

1

Reusable Components for Verification IDEs
Bachelor’s Thesis Project Description

 Valentin Racine

Supervisors: Arshavir Ter-Gabrielyan, Prof. Dr. Peter Müller

Department of Computer Science, ETH Zurich, Switzerland

March 2019

Current Situation

Currently, Viper IDE is implemented as an extension of Visual Studio Code (VSC). This

extension allows to write and (automatically) verify Viper files, as well as having the

verification results logged and displayed in VSC. It currently consists of the following three

components

1. VSC Extension Language Server

2. VSC Extension Client

3. Server running Viper called ViperServer

The first two make up the VSC extension itself, the last one is where the actual verification is

done.

The reason for running Viper on a server is that Viper is a stand-alone tool. To be more

precise, it is an application that runs inside a Java Runtime Environment (JRE). This means

that each invocation of Viper requires restarting a JRE, which takes a considerable amount of

time. This start-up time is avoided by ViperServer as it can manage multiple instances of

Viper inside a single JRE. Running Viper as part of a server also allows to integrate it into any

environment via HTTP. As such, it can provide functionality like caching results or managing

several (concurrent) verification requests. I.e., upon receiving a verification request, the

server can process it independently. Programs written in the Viper language can be verified

using different verification backends. The two backends in use are

▪ Silicon

▪ Carbon

The verification backends are currently library dependencies of the ViperServer

implementation. Viper's verification backends have external dependencies, for example Z3

(an SMT solver) and the Boogie verifier. These are invoked as stand-alone applications,

outside of the JRE that runs ViperServer.

2

As was mentioned earlier, the VSC extension consists of two components. The idea behind

this split is to outsource workload, thereby increasing performance and modularity of the

IDE. That way, the client-side part of the extension can handle lightweight tasks such as

displaying results as part of the editor’s GUI. The language server part on the other hand can

then perform long-running tasks. In the case of Viper IDE however, the language server’s

main task is to send/receive HTTP messages to/from an instance of ViperServer. While the

two servers communicate via HTTP, the client and Language Server communicate using a

dedicated protocol called Language Server Protocol (LSP).

Clearly, the current version of Viper IDE already has some level of modularity incorporated

but it is not fully modular. On the one hand, ViperServer is a self-contained module

consisting of modular parts like backends. This allows, for example, to run the verification

tasks on a remote server. It also makes it possible to choose which parts of the verification

toolchain should be used (e.g. Silicon vs. Carbon verifier). On the other hand, it is currently

hard to reuse the codebase of ViperServer for other verification-oriented IDEs built atop

Viper. For instance, a typical Viper-based verifier must map Viper-level verification errors

back to the source language before reporting them to the IDE, but the verification result

streaming functionality of ViperServer is tightly integrated with the load-balancing

infrastructure and cannot be easily customized for a new language.

Limitation of the current design

This brings new requirements, challenges and opportunities to continue developing a

modular architecture for Viper as a verification IDE.

Currently, a lot of work is done to build Viper-based verifiers for various programming

languages. Tools like Nagini and Prusti already provide verification for the programming

languages Python and Rust. A tool called Gobra is planned for the language Go, too. These

Figure 1 Model of components and their relation
currently used in Viper IDE

3

tools are called Viper frontends as they translate the source language into Viper. As long as

there is a principled translation of a program from its source language to Viper, the

verification can be done on that translated Viper program. This in turn means that the main

difference between these tools comes from parsing and translating the programming

language in question and mapping the verification results of the Viper encoding to the

program in the source language. Despite that, the current modules of the Viper IDE project

(Viper IDE extension and ViperServer) cannot be easily reused in the IDEs for the frontend

languages.

Of course, an IDE could be written for all these tools independently. Let AssistantX be a VSC

extension for frontend X. Following the current architecture for Viper IDE one could write a

two-part VSC extension that implements AssistantX and have it communicate (via some

protocol, possibly HTTP) with a verification server called ServerX. Such a verification server

would then process the request by running the corresponding frontend tool and the Viper

toolchain. Furthermore, the same could be done for frontend Y, Z, and so on. Looking at the

Figure 2 of such models hints at why this is not an efficient approach.

Improved Architecture

There is a lot of common functionality that could be reused. First, the component

responsible for the basic server functions, such as receiving /sending messages via some

protocol, could be extracted and reused across all extensions. Correspondingly, the part of

the VSC Language Server that is responsible for communication - to both the verification

server and the VSC Client - could also be extracted. Second, tasks like managing requests

(load balancing, caching, etc.) should be the same for any verification server. This suggests

that they can be extracted as well. To some degree, the same is true for client-side part of

the extension. An example thereof is displaying success or error messages of the verification

process. Given such a message, printing its content to console or displaying it in the editor’s

GUI is a functionality that can be reused across IDEs for any Viper frontend.

Figure 2 IDE models for several Viper frontends

4

We propose a new, more generalized architecture that meets these demands. At its core are

two new modules that help extracting the common functionality mentioned earlier:

1. VSC Verification Toolbox

2. Verification Server Interface (VSI)

The first module is a typescript library that provides functionality for various verification-

oriented VSC extensions. The second module is an abstract class in the sense of Java. The

client can extend this component, implement the language-specific features, and reuse the

language-independent functionality. For example, deciding when the cache should be

invalidated is specific to the language (so the client must implement the method

isCacheStillValid), but managing the cache can be done the same way for e.g. Viper and Go,

and that should be implemented in VSI. Another important feature provided by VSI is the

HTTP server that can stream messages (verification results) to the IDE; having this module

standardised allows us to also reuse the HTTP client, which should be provided by the VSC

Verification Toolbox

Naturally, building around these two modules affects Viper IDE's architecture as well. We

propose a refactoring of the current Viper IDE infrastructure that capitalises on the new,

modular architecture. This refactoring will consist of three parts:

1. Add component called ViperCoreServer

2. Let ViperServer implement abstract methods of VSI and inherit common methods

3. Rewrite the Viper Language Server as a component of ViperServer (in Scala)

The first step is to create a Scala service that can be used by ViperServer as well as any other

Viper-based verification project. It will provide functionality related to the verification of

Viper programs. In addition to the current implementation it will also be able to take the AST

of a Viper program as input, rather than a Viper file.

The second step is to make use of the VSI. As previously explained, this will consist of

implementing language-specific features, and reuse the language-independent functionality

provided by VSI.In the third step, we will replace the Language Server part of the current

Node.js Environment

Java Runtime Environment

Figure 3 Model of the
new architecture

5

Viper IDE with a server written in Scala. As such it will provide functionality related to viper

programs such as parsing and type checking. In order to communicate with Viper IDE, it will

also have to comply with the LSP.

The milestones of this thesis are:

• Designing and implementing VSI.

• Refactoring Viper IDE

o Implementing ViperCoreServer.

o Implementing Viper Language Server in Scala.

To reach these milestones, we set the following intermediate goals.

Priority Component Task Description Workload
(est.
weeks)
Total = 24

Core — Learning Get a good understanding
of current code base for
- Viper IDE
- ViperServer.

2

ViperCoreServer Design, implement,
test

- Collect requirements
- Identify portions of the

current code that
already implement the
desired functionality

- Work on the
implementation

- Review the
implementation/ write
tests.

2

Refactor ViperServer
Using ViperCoreServer

- Identify portions of
current code that need
replacing

- Work on the
refactorization

- Review
refactorization/ write
tests.

2

Verification
Server Interface

Design, implement,
test

- Collect requirements
- Identify portions of the

current code that
already implement the
desired functionality

- Work on the
implementation

3

6

- Review the
implementation/ write
tests.

Refactor ViperServer
using Verification
Server Interface

- Identify portions of
current code that need
replacing

- Work on the
refactorization

- Review
refactorization/ write
tests.

2

Viper Language
Server, Viper IDE

Rewrite Viper
Language Server in
Scala

- Collect requirements
- Work on the

implementation
- Review the

implementation/ write
tests.

5

Extensions

Enable continuous
integration (CI) for
testing Viper tools
through ViperServer

4

Viper IDE Refactor Viper IDE
extension to use
common functionality
provided by VSC
Verification Toolbox

- Identify portions of
current code that need
replacing

- Work on the
refactorization

- Review the
refactorization/ write
tests.

Contribute new
features to the VSC
Verification Toolbox

- Identify important
features

- Work on features
- Review features/ write

tests.

Core — Thesis - Draft text, discuss
scope and structure

- 2-3 revisions.

4

