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1 Introduction

Throughout the years, many Hoare logics have been developed for proving trace
properties of computer programs. Trace properties, as the name suggests, con-
cern only individual program executions, e.g. functional correctness. However,
many program properties of interest concern more than one program execu-
tion. Such properties are called hyperproperties [Clarkson and Schneider 2008],
e.g. determinism (executing the program twice in the same initial state results
in the same final state) and non-interference [Volpano et al. 1996] (executing
the program twice with the same low-sensitivity inputs results in the same
low-sensitivity outputs). Some special cases, such as 2-safety hyperproperties1,
have been extensively studied, whereas logics specifically designed for handling
broader range of hyperproperties are rather scarce.

The formulae in Hoare logics [Hoare 1969] are the so called Hoare triples
{P}C{Q}, where P (precondition) and Q (postcondition) are assertions and C
is a computer program. A Hoare triple is valid iff executing C in a program
state, satisfying P , results in a program state satisfying Q. Hoare logic is an
overapproximating logic, because the set of states satisfying Q is a superset of
the set of reachable states, starting in a state satisfying P and executing C,
i.e. {σ ∈ States : Q(σ)} ⊇ {σ′ : ∃σ ∈ States. P (σ) ∧ ⟨C, σ⟩ → σ′}2. Similarly,
we can define underapproximating Hoare triples {P}C{Q}, valid, iff for every
state σ′, satisfying Q, there is a state σ satisfying P , s.t. ⟨C, σ⟩ → σ′, i.e.
valid iff {σ ∈ States : Q(σ)} ⊆ {σ′ : ∃σ ∈ States. P (σ) ∧ ⟨C, σ⟩ → σ′}. Such
underapproximating Hoare logics have been well developed, e.g. Reverse Hoare
logic [de Vries and Koutavas 2011] and Incorrectness logic [O’Hearn 2019].

1Hyperproperties concerning 2 program executions, stating that ”nothing bad will happen”.
2Here we use big-step semantic notation ⟨C, σ⟩ → σ′.
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Earlier, we pointed out that extensive research in the field, concerning special
cases of hyperproperties, has also been conducted, e.g. Relational Hoare logic
[Benton 2004] and Cartesian Hoare Logic [Sousa and Dillig 2016]. Now, we shift
our focus on a novel logic, that can reason about arbitrary hyperproperties over
terminating executions, called Hyper Hoare logic [Dardinier and Müller 2023].
The formulae of Hyper Hoare logic are the so called hyper-triples [P ]C[Q], where
P and Q are assertions over sets of states and C is a computer program. Such
a hyper-triple is valid iff for any set of initial states S that satisfies P , the set of
all final states that can be reached by executing C in some state from S satisfies
the postcondition Q.

Consider the hyperproperty non-interference, which holds iff ∀σ1, σ2, σ
′
1, σ

′
2 ∈

States. σ1 ↾ L = σ2 ↾ L ⇒ ⟨C, σ1⟩ → σ′
1 ⇒ ⟨C, σ2⟩ → σ′

2 ⇒ σ′
1 ↾ L = σ′

2 ↾ L
3,4,

where states are functions from program variables PVAR to values and L ⊆
PVAR is the set of low-sensitivity variables. Assuming we have only one low
variable l for simplicity, i.e. L = {l}, a hyper-triple that ensures NIL(C) looks
like this: [∀⟨σ1⟩, ⟨σ2⟩. σ1(l) = σ2(l)]C[∀⟨σ′

1⟩, ⟨σ′
2⟩. σ′

1(l) = σ′
2(l)], where the pre-

condition ∀⟨σ1⟩, ⟨σ2⟩. σ1(l) = σ2(l) desugars5 to λS. ∀σ1, σ2 ∈ S. σ1(l) = σ2(l)
and the postcondition desugars to λS′.∀σ′

1, σ
′
2 ∈ S′. σ′

1(l) = σ′
2(l). This hyper-

property has been generalized for non-deterministic programs, since the former
formulation is too restrictive for non-deterministic programs, e.g. the follow-
ing program C ≜ (l := h + randUnboundedInt()) is information flow secure,
but NI{l}(C) does not hold. The generalization is often formalized as general-
ized non-interference [McCullough 1987; Mclean 1996], where GNIL(C) holds
iff ∀σ1, σ2, σ

′
1, σ

′
2 ∈ States.∃σ′ ∈ States. σ1 ↾ L = σ2 ↾ L ⇒ ⟨C, σ1⟩ → σ′

1 ⇒
⟨C, σ2⟩ → σ′

2 ⇒ σ′
1 ↾ L ̸= σ′

2 ↾ L ⇒ ⟨C, σ1⟩ → σ′ ∧ σ′ ↾ L = σ′
2 ↾ L. Assuming

we have only one low variable l, i.e. L = {l}, and that C does not modify
variable h for simplicity, a hyper-triple that ensures GNIL(C) looks like this:
[∀⟨σ1⟩, ⟨σ2⟩. σ1(l) = σ2(l)]C[∀⟨σ′

1⟩, ⟨σ′
2⟩.∃⟨σ′⟩. σ′(h) = σ′

1(h) ∧ σ′(l) = σ′
2(l)]. To

the best of our knowledge, Hyper Hoare logic is the only Hoare logic that
can simultaneously prove GNIL (∀∃-hyperproperty) and disprove GNIL (∃∀-
hyperproperty) for arbitrary L.

The above mentioned Hoare logics cannot reason about pointer programs
without being cumbersome at best. A more elegant approach, based on local
reasoning, has been developed, called Separation logic [Reynolds 2002]. Most,
if not all, of the more well-established Hoare logics, have been successfully ex-
tended to support heap operations, based on the key features of Separation logic,
e.g. Incorrectness Separation logic [Raad et al. 2020] and Relational Separation
logic [Yang 2007].

3Here f ↾A is the restriction of function f to the set A, i.e. f ↾A = f ∩
(
A× Rng(f)

)
.

4We consider implication to be right-associative.
5Recall that we defined hyper-triples’ assertions to be over set of states.
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2 Approach

Hyper Hoare logic has been shown to be sound, complete and has been demon-
strated to capture and go beyond the properties supported by numerous exist-
ing correctness and incorrectness logics. Nevertheless, said logic cannot reason
about pointer programs, which makes it inapplicable for the majority of the
real-world scenarios. Thankfully, history has shown that, in general, Hoare log-
ics can be extended to support heap operations, drawing upon the fundamental
principles of Separation logic.

3 Goals

3.1 Core Goals

Considering the above mentioned Separation logics, clear goals emerge for our
pursuit of extending Hyper Hoare logic to Hyper Separation logic:

� Add a heap to the state model and its core operations to the programming
language: cons, lookup, update and free. Define small-step semantics for
our programming language;

� Add ”points to” to the assertion language and develop rules based on
semantic assertions for cons, lookup, update and free;

� Define separation conjunction between hyper-assertions and prove a frame
rule sound;

� Apply the logic on interesting examples, come up with new ones;

� Compare with Relational Separation logic and Outcome logic;

� Formalize everything in Isabelle/HOL [Nipkow et al. 2002].

The primary challenge in achieving the core goals of the project would be to
define separating conjunction in an elegant way and to provide a sound frame
rule.

3.2 Extension Goals

� Explore an extension of the logic to handle parallelism

– Add parallel composition and atomic blocks to the programming lan-
guage;

– Explore the soundness of the Par rule;

– Explore the soundness of invariants with atomic blocks;

� Explore a relational extension of HHL (with multiple programs).
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