
Advancing Non-Standard
Permission Utilisation in
Program Verification

Bachelor’s thesis

Tobias Brodmann

Supervisors: Prof. Dr. Peter Müller, Dr. Malte Schwerhoff

12.09.2018

Contents

1 Introduction 3
1.1 Chapter overview . 5

2 Background 6
2.1 Implicit Dynamic Frames . 6
2.2 Separation Logic . 6
2.3 Viper . 7

2.3.1 Resources . 7
2.3.2 Permissions . 7
2.3.3 Quantified Permissions . 7

2.4 Silicon . 8
2.4.1 Silicon Chunks and Snapshot Maps 8
2.4.2 Symbolic State . 8
2.4.3 Symbolic Execution Rules 8
2.4.4 Auxiliary functions . 10

3 Permission Introspection 11
3.1 Perm . 12
3.2 Forperm . 13

4 Assume 16
4.1 Naive Rewriting . 17
4.2 Fast Rewriting . 18

4.2.1 Predicates and Magic Wands 18
4.3 Quantified Permissions . 19
4.4 Full translation example . 21

5 Heap-Dependent Triggers 23
5.1 Evaluating Heap-dependent Triggers 25
5.2 Inhaling and Exhaling Permissions 26
5.3 Generating Triggers from Statements and Expressions 28

5.3.1 Field Read . 29
5.3.2 Field Write . 29
5.3.3 Perm . 30
5.3.4 Forperm . 30
5.3.5 Fold . 31
5.3.6 Unfold . 31
5.3.7 Package . 32

1

5.3.8 Apply . 32
5.3.9 Unfolding, Applying . 32
5.3.10 Assert . 33
5.3.11 Assume . 33

5.4 Pure Quantified Assertions . 33
5.4.1 Rewriting Quantifiers . 34
5.4.2 Localized Triggering . 34

5.5 Non-quantified permissions . 36
5.5.1 Using non-quantified algorithms 36

6 Evaluation 37

7 Conclusion 39

8 Future Work 40

Bibliography 41

2

Chapter 1

Introduction

The Viper project [11], which is developed at ETH Zurich, provides an interme-
diate verification language and verification tools for encoding a wide variety of
concurrent verification problems. A key feature of Viper’s approach to verifica-
tion is the notion of permissions to control access to and formally reason about
resources: in Viper, each heap location is such a resource (e.g. this.val); as
are recursive predicates and magic wands, which can be used to control access
to and enforce orderly modification of complex data structures [4].
Viper includes two verifiers for automated reasoning about verification prob-
lems involving such resources: Silicon [8], which is based on a technique called
symbolic execution, and Carbon, which generates verification conditions.
Ultimately, both verifiers generate formulas which are discharged by an SMT
solver.

Viper’s support for standard utilisation of permissions, i.e. the checking and
transferring of permissions between verification contexts such as a caller and a
callee, is well-developed; among other things, because the theory behind this
kind of utilisation has been extensively researched in the last two decades.
As more and more complicated and complex programs and systems need to be
verified, this standard use of permissions is no longer enough and new features
are needed.
To verify such programs, Viper additionally also supports non-standard utili-
sation of permissions, such as forperm expressions which serve as a quantifier
over all objects for which a specified permission is currently held. Features for
non-standard uses of permissions such as forperm are unique to Viper and have
been shown to be immensely useful in recent projects such as [10]. However,
they are not yet fully compatible with already existing Viper features. This can
lead to unexpected errors for users, because some combinations of features are
allowed while other, seemingly very similar, combinations are not.

An example of this problem is permission introspection, the querying of
permissions and acting depending on their availability. Consider the following
code snippet:

3

if (perm(P --* Q) == write) {
exhale P --* Q

} else {
exhale R

}

Listing 1.1: Permission introspection with a magic wand

In this example, we want to exhale a permission, i.e. give away the access
permission to a resource, but which permission to give away depends on other,
potentially currently held permissions. P, Q and R in the example can be any
Viper assertion, including permission assertions. This is useful because one
permission might be more valuable or more important to us, and therefore we
want to control which permission is exhaled. The --* operator in this example
denotes the separating implication or magic wand in separation logic. While
permission introspection in general is possible in Viper, this particular combi-
nation with a magic wand is not, which can be confusing for users.

Another example of such a problem is affecting the verification state by
making assumptions about the currently held permissions. In Viper, there are
two statements that can be used to add assumptions to the verification state:
inhale and assume. The main difference between the two statements is that
inhale can modify the state (i.e. what permissions are currently held) whereas
assume will never modify the state. Consider the following examples in Listing
1.2 and 1.3:

//acc(y.f)
inhale acc(x.f)
//acc(y.f), acc(x.f)

Listing 1.2: inhale with a non-pure assertion

Here, a client holds the permission to y.f before the inhale statement
(denoted by acc(y.f) in the preceding comment). When we now inhale
acc(x.f) we add the permission to x.f to the held permissions (as denoted in
the comment).

//acc(y.f)
assume acc(x.f)
//acc(y.f), x = y

Listing 1.3: assume with a non-pure assertion

In this example, a client holds the same permission to y.f as before, but
instead of inhale, there is an assume statement. Now we do not add any new
permissions to the state, but instead we learn that x = y, because we assume
that permission to x.f is already being held and the only permission held is
to y.f. Assuming that permissions are already held is not yet supported, in
contrast to assuming pure (non-permission) assertions, e.g. x.f != 0.

A third problem that arises related to permissions and heap location is their
use as triggers in quantified expressions: Viper supports the use of quantified
expressions, which are passed on to the underlying SMT Solver. Since SMT
Solvers obviously cannot instantiate a quantified expression for every single

4

instance of the quantified variable(s), SMT Solvers use triggers to decide where
to instantiate quantified expressions. Cosider the example in Listing 1.4: in
this quantifier, f(i) and g(j) act as triggers: whenever terms of this form are
encountered, the quantifier is instantiated with the appropriate values for i and
j.

forall i: Int, j: Int :: {f(i), g(j)} f(i) && i < j ==> g(j)

Listing 1.4: Quantified expression

However, while triggers work very well if they are available, there are still
expressions for which no trigger is available. If that is the case, the quantifier
is essentially useless since it will not be instantiated. An example of such a
quantifier with no trigger is seen in Listing 1.5.

assume forall x: Ref :: perm(x.f) > none ==> x.f != 0

Listing 1.5: Quantifier that requires a heap-dependent trigger

Here, we want to assume that for all x to whose field f we have access to,
x.f is not 0. The only possible triggers for this quantifier are perm(x.f) or
x.f, both of which are not supported.

1.1 Chapter overview

This thesis is split into 8 chapters: Chapter 2 will present some background
information regarding Viper and Silicon which is helpful for understanding the
rest of the thesis. The main contributions of this thesis can be found in the
following three chapters. Chapter 3 covers how to extend Viper’s permission
introspection features to be able to deal with all resources currently available
in Viper. In Chapter 4, we will present a technique to allow Viper to support
impure assume statements. Chapter 5 will cover how to extend Silicon to allow
heap-dependent expressions to be used as triggers in quantified expressions. In
Chapter 6, we will discuss the performance impact of the new features, in partic-
ular that of heap-dependent triggers. Finally, Chapter 7 presents a conclusion
to this thesis and Chapter 8 will present some future work related to this thesis.

5

Chapter 2

Background

2.1 Implicit Dynamic Frames

Viper is based on implicit dynamic frames [9], a program logic that is closely
related to separation logic [7] [6]. The main concept of implicit dynamic frames
is that of accessibility predicates such as acc(x.f) which denotes permissions
to access the heap location x.f. There are two types of permissions that can
be held: full (i.e. write) permissions and partial (i.e. read) permissions. Write
permissions are exclusive whereas an arbitrary number of clients can hold per-
missions to read a heap location.

2.2 Separation Logic

Separation logic [7] is an extension of Hoare logic [1]. It extends Hoare logic
with two important concepts which are also used by the implicit dynamic frames
logic and Viper:

• Separating Conjunction (denoted ∗): In contrast to a regular boolean con-
junction, a separating conjunction of two accessibility predicates requires
that we can split the current heap into two disjoint parts in which the two
parts of the conjunction hold. In the context of implicit dynamic frames
and accessibility predicates, this means that the total permissions held are
required to be the sum of the individual permissions if the accessibility
predicates are concerned with the same location. For example, the sepa-
rating conjunction acc(x.f, p) ∗ acc(y.f, q) requires that if x and y

are aliases, i.e. refer to the same location, then we need p + q permissions
to the field x.f to satisfy it. If x and y are not equal, we need p and q

permissions respectively to their field f, as expected. In particular, if a
separating conjunction requires write permissions for both x.f and y.f,
this implies that x and y are not aliases.

• Magic Wand (denoted −*): The magic wand or separating implication
asserts that if the current heap (in which the magic wand holds) is ex-
tended with a disjoint heap in which the left-hand side of the magic wand
holds, the right-hand side will hold in this combined heap. Maybe more

6

intuitively, it can be seen as a promise that if we gain the left-hand side
assertion at some point in time, we can exchange it for the right-hand side.

2.3 Viper

2.3.1 Resources

The concept of resources is particularly important in my thesis, as all of the fea-
tures added to Viper and Silicon should work for any resource. Viper currently
supports three different types of resources: heap locations (e.g. this.val), re-
cursive predicates and magic wands.
To formally represent a resource, we denote it by res(args), where args
are the arguments used for a particular resource instance. In the case of fields,
there is only a single argument, the receiver. For predicates, the arguments
are simply the arguments required by the predicate. However, for magic wands
the arguments might no be immediately clear. Consider the following magic
wand: acc(x.f, p) --* acc(y.f, q). Because of the way magic wands are
handled in Viper, this wand can be split in the magic wand structure, which
is independent of the state and the subexpressions which need to be evaluated
in the current state. The split wand would look like this: acc(_.f, _) --*
acc(_.f, _) (x,p,y,q). In this case, (x,p,y,q) would be the arguments for
this magic wand instance. For the purpose of this thesis, magic wands can be
treated the same as predicates, since we are only interested in the magic wand
as a resource.
Two resource instances are considered to be equal if and only if all their argu-
ments match. Consider for example fields: the locations denoted by two fields
are equal if their receivers are aliases.

2.3.2 Permissions

In Viper, to access any resource, we require permissions to it. Viper permis-
sions are fractional values p/q between 0 and 1. There are also the special
values write and none representing 1/1 and 0/1 respectively. Permissions to a
resource can be specified in the accessibility predicate: acc(x.f, p) represents
p permissions to x.f. For ease of use, acc(x.f) is treated as syntactic sugar
for acc(x.f, write), i.e. to represent full permissions. To gain and lose per-
missions, Viper includes the statements inhale a and exhale a, which add
respectively remove permissions if a is a permission assertion.

2.3.3 Quantified Permissions

A special feature of Viper are quantified permissions: It is possible to define
permissions of the form forall x: Ref :: c(x) ==> acc(x.f), where c(x)

represents some boolean condition depending on x. This can be a function ap-
plication, but it does not necessarily have to be, for example the quantified per-
mission assertion forall x: Ref :: x in xs ==> acc(x.f) represents per-
missions to all elements of xs.

7

2.4 Silicon

2.4.1 Silicon Chunks and Snapshot Maps

Silicon represents the heap as a collection of heap chunks. These chunks repre-
sent the resources which are accessible in the current state. Each chunk repre-
sents access to one or multiple (in the case of quantified permissions) instances
of a particular resource.
Each chunk is associated with a snapshot map: In the simple case of fields, this
is a partial function representing the value of the field at some receiver. For
example, if there is a variable x and the current heap provides access to x.f,
then the corresponding chunk’s snapshot map sm represents the value of x.f.
If we now assign x.f := 10, then sm(x) would be equal to 10. In the case of a
predicate, the snapshot map represents the values that the predicate abstracts
over. Overline notation is used to denote repetition in the following, i.e. args
means one or more arguments. We represent chunks by id(args; sm, p), where
args are the arguments of the resource instance the chunk corresponds to, sm is
the snapshot map of this chunk and p are the permissions provided this chunk.
id is the identifier of the chunk, i.e. the name of a field or predicate. For exam-
ple, the chunk corresponding to the accessibility predicate acc(x.f, p) would
be f(x, sm, p), where sm is a new snapshot map.

2.4.2 Symbolic State

Silicon keeps a symbolic state during symbolic execution to include all known
information up to this point. It includes the following:

• A store that maps local variables to their symbolic values.

• A path condition stack that collects all constraints that are gathered during
symbolic execution (e.g. symbolically executing x := v would add the
path condition x == v to the stack). The path condition stack consists
of triples (Id, V, Set[V]) consisting of a unique scope identifier, a branch
condition and a set of path conditions.

• A heap consisting of heap chunks representing all the resources we cur-
rently have permissions to.

2.4.3 Symbolic Execution Rules

Silicon is based on symbolic execution [2]. In symbolic execution, instead of
executing a program best on real input values, the program is instead sym-
bolically executed on some symbolic values and a symbolic state. During the
symbolic execution, constraints on the symbolic values are gathered which can
then be used to prove assertions about the program. To define the effect of
statements on the symbolic state, Silicon defines symbolic execution rules. To
extend Silicon with the new features introduced in this thesis, we need to define
appropriate symbolic execution rules for the new features. In order to do this,
we need some symbolic execution primitives that can be used in new rules. The
symbolic execution rules defined here as well as the new rules defined in this
thesis are all based on the rules found in [8].

8

The symbolic execution rules are defined in continuation passing style: To each
function we pass a continuation function as an argument. This function is de-
noted by Q in the following rules and it is called after the current function is
done. σ represents the current state, including the heap (σ.h).
The sets in the signatures represent the following: Σ is the set of states, A is the
set of assertions, E is the set of expressions, S is the set of statements, R is the
set of verification results (either success or failure) and V is the set of symbolic
values. The representation id(args) is used to refer to a chunk identifier. This
identifier can be used to find matching chunks in the symbolic heap.

1 produce: Σ→ A→ Snap→ (Σ→ R)→ R
2 produce(σ, a, s, Q)

Produce creates a new heap chunk if we gain permissions to some new
resource and adds it to the new state. If it used with a pure assertion in-
stead, it adds the assertion to the path conditions. For example, produce(σ,
acc(x.f, p), s, Q) will create the new heap chunk f(x; s, p). After the cre-
ation of the chunk, Q is called with the state obtained by adding this new chunk
to the symbolic heap.

1 consume: Σ→ A→ (Σ→ Snap→ R)→ R
2 consume(σ, a, Q)

Consume exhales an assertion, i.e. removes permissions to a resource. If
used with a pure assertion, it asserts this assertion in the current state. For
example, consume(σ, acc(x.f,p), Q) searches the heap for a chunk matching
f(x; sm, q). It then replaces this chunk by a new chunk f(x; sm, q − p) (or no
chunk if all permissions were exhaled). Its continuation is then called with the
updated state and sm, the snapshot representing the symbolic values of the
exhaled permissions.

1 eval: Σ→ E → (Σ→ V → R)→ R
2 eval(σ, e, Q)

Evaluates the pure expression e in the state σ. This yields a symbolic
expression as well as a (potentially) updated state, if new path conditions were
added during the evaluation, which are then passed to the continuation Q.

1 exec: Σ→ S → (Σ→ R)→ R
2 exec(σ, s, Q)

Executes statement s and updates the state accordingly. For example,
exec(σ, x := e, Q) will set the variable x to e in the store and then call
Q with the updated state.

Finally, all of these symbolic execution primitives are combined in order to
build rules for the symbolic evaluation of Viper. For example, symbolically eval-
uating inhale acc(x.f, p) would first call exec, because we are executing a
statement, which in turn would call produce to add a new chunk to the heap.
The produce function would then use the eval function to evaluate x and p
and get the correct symbolic arguments for the new chunk.

9

2.4.4 Auxiliary functions

In addition to the symbolic execution primitives described above, the symbolic
execution rules presented in this thesis also make use of several auxiliary func-
tions.

1 heap-add: H → Id→ Snap→ Perm→ H
2 heap-add(h, id(v), s, p) =
3 (h ∪ {id(v; s, p)})

Listing 2.1: heap-add

heap-add adds a new chunk to a heap and returns the new heap.

1 pc-add: Π→ V → Π
2 pc-add(π, v) =
3 Let(id, bc, pcs) :: suffix match π
4 (id, bc, pcs ∪ {v}) :: suffix

Listing 2.2: pc-add

pc-add is used to add new path conditions found during the symbolic exe-
cution.

1 check: Π→ V → Bool
2 check(π, v) = pc-all(π) `SMT v
3
4 assert: Π→ V → R
5 assert(π, v) =
6 if check(π, v) then success()
7 else failure

Listing 2.3: check and assert rules to check path conditions

The assert rule can be used to check whether the current path conditions
imply some assertion. In order to do this, the SMT Solver that Silicon uses for
its backend is queried, as can be seen in the check function.

10

Chapter 3

Permission Introspection

To reason about what permissions are currently held, Viper supports two types
of permission introspection features: perm and forperm. perm can be used in
conjunction with a resource to get the current permissions to this resource. An
example of how perm can be used can be seen in Listing 3.1. Here, we inhale
permissions, but which permission exactly depends on some value b. To exhale
the permissions again, we can use perm to test whether we have permissions to
y.f.

inhale b ? acc(y.f) : acc(z.f)

if (perm(y.f) >= write) {
exhale acc(y.f)

} else {
exhale acc(z.f)

}

Listing 3.1: Example use of perm

The other permission introspection feature of Viper is forperm. forperm
is a boolean expression and serves as a quantifier over resources to which we
currently hold permissions. A forperm expression is true if and only if for
every instance of the quantified resource that we currently hold permissions to,
its body holds.

inhale acc(x.f) && acc(y.f)
inhale acc(z.g)
assume x.f > 0 && y.f > 0

assert forperm [f] r :: r.f > 0

Listing 3.2: Example use of forperm

An example use of a forperm expression can be seen in Listing 3.2. Here, we
have permissions to two instances of the field f: x.f and y.f. The assertion at
the end asserts that for both of these instances, the value of the field is positive.
Semantically, the expression forperm [f] x :: x.f > 0 is equivalent to
forall x: Ref :: perm(x.f) > none ==> x.f > 0.

11

At the start of this thesis, perm and forperm only supported a subset of
the resources available in Viper. In particular, perm did not support magic
wands and forperm only supported fields and predicates which had exactly one
argument of type Ref, which represents references in Viper (i.e. which were as
close to fields as possible).

Resource perm forperm
Fields 3 3
Predicates 3 7
Magic wands 7 7

Table 3.1: Previous support for permission introspection

Additionally, forperm also completely ignored quantified permissions in Sil-
icon, which meant that an example such as Listing 3.3 would wrongly verify in
Silicon, whereas Carbon correctly found the assertion to be false.

inhale forall x: Ref :: x in xs ==> acc(x.f)
assume forall x: Ref :: x in xs ==> x.f < 0
assert forperm [f] x :: x.f > 0

Listing 3.3: forperm in combination with quantified permissions

In this chapter, we will complete Table 3.1 and enable full support for all
Viper resources with both permission introspection features.

3.1 Perm

Magic wand support of perm required some changes in both Viper and Silicon.
In Viper, the parser and AST had to be adjusted, both of these now allow any
resource to be used with perm. This also means that if any resources are added
to Viper in the future, Viper should not need to be changed to allow perm to
support these resources.
In Silicon, we needed an additional evaluation case that gathers all magic wand
chunks and sums up all the permissions to these chunks.

The evaluation rule for perm is the same as the old rule from [8], with the
difference being that we allow id to be a magic wand as well.

1 eval: Σ→ E → (Σ→ V → R)→ R
2 eval(σ1, perm(id(e)), Q) =
3 eval(σ1, e, (λ σ2, e′ ·
4 Let hid ⊆ σ2.h contain all heap chunks for identifier id
5 sum := foldl(hid, 0, (λ id(v;_, p), q ·
6 q + ite(

∧
e′ = v, p, 0)))

7 Q(σ2, sum)

Listing 3.4: Evaluation rule for perm

In Listing 3.4, we find the symbolic evaluation rule for perm. The rule states
that when evaluating a perm expression, first of all we evaluate the arguments of
the resource (e). These arguments are Viper expressions and the evaluation re-
sults in symbolic expressions (e′) for the arguments that can be used by Silicon.

12

We then gather all relevant chunks of the heap (i.e. all the chunks providing
permissions to the resource we are interested in). Then we sum up all the per-
missions provided by these chunks, given the arguments of the chunk match the
arguments given by the symbolic expressions e′. The underscore notation used
in line 5 for id(v;_, p) denotes an arbitrary value, it is irrelevant for the rest of
the rule and therefore does not need a name.
Here, foldl represents a left fold as can be found in functional programming
languages such as Haskell. It takes a collection, a starting value and a combina-
tion function as arguments and then iteratively applies the combination function
to the next element of the collection and the result of the previous computa-
tion, starting with the starting value. ite is used to the denote a conditional
expression, equivalent to the ternary ?: operator that is found in Viper as well
as in many programming languages. If the first argument holds, the value of the
expression is the second argument, otherwise it is the third argument. Finally,
the value returned by this evaluation is the sum of all the chunk permissions.
For example, assume the current heap contains two magic wand chunks corre-
sponding to the wands acc(x.f) --* acc(y.f) and acc(a.f) --* acc(b.f).
These chunks would be of the form wand(x′, y′; sm, 1) and wand(a′, b′; sm′, 1).
Now we want to symbolically evaluate the expression perm(acc(c.f) --*
acc(d.f)). According to the rule, we first evaluate the arguments, in this
case c and d. Assume that these are evaluated to c′ and d′ respectively. Next
we gather all chunks with the same identifier, in this case this would be the
two chunks mentioned before. Then we sum up the permissions provided by
these chunks, this would result in the following term: (ite(a′ = c′ ∧ b′ =
d′, 1, 0)) + (ite(x′ = c′ ∧ y′ = d′, 1, 0)). Finally, this term would be passed on
to the continuation function.

3.2 Forperm

To support the use of any resource with forperm, some additional changes were
needed. First of all, the syntax of forperm had several restrictions that posed
a problem to extending it to the yet unsupported resources.

Old forperm syntax:
forperm [(predicate | field)] variable :: expression

Shortcomings of the old forperm syntax:

• The old forperm syntax only allowed a single variable. This is a problem
for resources with more than one argument as it makes it impossible to
mention a specific argument in the body fo the forperm expression.

• The variable’s type could not be declared, it was always of type Ref.

• Resources were specified by their name only, not their arguments. This is a
problem because it requires that all arguments to a resource are quantified.
We could not specify things such as P(x,3) if we were interested only in
the predicates whose second argument is 3.

To combat these shortcomings, the forperm syntax was changed to allow
easier extension to support all resources.

13

New forperm syntax:
forperm variable: Type [resourceAccess] :: expression

In the new syntax, there are multiple quantified variables, such that is pos-
sible to quantify all arguments of an arbitrary predicate or magic wand. Addi-
tionally, the type of any quantified variable can now be specified by the user,
which is necessary for predicates or magic wands with non-Ref type arguments.
The resource that we consider for forperm is now specified together with its
arguments, some of which can also be non-quantified, e.g.: forperm x: Ref
[P(x, 3)] :: x != null, where P(x: Ref, i: Int) is a predicate, is sup-
ported and would only consider predicate instances whose second argument is
3. An example of this can be seen in Listing 3.5. As an additional simplification
of the language, forperm also only allows a single resource under the new syn-
tax. This is however not a reduction of the language: If multiple resources were
specified, this meant that forperm should consider permissions to instances of
either resource. Semantically, this is equivalent to the conjunction of multiple
forperm expressions with the same body, one for each resource. Therefore,
anything that could be specified before can now still be specified.

inhale P(null, 5)
inhale P(z, 3)
assume z != null

assert forperm x: Ref [P(x,3)] :: x != null //verifies
assert forperm x: Ref, i: Int [P(x,i)] :: x != null //fails

Listing 3.5: Using non-quantified arguments with forperm. The first assertion
verifies, because the second argument of P(null, 5) is not 3, therefore we only
consider the instance P(z, 3). In the second assertion however, we consider
both instances and therefore the assertion fails.

The symbolic evaluation rule for forperm found in Listing 3.6 has the fol-
lowing changes from the original found in [8]: The biggest change is that we
need to accommodate the fact that some of the arguments of the resource might
not be quantified, therefore we need to first evaluate all non-quantified argu-
ments. For easier notation, the non-quantified arguments are mentioned last
in the rule, however, there is no requirement for that, the quantified and non-
quantified arguments can be interleaved as well. The body is denoted as b(x).
This does not mean that the body is a function application, but rather that
the body is a (boolean) expression potentially depending on x. Also, as in the
perm evaluation rule, we allow id to be any resource, so a field, predicate or
magic wand. Then to evaluate forperm, we iterate over all relevant chunks and
check that if 1) we do have permissions to the chunk and 2) the non-quantified
arguments match, then the body of the forperm holds. Additionally, to sup-
port the use of quantified permissions with forperm, the permission amount of
the chunk can now depend on the arguments of the chunk. This is necessary
for quantified permissions, since the permission amount might depend on the
quantified variable(s).

14

1 eval: Σ→ E → (Σ→ V → R)→ R

2 eval(σ1, forperm x : T [id(x, e)] :: b(x), Q) =
3 eval(σ1, e, (λ σ2, e′ ·
4 Let hid ⊆ σ2.h contain all heap chunks with identifier id
5 Let z : T be fresh program variables s.t. |z| = |x|,
6 and let z′ be corresponding fresh symbolic values
7 cnj(z) := foldl(hid, true, (λ id(v;_, p(v)),c ·
8 Let (v1 :: v2) = v be the arguments corresponding
9 to x and e respectively

10 c ∧ (p(z′, e′) > none &&
∧

z′ = v1 &&
∧

e′ = v2 ==> b(z)
11 eval(σ2 {γ := σ2.γ[z 7→ z′]}, cnj(z), (λ σ3, cnj(z)’ ·
12 Q(σ3{γ := σ2.γ}, ∀ x : T · cnj(x)’))

Listing 3.6: Evaluation rule for forperm, the main additions are highlighted

15

Chapter 4

Assume

The Viper language supports a variety of statements, of these, four of these
are similarly concerned with assertions: inhale, exhale, assume, assert.
However, as can be seen in table 4.1, in contrast to the other statements, assume
can only be used in conjunction with pure assertions.

Support for assertions
exhale a 3
inhale a 3
assert a 3
assume a 7 (if not pure)

Table 4.1: Support for non-pure assertions

As part of this thesis, I extended the assume semantics to also support non-
pure assertions (i.e. resource access assertions). The semantics for assume a

(as opposed to inhale a) are that it is assumed that the assertion a holds in
the current state without modifying the state. On the other hand, inhale a

will change the state if a is an impure assertion. In this case it will add the
permissions to the resources in a to the state (i.e. create corresponding chunks
in Silicon).
For impure assertions such as assume acc(x.f, p), we assume that the current
heap provides p permissions to the field x.f. Therefore we learn that x has to be
an alias of some other variable to whose field f we have at least p permissions.
For example, if we had at least p permissions to some field y.f before the assume
statement and nothing else provides permissions to the field f, then we would
learn that x == y.

There were several options to add support for non-pure assertions: One
possibility was a map-based approach that would encode locations to which
we hold permissions as a map in the SMT Solver underlying Silicon. In this
approach, whenever we assume a certain permission amount to a resource, we
would increment the value of the map at the resource by this permission amount.
This way possible aliasing would not need to be handled by Viper, but would
instead be handled by Z3 [13], which is the SMT Solver that Silicon uses as
its backend. However, an implementation of this approach would only work for
Silicon (for now) and would have to be implemented separately for Carbon.

16

An alternative approach can be found when we realize that assume acc(x.f)
is semantically equivalent to assume perm(x.f) == write, the latter of which
is already supported as it is a pure assertion. If any impure assume statement
could be rewritten in this way and turned into a pure statement, no additional
support would be needed. A big advantage of this approach is that it also sup-
ports Carbon directly without any changes, because the translation would be a
Viper to Viper translation resulting in a currently supported program.

This chapter will explore how to rewrite arbitrary impure assertions into
pure assertions in order to complete Table 4.1.

4.1 Naive Rewriting

This section will describe the first approach used to rewrite impure assume
statements into semantically equivalent pure assume statements. In order to
simplify the explanation, we will first consider only fields and non-quantified
permissions and later show how to extend the same approach to be used with
the other resources as well as quantified permissions.

The main challenge when rewriting assume statements is the difference be-
tween a separating conjunction and a standard boolean conjunction: The sepa-
rating conjunction requires the heap to be separable such that in one part of the
heap, we have the permissions required by the left conjunct, and in the other
part, we have the permissions required by the right conjunct. In particular,
if there is aliasing between the receivers of two fields, we require the sum of
the permissions required by the two conjuncts. Consider the following assume
statement:

assume acc(x.f, p_x) && acc(y.f, p_y) && acc(z.f, p_z)

Listing 4.1: Impure assume with a separating conjunction

Since && denotes a separating conjunction when used with impure assertions,
this means that if x, y and z happened to be aliases, we would need p_x +

p_y + p_z permissions to x.f/y.f/z.f to be able to split the heap as required.
Similarly, if any two of the variables are aliases, we would need the sum of the
two respective permissions to the field f.

The first approach to rewrite non-pure assumes into pure assumes was to
essentially test all possible combinations of aliasing conditions and assign per-
missions accordingly. The rewriting of the example in Listing 4.1 would look
like the following:

assume perm(x.f) >= p_x &&
perm(y.f) >= (y == x ? p_x + p_y :

p_y) &&
perm(z.f) >= (z == x && z == y ? p_x + p_y + p_z :

z == x ? p_x + p_z :
z == y ? p_y + p_z :

p_z)

Listing 4.2: Rewriting of Listing 4.1

However, the big disadvantage of this rewriting is its growth rate. If we
have n + 1 conjuncts, then to get the largest term we have to consider all

17

possible combinations of any length of the remaining n conjuncts. For each
of those combinations we create an additional conditional expression. This
results in

∑n
k=0

(
n
k

)
= 2n conditional subexpressions. Therefore, the terms

grow exponentially in the number of separating conjunctions and the runtime
also grows accordingly. This meant that only assume statements with less than
10 conjuncts could feasibly be verified.

4.2 Fast Rewriting

A much better approach to rewriting is instead of defining the permission
amount as one huge conditional expression to define it as a sum of conditional
expressions that each represent one aliasing condition. Consider again the ex-
ample from Listing 4.1. The rewriting of this can be seen in Listing 4.3.

assume perm(x.f) >= p_x &&
perm(y.f) >= p_y + (y == x ? p_x : none) &&
perm(z.f) >= p_z + (z == x ? p_x : none)

+ (z == y ? p_y : none)

Listing 4.3: Better assume rewriting approach for Listing 4.1

Using this approach to rewrite assume statements, the number of terms only
grows linearly with the number of conjuncts. With this approach, even large
conjunctions could be verified very fast.
This approach gives rise to the following rewriting rule for fields:

assume ∗n

i=0 acc(xi.f, pi)
assume

∧n
i=0 perm(xi.f) >= pi +

∑n
j=0,j 6=i (xi == xj ? pj : none)

Listing 4.4: Rewriting rule for assume with fields

Here, ∗ and
∧

are used to illustrate the difference between a separating
and boolean conjunction, even though in Viper they would both be denoted as
&&.

4.2.1 Predicates and Magic Wands

In order to generalize the rule from above to predicates and magic wands, we
need to consider when two instances of these resources refer to the same resource.
This is the case if and only if their arguments are equal, so instead of comparing
receivers in the case of fields, we need to compare all arguments for equality.
A more generalized form of the rewriting rule can be found in Listing 4.5, where
args(res) is used to denote the arguments of a given resource, i.e. the receiver
of a field or the arguments of a predicate or magic wand. So args(x.f) would
refer to x and args(p(x,y,z)), where p refers to a predicate, would refer to
x,y,z.

assume ∗n

i=0 acc(resi, pi) =
assume

∧n
i=0 perm(resi) >= pi +

∑n
j=0,j 6=i (args(resi) ==

args(resj) ? pj : none)

Listing 4.5: Generalized rewriting rule for assume

18

4.3 Quantified Permissions

Rewriting assumptions that assume quantified permissions is not as straightfor-
ward as for non-quantified permissions: the main issue is that given a resource,
determining if a quantified permission assertion gives permission to this resource
cannot be easily checked. For example, consider Listing 4.6: Here, the quanti-
fied variable is not a reference, but an integer and we gain permissions to the
fields of the elements of the sequence xs.

assume (forall i: Int :: i in [0..|xs|) ==> acc(xs[i].f, p)
&& acc(x.f, q)

Listing 4.6: Quantified permission example

In this example, we have no easy way to check if x is an alias of an element of
xs. A possible solution to this problem would be to use existential quantifiers.
This way to check if the permissions to x are provided by the above quantified
permissions we would check exists i: Int :: x == xs[i]. The rewritten
assume using existential quantifiers can be seen in Listing 4.7. However, even
though existential quantifiers are supported by Viper, we would like to avoid
them, because then the verifier needs to find a witness for this quantifier, which
tends to be much harder than using universal quantifiers.

assume (forall i: Int :: i in [0..|xs|) ==> perm(xs[i].f)
>= p) &&

perm(x.f) >= q + (exists i: Int :: x == xs[i] ? p :
none)

Listing 4.7: Rewriting of Listing 4.6 using existential quantifier

A better alternative that avoids using existential quantifiers is to define in-
verse functions. In the above example, the inverse function would be a mapping
from references to integers. The rewriting of Listing 4.6 using inverse functions
can be seen in Listing 4.8. In this example, inv is a fresh function only used for
this purpose. In order to define inv, we also need to add the two axioms found
at the top.

// axioms defining the inverse function
assume forall r: Ref :: inv(r) in [0..|xs|) ==> r ==

xs[inv(r)]
assume forall i: Int :: i in [0..|xs|) ==> inv(xs[i]) == x
// the actual rewritten assume
assume (forall r: Ref :: inv(r) in [0..|xs|) ==>

perm(r.f) >= p) &&
perm(x.f) >= q + (inv(r) in [0..|xs|) ? p : none)

Listing 4.8: Rewriting of Listing 4.6 using inverse functions

As a matter of fact, both Silicon and Carbon currently instantiate such in-
verse functions for all quantified permissions, since they are also needed in many
other cases, however, these cannot be used for a Viper to Viper translation, they
only become available later and therefore new inverse functions were required.
The inverse functions can now already be instantiated as Viper functions, al-
lowing for full compatibility with the new assume rewriting. An example of
the axiomatizing of inverse functions can be seen in listings 4.9 and 4.10. The

19

definitions for the inverse functions are the same found in [3]. In this exam-
ple, c(x), e(x) and p(x) do not necessarily denote function applications, but
they can be any expression of type Bool, Ref and Perm respectively, and can
potentially depend on x. There can also be multiple quantified variables, the
quantified permission assertion is not restricted to a single variable. If there
are multiple quantified variables, there is one inverse function per quantified
variable in order to specify to which quantified variable we are mapping.

forall x: T :: c(x) ==> acc(e(x).f, p(x))

Listing 4.9: General quantified permission example

// definitional axioms
forall r: Ref :: c(inv(r)) ==> r == e(inv(r))
forall x: T :: c(x) ==> inv(e(x)) == x
// quantified permission assertion using inverse function
forall r: Ref :: c(inv(r)) ==> acc(r.f, p(inv(r)))

Listing 4.10: Inverse function definitions for 4.9, where inv is a fresh function

All quantified permissions are rewritten using the inverse functions, this way
they are always quantified over references and the quantified variable can easily
be replaced by whatever we want to check. Since now there is a lot of duplicate
functionality across silver and the verifiers, ideally in the future inverse func-
tions could be generated in Silver directly and both Carbon and Silicon could
use those.

For predicates and magic wands, the same type of inverse functions can also
be built, as can be seen in Listings 4.11 and 4.12. Once again, c(x), e(x) and
p(x) are not necessarily function application, but expressions that potentially
depend on the quantified variable. Also, multiple quantified variables are pos-
sible here as well. y represent the possibility for the predicate to have some
non-quantified arguments which of course do not have to be the last arguments,
but for readability they are placed last.

forall x : T :: c(x) ==> acc(pred(e(x), y), p(x))

Listing 4.11: Predicate quantified permission example

// definitional axioms for inverse function

forall r : S :: c(inv(r)) ==> r == e(inv(r))

forall x : T :: c(x) ==> inv(e(x), y) == x
// rewritten quantified permission assertion

forall r : S :: c(inv(r)) ==> acc(pred(r, p(inv(r))))

Listing 4.12: Inverse function definitions for 4.11

Currently, the axiomatization of inverse functions does not include any in-
jectivity checks. However, for the inverse functions to really exist, the original
function (i.e. e(x) in listing 4.9) has to be injective. This is not a problem
in the case of assume statements, because both verifiers currently only check
injectivity on exhale and assert statements, but importantly not on assume’s
duality inhale, so it is consistent with the current behaviour. However, if the
Viper inverses would be used in other cases as well, an injectivity check would
need to be added.

20

4.4 Full translation example

Both the inverse functions and the assume translation are implemented as Viper
domain functions which are equal to mathematical functions. They are do-
main functions because regular Viper functions always take the state into ac-
count (they can have preconditions concerning the current heap etc.). How-
ever, both the inverses and the assume translation should be independent of
the current state. The assume translation is implemented using helper func-
tions. Helper functions are generated as needed for the size of the largest sep-
arating conjunction in an assume. The arguments of the helper functions are
the aliasing conditions as well as the corresponding permissions. They are
defined as assume_helper_n(c, p, q) = q +

∑n
i=0 (c_i ? p_i : none).

The reason for using these helper functions (instead of translating in place) is
the better performance. As mentioned before, the main problem with rewriting
was the performance for large separating conjunctions. The main cause of the
bad performance was the rapid growth of the SMT code generated by Silicon.
Using helper functions helps to keep the generated code small, because they can
be reused with consecutive assumes.
An example of the final translation can be seen in Listings 4.13 and 4.14. To
simplify the example, triggers for all the quantifiers are omitted.

field f: Int

method m(xs0: Seq[Ref], xs1: Seq[Ref], xs2: Seq[Ref], xs3:
Seq[Ref], p: Perm) {

inhale forall i0: Int :: i0 in [0..|xs0|) ==> acc(xs0[i0].f)

assume (forall i1: Int :: i1 in [0..|xs1|) ==> acc(xs1[i1].f, p))
&& (forall i2: Int :: i2 in [0..|xs2|) ==> acc(xs2[i2].f, p))
&& (forall i3: Int :: i3 in [0..|xs3|) ==> acc(xs3[i3].f, p))

}

Listing 4.13: assume containing two conjuncts

In Listing 4.13, we have three quantified permission assertions, all of which
need to be transformed to use inverse functions. This is the first thing that
happens: as we can see, in the translation there is a domain added for the in-
verse functions, with one function per quantified permission assertion (in a more
complicated example with predicates or magic wands and multiple quantified
variables, there would be multiple functions per quantified permission asser-
tion). The axioms to specify the inverse functions are not added as domain
axioms. The reason for this is that they depend on variables which are not
available to domain axioms, for example, the inverse to forall i1: Int ::

i1 in [0..|xs1|) ==> acc(xs1[i1].f, p) is only defined with regards to
xs1 and therefore depends on it. Because of this, the defintions of the (partial)
inverse functions are assumed before the actual transformed assume as addi-
tional axioms.
The assume functions, on the other hand, use domain axioms to define the value
of the functions. This is possible because they are defined independently of any
local variables, they are also the same for every assume statement.

21

// inverse function declaration
domain Inverse {

function inv_0(r: Ref): Int
function inv_1(r: Ref): Int
function inv_2(r: Ref): Int

}

// assume helper functions including definitions
domain Assume {

function assume_helper_1(c_1: Bool, p_1: Perm, p_0: Perm): Perm
function assume_helper_2(c_2: Bool, c_1: Bool, p_2: Perm, p_1:

Perm, p_0: Perm): Perm
axiom assume_helper_1_axiom {
(forall c_1: Bool, p_1: Perm, p_0: Perm ::

assume_helper_1(c_1, p_1, p_0) == p_0 + (c_1 ? p_1 : none))
}
axiom assume_helper_2_axiom {
(forall c_2: Bool, c_1: Bool, p_2: Perm, p_1: Perm, p_0: Perm ::

assume_helper_2(c_2, c_1, p_2, p_1, p_0) == p_0 + (c_1 ? p_1
: none) + (c_2 ? p_2 : none))

}
}

field f: Int

method m(xs0: Seq[Ref], xs1: Seq[Ref], xs2: Seq[Ref], xs3:
Seq[Ref], p: Perm) {

inhale (forall i0: Int :: (i0 in [0..|xs0|))
==> acc(xs0[i0].f, write))

// inverse function definition
assume (forall i1: Int :: (i1 in [0..|xs1|))
==> inv_0(xs1[i1]) == i1)

assume (forall r: Ref :: (inv_0(r) in [0..|xs1|))
==> xs1[inv_0(r)] == r)

// transformed assume
assume (forall r: Ref :: (inv_0(r) in [0..|xs1|))
==> perm(r.f) >= p)

// inverse function definition
assume (forall i2: Int :: (i2 in [0..|xs2|))
==> inv_1(xs2[i2]) == i2)

assume (forall r: Ref :: (inv_1(r) in [0..|xs2|))
==> xs2[inv_1(r)] == r)

// transformed assume
assume (forall r: Ref :: (inv_1(r) in [0..|xs2|))
==> perm(r.f) >= assume_helper_1((inv_0(r) in [0..|xs1|)), p,

p))

// inverse function definition
assume (forall i3: Int :: (i3 in [0..|xs3|))
==> inv_2(xs3[i3]) == i3)

assume (forall r: Ref :: (inv_2(r) in [0..|xs3|))
==> xs3[inv_2(r)] == r)

// transformed assume
assume (forall r: Ref :: (inv_2(r) in [0..|xs3|))
==> perm(r.f) >= assume_helper_2((inv_1(r) in [0..|xs2|)),

(inv_0(r) in [0..|xs1|)), p, p, p))
}

Listing 4.14: Final translation of 4.13

22

Chapter 5

Heap-Dependent Triggers

Viper supports universal quantifiers of the form forall x: T :: e(x). Since
it is obviously not feasible to instantiate this axiom for every possible x: T or
even for every x: T that occurs in the program to be verified, Viper includes
triggers. Triggers are uninterpreted expressions that are used to instantiate
the axiom: if we add the trigger t(x) to the above axiom, then whenever an
expression of the form t(y) is encountered, the axiom is instantiated as e(y).
The requirement for the trigger to be uninterpreted concerns not Silicon but
the underlying SMT Solver: any expression that has a meaning to the SMT
Solver, such as arithmetic expressions, comparisons, implications, conjunctions,
etc. cannot be used as triggers.
At the start of this thesis, Silicon did not support the use of heap-dependent
expressions such as fields, predicates and magic wands as triggers in most cases.
However, for some cases, such as Listing 5.1, there is no real practical alternative
to a heap-dependent trigger such as a field. In this example, the only usable
triggers would be perm(x.f) or x.f, both of which were unsupported (recall
that perm(x.f) is not a function call and can therefore not be used as trigger).

assume forall x: Ref :: perm(x.f) > none ==> x.f != 0

Listing 5.1: Quantifier with heap-based trigger

Silicon ultimately creates formulae that are discharged by an SMT Solver
(Z3) and the triggers are passed down to the SMT Solver. However, for heap-
dependent triggers this is a problem, since the concept of a heap does not really
exist on an SMT level. For example, the way fields are represented in the SMT
code varies depending on how the field is used: If a field is read (x.f), in the
SMT code, there will be a call of a value function with the receiver as argument.
This value function represents the value of fields at certain receivers. However,
if we instead had perm(x.f), then the value function is not used, but instead we
have a sum of permission terms representing the total permission to that field
with this receiver. We would, however, like both of those to trigger quantifiers
that use the field x.f as their trigger.
Because of this a completely new function specifically for triggering was created.
The function is a location function locf (sm(x), x) that depends on both the
current value (sm(x)), where sm is a value function representing the current
value, and the receiver (x) (in the case of a field). There is one location function

23

declared for every quantified resource in the current program. In the case of
fields, the type of the function is locfield : T × Ref → Bool, where T is the
type of the field. For predicates and magic wands, the function is locpred :
S × Snap → Bool, where S is the sort corresponding to the arguments of the
predicate/magic wand. The return type in both cases is a Boolean, the reason
for this is that it allows to easily add the function to the path conditions when
we want to create a trigger. To make sure that the triggering function does not
influence anything beyond triggering, additional axioms are added to declare
the triggering function to always be true: ∀x : T, s : S · locid(x, s) is added to
the path conditions for every resource, where T and S are the types correct
types as specified by locid. This allows us, for example, to use the triggering
function as follows: locf (sm(x), x) ⇒ e(x), where e(x) is some expression that
should generate this trigger.
Wherever a heap-dependent trigger is used, it is translated to this location
function which is then used as the actual trigger.
The biggest challenge now was to make sure that this function triggers axioms
as expected. The intended triggering is that for any resource that is part of
the heap at the time the axiom is added to the state, the axiom should trigger.
However, if permissions to a new resource are added later, then mentioning this
resource should not trigger the axiom.

assume forall x: Ref :: {x.f} perm(x.f) == write ==> x.f > 0
inhale acc(y.f)
assert y.f > 0 // Fails

Listing 5.2: Heap-dependent trigger not triggering as intended

In Listing 5.2, we can see how only the heap at the time the axiom is added
to the state is relevant. Since the permissions to y.f are only added later, it
does not trigger the axiom, even though we clearly mention the relevant field.

inhale acc(y.f)
assume forall x: Ref :: {x.f} perm(x.f) == write ==> x.f > 0
assert y.f > 0 // Succeeds

Listing 5.3: Successful triggering using heap-dependent trigger

In Listing 5.3 on the other hand, we see when triggering succeeds. Since y.f
is already part of the symbolic heap at the time the axiom is added to the state,
it does trigger the axiom and the assertion succeeds.

To generate triggers whenever a specific resource is mentioned, we often need
to summarise the heap. A heap summary is essentially a new snapshot map that
is a combination of all snapshot maps of the current heap. Since snapshot maps
are partial functions, they are only defined within a certain domain, i.e. they
are only defined if we have permissions to a resource. The definition of the
summary sm is now that for every snapshot map smi, on the domain of smi,
sm is equal to smi, i.e. e ∈ dom(smi) ⇒ sm(e) = smi(e). For example, if
the heap consisted of the two quantified permission assertions forall x: Ref
:: x in xs ==> acc(x.f) and forall y: Ref :: y in ys ==> acc(y.f)
when we create a summary, this would mean the symbolic heap consists of two
chunks with the snapshot maps sm1 and sm2. The new summary snapshot map
sm would then be defined as follows: ∀r : Ref · r ∈ xs⇒ sm(r) = sm1(r)∧ r ∈

24

ys⇒ sm(r) = sm2(r).
The summary gives us a snapshot map that is essentially defined over the com-
plete current heap, instead of the individual snapshot maps that are defined for
each chunk. The reason we need such a summary for the triggering is that we
want any part of the current heap to be able to trigger quantifiers with heap-
dependent triggers. Using such a heap summary, we also manage to trigger just
for the current heap (since the summary will not be defined for chunks added
later), and not on any resource that is added later to the heap.
The function to create the summary can be found in Listing 5.4. This sum-
marising is almost equivalent to the definition found in [8]. There is however
the addition of one axiom to the definitional axioms for the summary (found
in the highlighted lines 9-10): ∀r : E {locid(sm(r), r)}

∧
i locid(smi(r), r). This

axiom specifies that whenever we mention the location that corresponds to a
particular summary snapshot map, we also mention the location of every single
component of the summary.

1 qp-summarise(h, id) =
2 Let hid ⊆ h be all chunks for identifier id

3 Let sm be a fresh snapshot map of type E → Snap
4 smdef := ∅
5 perm := λ r · 0
6 foreach id(r; smi(r), qi(r)) ∈ hid do
7 smdef := smdef ∪ {∀r : E · 0 < qi(r) ⇒ sm(r) = smi(r)}
8 perm := λr · perm(r) + qi(r)
9 locax :=

∧
i∈hid

locid(smi(r), r)

10 smdef := smdef ∪ {∀r : E {locid(sm(r), r)} locax}
11 (sm, smdef, perm)
12 //where E are the sorts corresponding to the arguments of id,

for example Ref if id denotes a field

Listing 5.4: qp-summarise, the highlighted section is the newly added axiom

In this chapter, we will present the changes needed in the symbolic execu-
tion rules to support heap-dependent triggers as described above. Until the
last section of this chapter, we will assume that we only deal with quantified
permissions. The reason for this is that Silicon handles quantified and non-
quantified permission settings quite differently. In Section 5.5 we will address
how to handle non-quantified permission settings. In a quantified permission
setting, assertion such as inhale acc(x.f) can be treated as syntactic sugar
for the assertion inhale forall r: Ref :: r == x ==> acc(r.f).

5.1 Evaluating Heap-dependent Triggers

The symbolic evaluation of heap-dependent triggers required some additional
changes. All we need to evaluate are the arguments of whatever resource we are
using as trigger. However, consider the example in Listing 5.5: the trigger in
line 3 is perfectly valid, but if we just evaluate the receiver of the field access
(i.e. ys[x.f]), we encounter multiple problems.

25

inhale forall x: Ref :: {x.f} x in xs ==> acc(x.f)
inhale forall x: Ref :: x in xs ==> x.f in [0..|ys|)
inhale forall x: Ref :: {ys[x.f].f} x in xs ==>

acc(ys[x.f].f)

Listing 5.5: An example of a nested heap-dependent trigger

Firstly, we do not know if we have permission to access x.f and secondly,
we also do not know if x.f is a valid index into ys. Both of these are the case,
however only under the condition x in xs. At the time of trigger evaluation
there is no way to know that this condition holds and therefore we get an
error for this trigger even though it should be valid. However, since the trigger
is a purely syntactic construct and does not contain any semantic meaning
(two quantifiers which only differ in their trigger and in nothing else are equal
from a logical standpoint), errors that occur during the trigger evaluation are
also not a problem for the verification. Therefore, to allow any trigger to be
used, the solution is to just translate the trigger without doing any checks:
whether ys[x.f] is a valid access of an element of a sequence does not really
matter inside the trigger, we simply want to trigger the quantifier whenever an
expression of this sort occurs. Any expression that could trigger the quantifier
of course still includes all the checks, therefore nothing is lost really, but more
triggers are allowed. In Listing 5.6, we find the symbolic evaluation rule for
heap-dependent triggers. It differs from the regular evaluation rule in that it
evaluates an identifier instead of a pure expression.

1 evalTrigger: Σ→ Id→ (Σ→ V → R)→ R

2 evalTrigger(σ1, id(e(x)), Q) =

3 evalNoCheck(σ1, e(x), (λ σ2, e(x)′ ·
4 Let hid ⊆ σ2.h contain all chunks for identifier id
5 (sm, smdef _) = qp-summarise(hid, id)
6 π2 := pc-add(σ2.π, smdef)

7 Q(σ2{π := π2}, locid(sm(e(x)′), e(x)′))))

Listing 5.6: Symbolic evaluation of heap-dependent triggers, evalNoCheck is a
helper function that is equivalent to eval, it just does not perform checks such
as whether we have permissions.

5.2 Inhaling and Exhaling Permissions

When inhaling quantified permissions, Silicon internally rewrites the quantified
permission assertion using newly axiomatized inverse functions (similar to sec-
tion 4.3). The trigger defined by the user is only used for one of the axioms that
define the inverse functions, for the other axiom the inverse function is used
as the trigger. Therefore, when inhaling quantified permissions using a heap-
dependent trigger such as in Listing 5.5, we only need to change the trigger for
one inverse function axiom. When inhaling permissions, we create a new chunk
that represents the new heap resources that we now gained permissions to. Ev-
ery chunk includes a snapshot map that represents the values of this chunk. The
trigger for the inhaled permissions is now translated to locid(sm(e), e), where
sm is the snapshot corresponding to the newly created chunk, id is the resource

26

for which we inhaled permissions and e are the arguments used for the resource
to which we inhale permissions. The reason we use the snapshot map of the new
chunk and not a summary snapshot map abstracting over the complete heap is
that this would only add unnecessary instantiations of the axioms. The axiom
where the trigger is used is inv2 in Listing 5.7. This axiom is an implication
whose left-hand-side is true if and only if this chunk provides permissions. Since
the domain of the snapshot map belonging to a chunk is all values for which
the chunk provides permissions, it is enough to only trigger using this snapshot
map.
Listing 5.7 shows the symbolic execution rule for inhaling quantified permis-
sions using a heap-dependent trigger with the changes highlighted. The rule
is slightly simplified from the version found in [8], however nothing additional
found in the original rule is relevant to the changes made here. In addition to
the changes to the trigger of the quantified permission assertion respectively
the inverse function defined by it, this rule also includes a new axiom in line
12. This axiom generates a trigger for all locations to which this quantified
permission assertion provides permissions.

1 produce: Σ→ A→ Snap→ (Σ→ R)→ R

2 produce(σ1, forall x: T :: {id(e1(x))} c(x) ==> acc(id(e(x)),
p(x)), sm, Q) =

3 eval(σ1, c(x), (λ σ2, c(x)’ ·
4 eval(σ2{π := σ2.π ∪ c(x)’}, e(x) (λ σ3, e(x)′ ·
5 eval(σ3, p(x), (λ σ5, p(x)’ ·
6 evalTrigger(σ5, id(e1(x)), (λ σ6, locid(sm1(e1(x)′), e1(x)′) ·
7 Let e−1 be a fresh function of type E → T

8 inv1 := ∀ r : E · {e−1(r)} c(e−1(r))’ ∧ 0 < p(e−1(r))’ ⇒
∧

ei(e−1(r))′ = ri
9 inv2 := ∀x : T · {locid(sm(e1(x)′), e1(x)′)} c(x)’ ∧ 0 < p(x)’

⇒ e−1(e(x)′) = x
10 ch := id(r; sm(r), ite(c(e−1(r))′, p(e−1(r)), 0))
11 Let hid ⊆ σ2.h be all chunks for identifier id
12 (sm′, smdef ,_) = qp-summarise(hid, id)
13 locax := ∀r : E· {e−1(r)} c(e−1)′ ⇒ locid(sm′(r), r)
14 h3 := σ2.h ∪ {ch}
15 π3 := pc-add(σ2.π, {inv1, inv2, smdef, locax})
16 Q(σ2{h := h3, π := π3})))))))))

Listing 5.7: Inhaling with heap-dependent trigger

When exhaling permissions, we need to make sure to generate triggers for
the permissions that we are exhaling. This is required to make sure we can trig-
ger quantified permission assertions that use a heap-dependent trigger which
were inhaled earlier. In the case of quantified permissions, the triggering func-
tion is used twice: first we need it for the injectivity check. The reason it is
required is that the originally inhaled quantified permissions need to be trig-
gered to be able to assert injectivity. Additionally, we also add the axiom
∀r {e−1(r)} c(e−1(r))’ ⇒ loc_id(sm(r), r). Recall that a quantified per-
mission assertion is of the form ∀x : T ·c(x)⇒ acc(id(e(x)), p(x)). If we replace
x with e−1(r) in this assertion, we can clearly see the similarity between the two
axioms. The difference between them is that the right hand side of the implica-
tion of one axiom is an accessibility predicate, whereas for the other axiom, it

27

is the location function corresponding to the same resource. The axiom that we
are adding essentially generates a trigger for every location that is included in
this quantified permission assertion. The qp-remove function used in line 10 is
an auxiliary function that removes permissions from quantified chunks if they
refer to the right resource.

1 consume: Σ→ A→ (Σ→ Snap→ R)→ R

2 consume(σ1, h, forall x: T :: c(x) ==> acc(id(e(x)), p(x)), Q) =

3 Proceed as above to obtain c(x)’,e(x)′ and p(x)’, let σ2 be
the post-state

4 (sm,smdef, _) := qp-summarise(h,id)
5 Let y1,y2 be fresh symbolic constants of type T

6 assert(σ2.π, c(y1)’ ∧ c(y2)’ ∧ loc_id(sm(e(y1)), e(y1)) ∧
loc_id(sm(e(y2)), e(y2)) ∧ 0 < p(y1) ∧ 0 < p(y2) ∧
e(y1)′ = e(y2)′) ⇒ y1 = y2)

7 Introduce a fresh function e−1 and axioms inv1 and inv2 as
above

8 locAx := ∀r {e−1(r)} c(e−1(r))’ ⇒ loc_id(sm(r), r)
9 π2 := pc-add(σ2.π, locAx)

10 h3 := qp-remove(σ2.π, h, id, (λ r · ite(c(e−1(r)), p(e−1(r)),
0)))

11 π3 := pc-add(σ2.π, {inv1, inv2, smdef})
12 Q(σ2{π := π3}, h3, sm)

Listing 5.8: Exhaling with heap-dependent triggers

5.3 Generating Triggers from Statements and
Expressions

To correctly trigger quantified axioms, we need to generate the triggering func-
tion whenever a particular resource is mentioned. To do this, we need to sum-
marise the heap in order to make sure that we can trigger quantifiers no matter
what snapshot map was used to create the trigger function.

28

5.3.1 Field Read

When reading a field, we need to generate a trigger instance for the field we are
reading, i.e. summarize the heap to get a snapshot map for all relevant chunks,
evaluate the receiver and then add the generated trigger instance to the path
conditions. The corresponding evaluation rule can be seen in Listing 5.9.

1 eval: Σ→ E → (Σ→ V → R)→ R
2 eval(σ1, e.f, Q) =
3 eval(σ1, e, (λ σ2 e′ ·
4 Let hf ⊆ σ2.h be all chunks for identifier f
5 (sm, smdef, _) = qp-summarise(hf, f)
6 locax := locf (sm(e′), e′)
7 π2 := pc-add(σ2.π, {smdef, locax})
8 perm :=

∑
ch(; ,p)∈hf

p

9 assert(π2, 0 < perm(e′))
10 Q(σ2{π := π2}, sm(e′))))

Listing 5.9: Evaluation rule for field reads

5.3.2 Field Write

In contrast to field reads, for field writes we need to generate the trigger twice:
once in the state before the assignment and once in the state after the assign-
ment. This makes sure that we can trigger both quantifiers added to the state
before the assignment and quantifiers that were added to the state after the
assignment. Listing 5.10 shows the evaluation rule to achieve this.

1 exec: Σ→ S → (Σ→ R)→ R
2 exec(σ1, e.f := v, Q) =
3 eval(σ1, e, (λ σ2 e′ ·
4 eval(σ2, v, (λ σ3 v′ ·
5 Let hf1 ⊆ σ3.h be all chunks for identifier f
6 (sm1, smdef1, _) = qp-summarise(hf1, f)
7 locax1 := locf (sm1(e′), e′)
8 π3 := pc-add(σ3.π, {sm1def, locax1})
9 consume(σ3{π := π3}, acc(e′.f, 1), (λ σ4, _ ·

10 produce(σ4, acc(e′.f, 1) && e′.f == v′, (λ σ5 ·
11 Let hf2 ⊆ σ5.h be all chunks for identifier f
12 (sm2, sm2def, _) = qp-summarise(hf2, f)
13 locax2 := locf (sm2(e′), e′)
14 π5 := pc-add(σ5.π, {sm2def, locax2})
15 Q(σ5{π := π5})))))))))

Listing 5.10: Execution rule for field writes

29

5.3.3 Perm

Perm is very similar to a field read, we just need to generate the trigger for
whatever resource is the argument to the perm expression. Listing 5.11 shows
the updated rule that includes trigger generation.

1 eval: Σ→ E → (Σ→ V → R)→ R
2 eval(σ1, perm(id(e)), Q) =
3 eval(σ1, e, (λ σ2, e′ ·
4 Let hid ⊆ σ2.h contain all heap chunks for identifier id
5 (sm, smdef, _) = qp-summarise(hid, id)
6 locax := locid(sm(e), e)
7 π2 := pc-add(σ2.π, {smdef, locax})
8 sum := foldl(hid, 0, (λ id(v;_,p), q · q + ite(

∧
e′ = v, p,

0)))
9 Q(σ2{π := π2}, sum))

Listing 5.11: Evaluation rule for perm

5.3.4 Forperm

Since forperm already iterates over all chunks that provide access to the resource
we are interested in, we do not need to create a summary, but can instead create
a trigger instance using the snapshot map of each chunk that we are iterating
over. Listing 5.12 shows the corresponding updated evaluation rule.

1 eval: Σ→ E → (Σ→ V → R)→ R

2 eval(σ1, forperm x : T [id(x, e)] :: b(x), Q) =
3 eval(σ1, e, (λ σ2, e′ ·
4 Let hid ⊆ σ2.h contain all heap chunks with identifier id

5 Let z : T be fresh program variables s.t. |z| = |x|,
6 and let z′ be corresponding fresh symbolic values
7 locax := true
8 cnj(z) := foldl(hid, true, (λ id(v;_, p(v)),c ·
9 locax := locax ∧ loc_id(sm(z, y′), z, y′)

10 Let (v1 :: v2) = v be the arguments corresponding
11 to x and e respectively
12 c ∧ (p(z′, e′) > none &&

∧
z′ = v1 &&

∧
e′ = v2 ==> b(z)))

13 π2 := pc-add(σ2.π, locax)
14 eval(σ2 {γ := σ2.γ[z 7→ z′], π := π2}, cnj(z), (λ σ3, cnj(z)’ ·
15 Q(σ3{γ := σ2.γ}, ∀ x : T · cnj(x)’))

Listing 5.12: Evaluation rule for forperm

30

5.3.5 Fold

When folding a new predicate, we create a trigger instance using the arguments
of the predicate and a heap summary for this predicate that includes the newly
folded predicate. In the symbolic execution rule in Listing 5.13, predbody is used
to represent the body of the predicate.

1 exec: Σ→ S → (Σ→ R)→ R
2 exec(σ1, fold acc(pred(e), p), Q) =
3 eval(σ1, e, (λ σ2 e′ ·
4 eval(σ2, p, (λ σ3 p′ ·
5 assert(σ3.π, 0 ≤ p′)
6 consume(σ3, predbody, (λ σ4 ·
7 produce(σ4, acc(pred(e′), p′), (λ σ5 ·
8 Let hpred ⊆ σ5.h be all chunks for identifier pred
9 (sm, smdef, _) = qp-summarise(hpred, pred)

10 locax := locpred(sm(e′), e′)
11 π5 := pc-add(σ5.π, {smdef, locax})
12 Q(σ5{π := π5})))))))))

Listing 5.13: Execution rule for fold

5.3.6 Unfold

When unfolding a predicate, we need to create the trigger in the previous state,
i.e. the unfolded predicate is still included in the summary that is used to
generate the trigger instance. Listing 5.14 shows the corresponding symbolic
execution rule.

1 exec: Σ→ S → (Σ→ R)→ R
2 exec(σ1, unfold acc(pred(e), p), Q) =
3 eval(σ1, e, (λ σ2 e′ ·
4 eval(σ2, p, (λ σ3 p′ ·
5 Let hpred ⊆ σ3.h be all chunks for identifier pred
6 (sm, smdef, _) = qp-summarise(hpred, pred)
7 locax := locpred(sm(e′), e′)
8 π3 := pc-add(σ3.π, {smdef, locax})
9 assert(π3, 0 ≤ p′)

10 consume(σ3{π := π3}, acc(pred(e′), p′), (λ σ4 ·
11 produce(σ4, predbody, (λ σ5 ·
12 Q(σ5)))))))))

Listing 5.14: Execution rule for unfold

31

5.3.7 Package

Packaging a magic wand works pretty much the same as folding a predicate,
we generate a trigger instance using a heap summary that includes the newly
packaged magic wand. (args(A−− ∗B) is used here to refer to the arguments
of the magic wand. consume-ext is a special rule for packaging a magic wand.
Basically, it takes permissions from the current heap only if they are not provided
by the a state satisfying the left-hand side of the wand. For the heap-dependent
triggers, the rule is not very important, but we need to make sure to create
triggers afterwards.

1 exec: Σ→ S → (Σ→ R)→ R
2 exec(σ1, package A --* B, Q) =
3 produce(σ1{h := ∅}, A, (λ σlhs ·
4 consume-ext([σlhs.h, σ1.h], σlhs{h := ∅}, B, (λ [_, h2], _, _, ·
5 Let ch be a magic wand chunk corresponding to A --* B
6 Let wand be the corresponding identifier for A --* B
7 Let hwand ⊆ (h2 ∪ ch) be all chunks for identifier wand
8 (sm, smdef, _) = qp-summarise(hwand, wand)
9 locax := locwand(sm(args(A−− ∗B)), (args(A−− ∗B))

10 π1 := pc-add(σ1.π, {smdef, locax})
11 Q(σ1{h := heap-add(h2,ch), π := π1})))))

Listing 5.15: Execution rule for package

5.3.8 Apply

Apply is closely related to unfold and creating triggers for it works similarly,
the trigger is generated before actually applying the wand, i.e. when the corre-
sponding wand chunk still exists. Similarly to above, (args(A − − ∗ B) refers
to the arguments of the magic wand.

1 exec: Σ→ S → (Σ→ R)→ R
2 exec(σ1, apply A --* B, Q) =
3 Let idwand(e′) be a magic wand chunk identifier corresponding

to A --* B
4 consume(σ1, A, (λ σ2, _ ·
5 Let hid ⊆ σ2.h be all chunks for identifier id
6 (sm, smdef, _) = qp-summarise(hid, id)
7 locax := locid(sm((args(A−− ∗B)), (args(A−− ∗B))
8 π2 := pc-add(σ2.π, {smdef, locax})
9 consume(σ2{π := π2}, acc(idwand(e′)), (λ σ3, _ ·

10 produce(σ3, B, fresh, Q)))))

Listing 5.16: Execution rule for apply

5.3.9 Unfolding, Applying

Both unfolding and applying do not need additional cases since they unfold/apply
temporarily, so the rules presented above cover these cases as well.

32

5.3.10 Assert

assert also does not need any changes: assert essentially temporarily exhales
permissions, but does not update the heap (i.e. no chunks are removed). Since
we already have triggering for exhales, this works for asserts as well.

5.3.11 Assume

assume does not need any changes either: in the case of a pure assume, the
evaluation rules already cover any required triggers (field reads, perm, forperm).
Since any non-pure assume statement is translated to a pure version, these also
do not require any changes. If a different approach for the assume statements
were taken, non-pure assumes would need to generate triggers as well.

5.4 Pure Quantified Assertions

When Silicon evaluates quantified expressions, there might be new path condi-
tions generated for the quantified variable. For example, consider the following:

forall x: Ref :: x in xs ==> x.f > 0

Listing 5.17: Pure quantifier

To symbolically evaluate the body, Silicon instantiates the quantified variable
x as some arbitrary x and evaluates the body using this assignment. During the
symbolic evaluation, we add path conditions according to the evaluation rules
given above. In particular, when evaluating x.f we add locf (sm(x),x) as a new
path condition, where sm is a new summarising snapshot map. However, what
we actually need is a quantified path condition since this x does not really have
meaning. We would want ∀ x: Ref :: x ∈ xs => locf (sm(x),x) as the new
path condition. In order to solve this problem, Silicon creates a second, auxiliary
quantifier after the evaluation of the body. This quantifier contains all new path
condition that are gathered during the evaluation of the body and quantifies over
the same variable as the main quantifier. Importantly, the auxiliary quantifier
also uses the same trigger as the the main quantifier. Consider the example
in Listing 5.18: here, we first assume and then assert a pure quantifier, both
times using x.f as trigger.

inhale forall x: Ref :: {x.f} x in xs ==> acc(x.f)
assume forall x: Ref :: {x.f} x in xs ==> x.f > 0
assert forall x: Ref :: {x.f} x in xs ==> x.f > 0

Listing 5.18: Pure quantified assertions using heap-dependent triggers

The term that is generated in order to trigger quantifiers using x.f as their
trigger ends up in the auxiliary trigger that is generated by Silicon. In particu-
lar, this means that the main trigger that is generated for the assert statement
does not contain the trigger expression. This is a problem, because in the case
of an assert, the main and auxiliary quantifier are actually treated differently:
on the SMT level, the auxiliary quantifier is assumed, whereas the main quanti-
fier is asserted. What this means is that the auxiliary quantifier is added as an
additional condition and is only instantiated if its trigger is encountered. The

33

main quantifier, on the other hand, gets instantiated with some arbitrary sym-
bolic value as the quantified variable and the SMT Solver then checks whether
the assertion holds. However, because in the case of Listing 5.18, the auxiliary
quantifier is uses x.f as its trigger, it will not be triggered by the main quanti-
fier. This also means that the main quantifier cannot trigger any other earlier
quantifiers that used x.f as their trigger. Listing 5.19 illustrates the problem
that is occurring here. In Listing 5.19, e(x) represents the symbolic expression
corresponding to a Viper expression that contains a resource access. In List-
ing 5.18, this would be the expression x in xs ==> x.f > 0. aux represents
all the auxiliary terms that are gathered during the symbolic execution of the
aforementioned expression. In particular, only aux contains the term that is
used as trigger for all these quantifiers.

1 assume ∀ x :: {loc_f(sm(x), x)} aux
2 assume ∀ x :: {loc_f(sm(x), x)} e(x)
3 assume ∀ x :: {loc_f(sm(x), x)} aux
4 assert ∀ x :: {loc_f(sm(x), x)} e(x)

Listing 5.19: Regular evaluation of the pure quantifiers in 5.18

5.4.1 Rewriting Quantifiers

One possible solution to this problem is to make sure that the main quantifier
contains the triggering expression. The idea is to add the trigger function as
close to the field read as possible. This requires saving all the evaluated receivers
of field reads and perm expressions that are encountered, because we need to
generate the trigger function using these receivers. An example of this can be
seen in Listing 5.20. Here, we inserted an additional implication to make sure
the trigger is available when evaluating x.f. To keep the rewritten quantifier
as close to the original quantifier as possible, we need to find the innermost
expression that is both boolean and contains a resource access. This expression
is then rewritten to be the right-hand side of a new implication, where the left-
hand side is the trigger that we generate.
This solution does work as intended, however, it is not a very nice solution,
because it goes against the general design philosophy used in Silicon. We are
trying to keep symbolic evaluation local, for the evaluation of an expression it
should not matter what expressions are nested under it. A better solution would
be local to the evaluation of the field read or perm expression and would not
need the rewriting of the whole quantifier.

inhale forall x: Ref :: {x.f} x in xs ==> acc(x.f)
assume forall x: Ref :: {x.f} x in xs ==> loc_f(sm1(x), x)

==> x.f > 0
assert forall x: Ref :: {x.f} x in xs ==> loc_f(sm1(x), x)

==> x.f > 0

Listing 5.20: Updated pure quantifier containing the trigger

5.4.2 Localized Triggering

The approach described in the previous section works, however it is not very
localized. Evaluated terms should not have to be manually rewritten later. An

34

alternative, more localized approach is to make sure that any pure mentioning of
a resource is translated to a function that can be used to trigger other functions.
For field reads, this was already the case: every field read is translated into
a lookup using a snapshot map. To make sure that field reads contained in
pure quantified assertions can be used to create heap-dependent triggers, the
additional triggering axiom in the summary function needed to be changed.
Instead of triggering on locid(sm(e), e) it is weakened to trigger on sm(e), as
can be seen in the updated Listing 5.21. This will still trigger for any terms that
triggered it before, since every locid(sm(e(r)), r) of course contains the subterm
sm(r). Additionally, any lookup using a summarising snapshot map will now
also trigger this axiom. Since field reads are evaluated using a summarising
snapshot map they will trigger this axiom, allowing us to verify Listing 5.18.

1 qp-summarise(h, id) =
2 Let hid ⊆ h be all chunks for identifier id

3 Let sm be a fresh snapshot map of type E → Snap
4 smdef := ∅
5 perm := λ r · 0
6 foreach id(r; smi(r), qi(r)) ∈ hid do
7 smdef := smdef ∪ {∀r : E · 0 < qi(r) ⇒ sm(r) = smi(r)}
8 perm := λr · perm(r) + qi(r)
9 locax :=

∧
i∈hid

locid(smi(r), r)

10 smdef := smdef ∪ {∀r : E {sm(r)} locax}
11 (sm, smdef, perm)
12 //where E are the sorts corresponding to the arguments of id,

for example Ref if id denotes a field

Listing 5.21: qp-summarise, with weakened trigger

perm expressions, on the other hand, were not translated to any function
application, but instead to a sum. This can of course not be used as a trigger.
To create a suitable function for perm, the symbolic evaluation of perm functions
was changed to include a summary similar to the summary used for heap values.
This summary essentially just wraps the sum that was previously used for perm
expressions in a function application. The summary axiom inside the perm-
summarise function allows us to create triggers from an application of the perm
snapshot map.

1 perm-summarise(h,id) =
2 Let hid ⊆ h contain all chunks for identifier id
3 Let pm be a fresh perm snapshot map of type E → Perm
4 perm(r) := foldl(hid, 0, (λ id(r;sm(r),q(r), p ·
5 p + q(r)))
6 locAx(r) := foldl(hid, 0, (λ id(r;sm(r),q(r), c ·
7 c && locid(sm(r), r)))
8 pmdef := ∀r : E {pm(r)} perm(r)
9 summaryAx := ∀r : E {pm(r)} locAx(r)

10 (pm, {pmdef, summaryAx})

Listing 5.22: perm-summarise function

In Listing 5.23, we see the new updated evaluation rule for perm using this
new summary function.

35

1 eval(σ1, perm(id(e)), Q) =
2 eval(σ1, e, (λ σ2, e′ ·
3 Let hid ⊆ σ2.h contain all heap chunks for identifier id
4 (sm, smdef, _) = qp-summarise(hid, id)
5 assume smdef

6 assume loc_id(sm(e), e)
7 (pm, pmdef) = perm-summarise(hid, id)
8 π2 := pc-add(σ.2.π, pmdef)
9 Q(σ2{π := π2}, pm(e′))

Listing 5.23: Evaluation rule for perm

5.5 Non-quantified permissions

Heap-dependent triggers as described in this chapter only work in Silicon if
used in conjunction with quantified permissions. If we only use non-quantified
permissions, Silicon does not create snapshot maps, which makes it difficult to
use the trigger function. Essentially, many of the supporting functions used in
this chapter would need to be recreated for the non-quantified algorithms of
Silicon.
To allow heap-dependent triggers to be used even if we do not use quantified
permissions, a simple remedy was used: we simply switch to using quantified
algorithms when using heap-dependent triggers, the same way Silicon switches
if there is a quantified permission assertion. To the user, this does not really
make a difference, and in the future, Silicon might possibly completely switch
to only using quantified algorithms.

5.5.1 Using non-quantified algorithms

If we want to use heap-dependent triggers while using the non-quantified algo-
rithms, a different approach would have to be taken. A possibility is to essen-
tially make a summary function for non-quantified algorithms. This summary
would look something like the following:

sm(r) =

{
t1 if r = v1

t2 if r = v2

Here, the heap would consist of two relevant chunks, the receivers of these
chunks are v1 respectively v2 and their symbolic values are t1 respectively t2.
Such a summary would allow to use the same triggers also for non-quantified
algorithms, because once again we have the same basic functionality.

36

Chapter 6

Evaluation

To test the performance impact of the new support for heap-dependent triggers
in Silicon, multiple tests were performed. The tests were performed using the
Viper runner [12] which in turn uses the Nailgun [5] software as an attempt to
make the tests independent of warm-up time of the Java Virtual Machine.
To evaluate the performance impact of the support for heap-dependent triggers,
the Viper test suite was used. This is a collection of mostly relatively simple
tests that covers the whole variety of features the Viper language has to offer.
In total the Viper test suite contains 1016 different tests that were run.
To lessen the performance impact of the heap-dependent trigger support, caching
was additionally added to any summary snapshot maps. If the relevant part of
the heap is still the same, we can reuse cached summaries and save re-doing the
summary every time. The performance of Silicon before and after the addition
heap-dependent trigger support, as well as both with and without caching is
listed in Table 6.1.

Silicon old,
caching

Silicon old,
no caching

Silicon
new,
caching

Silicon
new, no
caching

Average
runtime [s]

0.623 0.702 0.745 0.870

Standard
deviation
[s]

2.226 2.787 2.656 3.156

Full run-
time of the
test suite
[s]

633.223 713.736 756.978 884.245

Maximum
runtime
for a single
test [s]

39.089 44.858 39.187 40.893

Table 6.1: Runtime comparison of Silicon with and without caching, as well as
before and after the addition of the new features

37

The fact that Silicon becomes slower with the addition of the support for
heap-dependent triggers was almost inevitable since for every statement and
expression mentioning a resource, we need to summarise the heap. However,
as can be seen, the addition of caching definitely had an impact. The caching
significantly improved the performance, although there still is a performance
loss compared to the previous version.

38

Chapter 7

Conclusion

The goal of this thesis was to make Viper’s and Silicon’s features more complete
with regards to resources and permissions in particular. I achieved this by mak-
ing perm, forperm and assume work with all resources and allowing resources
to be used as triggers for quantifiers.
The permission introspection features of Viper now work with all resources that
Viper currently supports and if there ever are additional resources added in the
future, extending the permission introspection to support these resources should
be very simple, because an additional case in Silicon’s evaluation is all that is
needed. Viper should not need any additional changes.
assume now works with any assertion, bringing it in line with inhale, exhale
and assert. We expect this to make it easier to use these statements and that
this will avoid user confusion in the future.
Any Viper resource can now also be used as a trigger in a quantified expression.
This allows to verify some new quantified expressions that Silicon was unable to
verify before. For example, we now can use x.f as a trigger for forall x: Ref
:: perm(x.f) > none ==> x.f != 0. Silicon’s performance is slightly worse
because of this addition, however by adding caching we managed to reduce the
performance impact by a significant margin. Additionally, seven Silicon issues
related to heap-dependent triggers were also resolved as part of my thesis.

39

Chapter 8

Future Work

Implement the newly extended permission introspection features in
Carbon: currently, Carbon still only support the old versions of perm and
forperm. It would of course be desirable to have the same features supported
by both verifiers.

Switch to generating inverse functions in Viper: there is a lot of du-
plicate functionality concerning inverse functions. Both Silicon and Carbon
were already generating inverse functions, because they are necessary to sup-
port quantified permissions. To support the rewriting of assume statements,
inverse functions can now also be generated in Silver. By relying on inverse
functions from Viper directly, the duplicate functionality could be reduced.

Add injectivity checks to the Viper inverse functions: for assume state-
ments, it was not necessary to check the injectivity of quantified permissions,
however for these inverse functions to be usable in all cases, the injectivity
should also be checked in Silver.

Implement heap-dependent triggers in Carbon: Carbon currently only
has limited support for heap-dependent triggers. Both predicates and fields can
be used as triggers, however, axioms using these only trigger on field reads,
respectively fold and unfold assertions. perm, forperm, inhale, exhale,
assert and field writes all do not trigger quantifiers using fields or predicates
as quantifier. Magic wands cannot be used as triggers at all in Carbon. Adding
support for all these heap-dependent triggers would be desirable to have these
features available in both verifiers.

Investigate potential to bring Silicon’s performance to previous levels:
The addition of support for heap-dependent triggers cost Silicon some valuable
performance. Bringing the performance back on par with previous levels would
be very useful.

40

Bibliography

[1] Charles Antony Richard Hoare. “An axiomatic basis for computer pro-
gramming”. In: Communications of the ACM 12.10 (1969), pp. 576–580.

[2] James C King. “Symbolic execution and program testing”. In: Communi-
cations of the ACM 19.7 (1976), pp. 385–394.

[3] P. Müller, M. Schwerhoff, and A. J. Summers. “Automatic Verification of
Iterated Separating Conjunctions using Symbolic Execution”. In: Com-
puter Aided Verification (CAV). Ed. by S. Chaudhuri and A. Farzan.
Vol. 9779. LNCS. Springer-Verlag, 2016, pp. 405–425.

[4] P. Müller, M. Schwerhoff, and A. J. Summers. “Viper: A Verification
Infrastructure for Permission-Based Reasoning”. In: Verification, Model
Checking, and Abstract Interpretation (VMCAI). Ed. by B. Jobstmann
and K. R. M. Leino. Vol. 9583. LNCS. Springer-Verlag, 2016, pp. 41–62.

[5] Nailgun. url: http://www.martiansoftware.com/nailgun/.

[6] M. J. Parkinson and A. J. Summers. “The Relationship Between Separa-
tion Logic and Implicit Dynamic Frames”. In: Logical Methods in Com-
puter Science 8.3:01 (2012), pp. 1–54.

[7] John C Reynolds. “Separation logic: A logic for shared mutable data struc-
tures”. In: Logic in Computer Science, 2002. Proceedings. 17th Annual
IEEE Symposium on. IEEE. 2002, pp. 55–74.

[8] M. Schwerhoff. “Advancing Automated, Permission-Based Program Veri-
fication Using Symbolic Execution”. PhD thesis. ETH Zurich, 2016.

[9] Jan Smans, Bart Jacobs, and Frank Piessens. “Implicit dynamic frames:
Combining dynamic frames and separation logic”. In: European Confer-
ence on Object-Oriented Programming. Springer. 2009, pp. 148–172.

[10] A. J. Summers and P. Müller. “Automating Deductive Verification for
Weak-Memory Programs”. In: Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS. To appear. Springer-Verlag,
2018.

[11] Viper Project. url: viper.ethz.ch.

[12] Viper Runner. url: https://bitbucket.org/viperproject/
viper-runner/.

[13] Z3 SMT Solver. url: https://github.com/Z3Prover/z3.

41

