume with boolean conjunction

However, as can be seen in the comments denoting the verification state,
the effects are not the same even though they look very similar. The reason
for that is the overloading of the && operator. While usually it denotes a
standard boolean conjunction, when used with accessibility predicates it
denotes separating conjunction (denoted ∗ in separation logic). Because
of this, in the first example x and y are not allowed to be aliases, i.e.
references to the same memory location, whereas in the second example,
they could be aliases. Therefore, it is not straight-forward to replace
accessibility predicates by perm expressions and special support is needed.

• Support the use of permissions and heap locations as triggers in quantified
expressions: Viper supports the use of quantified expressions, which are
passed on to the underlying SMT solver. To decide where to instantiate
the quantified expression, SMT solvers use triggers. For example:

forall i: Int, j: Int :: {f(i), g(j)} f(i) && i < j ==>
g(j)

Listing 2.3: Quantified expression

In this example, f(i) and g(j) are used as the triggers. Currently, Viper
does not allow the use of permissions and heap locations as triggers, but
supporting such triggers is required in order to properly handle quantifiers
such as:

3

assume forall x: Ref :: perm(x.f) > none ==> x.f != 0

Listing 2.4: Quantifier with heap-based trigger

Here, we want to assume that for all x to whose field f we have access to,
x.f is not 0. The only reasonable triggers for this quantifier are x.f and
perm(x.f), both of which are currently not supported.
In general, all Viper resources (fields, predicates and magic wands) should
be usable as triggers.

3 Extension Goals

• Design and implement an extension to the Viper language to allow ”pat-
tern matching” with forperm. This would enable more flexible ways of
specifying the required resources, such as predicates. For example the syn-
tax could look like forperm P(?x, 3) :: e(x), where ?x specifies the
variable to be matched, i.e. it would match every predicate instance for
which the second argument is 3. A similar syntax could also be created for
magic wands. An even more flexible extension would be to allow binding
variables to arbitrary expressions such as P(?x + 1, 3).

• Enable Silicon to recover from failures. In contrast to e.g. most compilers,
which can recover from type checking failures, Silicon cannot recover from
a failing assertion. This is annoying in practice because it means that
errors resulting from failing assertions need to be manually handled one
at a time. However, support for assuming arbitrary assertions A should
enable Silicon to turn any failing assertion into an assumption and thereby
to continue the verification.

• Investigate the potential usefulness of extending Viper with support for
marking resources, in particular fields, as non-exclusive. Such a feature
might simplify the encoding of programs with fine-grained concurrency,
but will raise questions such as how to frame assumptions about such
resources.

References

[1] P. Müller, M. Schwerhoff, and A. J. Summers. “Viper: A Verification Infras-
tructure for Permission-Based Reasoning”. In: Verification, Model Check-
ing, and Abstract Interpretation (VMCAI). Ed. by B. Jobstmann and K.
R. M. Leino. Vol. 9583. LNCS. Springer-Verlag, 2016, pp. 41–62.

[2] M. Schwerhoff. “Advancing Automated, Permission-Based Program Verifi-
cation Using Symbolic Execution”. PhD thesis. ETH Zurich, 2016.

[3] A. J. Summers and P. Müller. “Automating Deductive Verification for
Weak-Memory Programs”. In: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS. To appear. Springer-Verlag,
2018.

[4] Viper Project. url: viper.ethz.ch.

4

