
Information Hiding and Package Abstraction for Go

Bachelor Thesis Project Description

Quoc Truong Tommy Ho

Supervisors: Felix Wolf, Prof. Dr. Peter Müller
Department of Computer Science, ETH Zurich

Start: 1st November 2022
End: 1st May 2023

1 Introduction

Go programs are categorized into packages, and each of these packages consists of declarations
of functions, types, variables, etc. Members of packages are made available to other packages
by importing the package using the import keyword. The visibility of members is defined by
writing the first letter in uppercase or lowercase, which indicates that the declaration is exported or
not-exported respectively. An exported member is visible for other packages if the package that
the member is declared in is imported, whereas non-exported members stay not visible and cause
undefined errors if they are referenced.

Gobra is a verifier for Go, based on the Viper verification infrastructure. However, Gobra
currently treats all members as always visible. For instance, Gobra verifies the code in Figure 1.
The variable answer is written in lowercase, and is therefore not visible outside of package bar.
But package foo, which imported package bar, uses the variable answer in the assertion. This
example illustrates that Gobra does not check visibility.

The aim of this thesis is to extend Gobra to support Go’s visibility feature and to improve
Gobra’s support for package abstractions.

2 Motivation

Go programs can consist of many different packages. Verifying and managing these large structures
can cause many difficulties, and visibility can reduce this overhead:

� When we change the specifications inside some package A then all packages that import
package A need to be re-verified. This can cause a chain reaction where all packages
that depend on re-verified packages have to be re-verified themselves.

� The effect of changes inside packages also induces a maintenance problem. If packages
are changed, then we do not want to change all the specifications that use private
variables. For example in Figure 1, if we change the constant in package bar (e.g.

1 package bar
2 const answer int = 42

1 package foo
2 import bar
3 func main (){
4 assert bar.answer == 42
5 }

Figure 1: There are two packages: foo and bar. The program constant variable answer in bar is
written in lowercase letters and is not exported by Go, but verifies without error in Gobra.

1



answer to question) then we need to change the specification in package foo too.
However, answer is not visible in package foo, so there should not be a need to change
it across different packages. By adding visibility to Gobra, we can reduce the need to
maintain across different packages, when we modify private items in one package.

� Without visibility, a package B that imports package A imports all the definitions in
package A to package B. As a result, the complexity of the verified program grows larger
with the larger definitions in package A. This can have a substantial impact on the
performance of the verification process. For example, we can avoid importing private
fields of structs, thus reducing the complexity of the encoding of the struct and thus
improving the verification performance.

However by adding visibility various complications arise and need to be handled, like the visibility
of specifications, permissions, interfaces, etc. Some problems also need additional functionalities to
improve upon the verification process.

3 Existing Works

To solve the various problems caused by the introduction of visibility, we take inspiration from the
wory by Leavens and Müller [1]. This work describes a variety of rules and lemmas for visibility
applied to the Java Modeling Language (JML). Since Java is a more standard object-oriented
language with more complex visibility constructs (public, default, protected, private) than Go, not
all the rules introduced by the work are applicable to Gobra.

4 Core Goals

� Designing a language extension to support visibility in Gobra. For this goal, we
will develop an extension of Gobra’s annotation language that enables Gobra to verify
code with private members. To develop the language extension, we will investigate how
existing work for the Java Modeling Language [1] can be applied to Gobra. Furthermore,
as part of this goal, we will adapt Gobra’s encoding of private state. The aim is that
in the encoding, private state is abstracted away as much as possible to reduce the
complexity of the generated Viper program.

� Developing a language extension to specify package interfaces. For this goal,
we will design an annotation language that let’s users of Gobra define how members
of a package are exported. We will investigate relevant Go usage patterns and existing
Gobra case studies to determine how package members should be exported by default
and which other usage patterns are important on top of that. The aim of the annotation
language is to set the right default, but to also enable the other identified important
usage patterns. In case no other important usage patterns are identified, setting the
right default without an additional annotation language is sufficient.

� Implementation. We will implement the language extensions chosen for the first two
core goals. The objective is to have a well-documented and maintainable implementation
that is merged into Gobra’s main repository.

� Evaluation. For this goal, we will evaluate both expressiveness and performance of our
implemented extensions.

– For expressiveness, we will collect several relevant examples that illustrate the
expressiveness of our introduced extensions. Furthermore, we will measure
the annotation overhead introduced by our extensions.

– For performance, we will evaluate how Gobra’s verification runtime improves
on examples using private state due to our improved encoding.

2



5 Extended Goals

� Interfaces with private methods. For this extension goal, we will extend the language
designs of the first two core goals to also support public interfaces with private methods.
In particular, the extension will support that in Gobra, public interfaces with private
fields can be implemented outside the package defining the interface.

� Supporting multiple package interfaces. For this extension goal, we will extend the
language design of the second core goal to support defining multiple package abstractions.
The idea is that for an imported package, the client can specify which package abstraction
of the ones defined in the imported package they want to use.

� Improving the support for global variables. For this extension goal, we will
extend the language designs of the first two core goals to improve the support for global
variables. In Gobra, global variables produce additional proof obligations. We will
investigate how these obligations can be simplified for private global variables and adapt
Gobra’s encoding accordingly.

References

[1] G. T. Leavens and P. Müller, “Information hiding and visibility in interface specifications,” in
International Conference on Software Engineering (ICSE), 2007.

3


	Introduction
	Motivation
	Existing Works
	Core Goals
	Extended Goals

