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Abstract

Proving the correctness of programs has been a major field of computer science research for the
last decades. Over the years, many approaches have emerged that try to solve this problem.
One of the main approaches is static verification of programs, which is particularly difficult for
object-oriented programs.

Since object-oriented programs are usually more complicated to verify, we designed an encod-
ing for the object-oriented programming language Scala in the imperative programming language
BoogiePL, which can be statically verified by the existing Boogie verifier. One reason for choos-
ing Scala is that it supports a lot of interesting and helpful features, that are challenging to
verify and are not supported in programming languages that can already be verified by existing
static verifiers.

We developed a tool that can translate a usable subset of Scala to BoogiePL. Our main focus
was on coming up with an encoding for two of Scala’s most interesting features, namely closures
and traits.
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Chapter 1

Introduction

These days, program verification and formal methods are still far from being an industry stan-
dard. However, program verification is mainly used in a very small number of projects, where
safety is absolutely critical. This is somewhat surprising considering that it has been an active
area of research for well over 40 years. The biggest obstacle in making formal methods more
popular seems to be the amount of time and skills it demands from the programmer as well as
the growing complexity of today’s systems.

The Spec# programming language [1, 2] was an important step towards making formal
methods more accessible for a wide range of programmers. Together with the Boogie verifier
[3, 4], Spec# was developed at Microsoft Research and extends C# with contracts that can be
statically verified.

Scala [5, 6] is a object-oriented programming language originally developed by Martin Oder-
sky and his group at Ecole Polytechnique Fédérale de Lausanne (EPFL). It provides a lot of
interesting features; many of which are intended to make it easier for programmers to express
complex ideas with less code. Usually shorter programs can be verified more easily by a pro-
grammer if the verifier is powerful enough. We would expect that a program verifier for Scala
will boost our ability to verify more sophisticated programs in less time. This would certainly
encourage more programmers to give formal methods a try.

For these reasons it is necessary to design and implement a tool that is able to encode a high-
level programming language, such as Scala, in a way that a verifier can understand. BoogiePL
is an imperative intermediate language that can be verified by the Boogie verifier. If we can
encode Scala in BoogiePL, we are one step closer to having a complete program verifier for
Scala. Creating a tool that does this translation is the main goal of this project.

11



12 1 Introduction

1.1 Overview of the Report

This introduction provides a broad overview of this project and the overall structure of this
report. We will then present the motivation behind this project and illustrate how it is different
from other similar projects such as Spec#.

Since we do not assume any prior knowledge of Scala, the rest of this chapter covers the
basic features and constructs of the Scala programming language. For the same reason, we will
also introduce the basics of Boogie and BoogiePL. Readers already familiar with either Scala or
Boogie/BoogiePL should be able to safely skip the corresponding sections.

We are not able to cover more than just the technologies and methodologies most closely
related to the overall topic. Therefore, we assume some fundamental technical knowledge that
a Master’s student should have. This includes for example experience in object-oriented pro-
gramming and programming in general.

Chapter 2 summarizes the design process of the tool. In particular, we introduce the subset
of Scala that we worked on and outline the design decisions we made and the rationale behind
them. This chapter deals mostly with the encoding of Scala’s features in BoogiePL on a purely
conceptual level.

The actual implementation of the translation tool will be explained in Chapter 3. In order to
demonstrate the practicality of our approach, this chapter features a selection of examples that
show how working Scala programs are encoded in BoogiePL. It also includes a section about our
experience with the tool. For further, even more detailed documentation of the implementation
we encourage the reader to have a look at the actual source code.

Finally, Chapter 4 sums up what we did, draws some conclusions and mentions related and
future work.

1.2 Motivation

This project should be seen as a first step in the direction of creating a verifier for Scala programs.
There are many reasons for starting a project like this; some of which will be pointed out in this
section.

In formal methods, there is still plenty of room for improvement, for new approaches and
developments that will allow us to verify software in easier and less tedious ways. We already
have some very good tools at our disposal that can deal with systems that are not too complex.
Spec# is just one of them. Software complexity can have many causes; concurrency, legacy
code and non-modular architectures just being some of them. Unfortunately, a lot of software
is way too complex to be verified in a reasonable amount of time by programmers that are not
verification experts.

One aspect, that is particularly interesting to look at, is the specification effort needed
to verify some piece of software. For some approaches, the size of the specification can even
dominate the size of the actual software. The goal should therefore be to design a specification
methodology that allows us to verify software with minimal specification overhead.

By basically starting from scratch, instead of working on an existing verifier, we are able
to experiment more freely with new ways of specifying the desired behavior of programs. On
the other hand, by relying on the existing Boogie verifier, we can still profit from the years of
development that made it one of the leading verifiers in industrial use.

Another important reason is that Scala offers a lot of interesting language features that we
want to explore. This combination of features is quite unique to Scala and they are not yet
supported by other languages, for which there exist mature and usable verifiers. We believe it
to be easier and more reasonable to build a new verification tool targeted to Scala instead of,
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for instance, adding some of Scala’s features to Spec#.
In the future, we hope to be able to prove interesting programs by exploiting some of Scala’s

features. In the end, this should make static verification even more accessible and attractive to
ordinary programmers.

We also hope that some of our findings (e.g. concerning closures), could potentially be used
to further improve other existing verifiers.

1.3 Scala

1.3.1 What is Scala?

Scala [5, 6] is a multi-paradigm programming language, started in 2001 at Ecole Polytechnique
Fédérale de Lausanne (EPFL) by Martin Odersky. One of Odersky’s main goals was to design
a programming language that combines the respective strengths of (purely) object-oriented
and functional programming. Some notable features are its strong static type system, type
inference and support for generics, higher-order functions, pattern matching and traits. Its
main implementation also provides seamless integration with the Java programming language
by targeting the Java Virtual Machine (JVM).

Although Scala’s object-oriented features are similar to Java’s in a lot of ways, there are a
couple of differences worth mentioning. Firstly, there is no strict distinction between primitive
types (int, float, char, bool, etc.) and reference types in Scala. Everything is an object and
there are no built-in operators such as ‘+’ or ‘&&’. Every operation in Scala is just a method
call.

Secondly, Scala supports mixin-based inheritance [7] instead of Java’s single-inheritance with
interfaces. While in Java the object hierarchy consists of classes, abstract classes and interfaces,
Scala further generalizes Java’s interfaces. The resulting construct is called a trait and can be
mixed into other classes or traits. Traits are more general than interfaces because they are
allowed to inherit not only method declarations but also method implementations. This gives
the programmer some of the benefits of multiple inheritance without most of its drawbacks.
Section 1.3.2 will go more into detail on this interesting feature.

Another interesting aspect is that Scala lets the programmer use a lot of features in a
very natural and elegant way, that are popular in the functional programming community. In
particular, it supports higher-order functions and even full-blown closures. But it does not force
programmers to program in a (purely) functional way. Instead, it lets them decide on which
style of programming — purely functional, functional, object-oriented or even a mix out of these
— is most appropriate for the particular problem at hand. Section 1.3.2 covers Scala’s functional
programming aspects in more detail and also presents a few simple examples.

In the following two sections, we present a few of Scala’s most interesting features in more
detail and mention some of the challenges that were most difficult to overcome. This is not
meant to be a complete tutorial on Scala and we do not intend to cover all of these features in
our implementation.

For a more complete introduction to Scala, I highly recommend the book by Martin Odersky,
Lex Spoon and Bill Venners [8]. As a freely available alternative, I also recommend “Scala By
Example” [9] and “A Scala Tutorial for Java programmers” [10].

The examples are deliberately kept quite simple, so that a Java or C# programmer should
be able to understand them without a lot of explanations. Features that are not available in
these languages or syntax that is not easily understandable are explained the first time they are
used.
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1.3.2 Interesting Features

Type system/Type inference

The first interesting feature to look at is Scala’s type system. Although it tries to stay compatible
with Java, it introduces a few novelties. The most obvious change is that Scala’s type system
offers type inference. This allows the programmer to leave out type declarations if they can be
inferred automatically by the type checker. This often makes programs easier to read and less
tedious to write. Here is a simple example that demonstrates this:

0 val i = 3
1
2 val a = Array("array", "of", "strings")

Listing 1.1: Type inference

In both cases the type checker can figure out that the type of i and a is Int and Array[String]
respectively. This might not seem too hard in this case, but it also works in more complicated
ones.

A second noteworthy change that Scala made to Java’s type system, is that it restructured
the type hierarchy.

Figure 1.1: Scala’s type hierarchy

scala.Any

scala.AnyVal scala.AnyRef

scala.Int scala.Char scala.Boolean scala.Unit scala.ScalaObject

java.lang.String ... other Java classes ...... Scala classes ...

scala.Nothing

scala.Null

As can be seen in Figure 1.1, there exists a single type scala.Any at the top of the type
hierarchy. But scala.Any is not like java.lang.Object in Java, because the type is abstract
and thus cannot be instantiated. The equivalent of java.lang.Object in Java is scala.AnyRef
instead, which is the supertype of all reference types. Similarly, scala.AnyVal is the supertype
of all value types, such as Int, Boolean or Char.

In addition to being subtypes of scala.AnyRef, Scala objects are also subtypes of the
scala.ScalaObject trait. This allows us to distinguish Scala types from Java types.

A last important difference is that in Scala there exists a bottom type, scala.Nothing,
which is a subtype of every other type. Similarly, scala.Null is a subtype of every reference
type. The null reference itself is the only instance of that type and can be assigned to any
reference as a consequence.



1.3 Scala 15

Interestingly, scala.Nothing is also used to type expressions that might throw exceptions.
Scala’s type system is quite elaborate and offers many more advanced features that we cannot
cover in detail at this point, such as variance annotations, existential types or type constructor
polymorphism.

Closures and Higher-Order Functions

Closures are one of Scala’s features that originally emerged from functional programming.
Scheme was the first programming language that made them popular and since then many
other programming languages have adapted them. Closures are functions that may refer to
variables defined in their lexical environment. They are said to “capture” their environment.

In Scala functions are first-class citizens. This means, that they are treated just like other
objects, such as integers or strings. They can be stored in variables, can be passed as function
arguments or can be returned by other functions. Functions that accept other functions as their
arguments or return them are known as higher-order functions.

But a language that supports higher-order functions does not automatically support closures.
A good example for a language like this is C since it supports function pointers. Java does not
even support higher-order functions natively.

Example 1.2 demonstrates that functions are first-class citizens in Scala by implementing a
simple map function that applies an arbitrary function to every element of a list. (Scala already
offers a built-in map function. But it is still interesting to look at how it might be implemented.)

0 def map[A,B](list: List[A], fn: A => B) : List[B] = {
1 if (list == Nil)
2 Nil
3 else
4 fn(list.head) :: map(list.tail , fn)
5 }
6
7 def test() {
8 val l = List(1, 2, 3, 4, 5)
9 println(map(l, (a: Int) => a + 1))

10 }

Listing 1.2: map

The type signature of map tells us that this function takes a list of elements of type A and
applies a function to each of them. The resulting list is of type B. A and B are the function’s
generic parameters and this general concept is called parametric polymorphism. The map func-
tion provides a good example of a higher-order function because it takes another function as its
argument.

If the argument list is the empty list (Nil) the map function simply returns Nil. Otherwise
it applies the function to the first element (head) of the list, calls itself recursively on the tail of
the list and appends (“conses”) the first intermediate result to the second intermediate result
to create the final result list. Note that if there is no explicit return statement the function
always returns the last expression (the if-then-else expression in our example).

The test function finally shows how our map function can be used to increment every item in
a list of integers by one. The expression “(a: Int) => a + 1” returns an anonymous function
that simply returns its argument incremented by 1. In Scala this is called a function literal and
is used very frequently.

Now that we have an idea of what higher-order functions are, we want to look at closures.
Closures are essentially functions that remember or “capture” the environment in which they
are created. This can for instance be used to change their environment later on. To understand
this better we present another example.
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0 def newCounter: () => Int = {
1 var c = 0
2 def inc(): Int = {
3 c += 1
4 return c
5 }
6 inc
7 }
8
9 def test() {

10 val c1 = newCounter
11 println(c1()) // 1
12 println(c1()) // 2
13
14 val c2 = newCounter
15 println(c2()) // 1
16
17 println(c1()) // 3
18 }

Listing 1.3: Closures

In this example we define a function newCounter which returns functions that act as counters.
The return type “() => Int” stands for a function of no arguments that returns an integer
when it is called. In the function body, the newCounter function creates a local variable c
and initializes it to 0. The local function inc represents the counter, that will be returned. It
captures the local variable c and increments it by one every time it is called, before returning
the current value.

In the test function we create two different counters by invoking the newCounter function
twice. We can observe that they both refer to distinct variables c.

These two examples should have covered the fundamental ideas behind higher-order functions
and closures. On top of that, they have demonstrated how Scala can be used to program in a
more functional style.

Pattern matching/Case classes

Pattern matching is a well-known feature in quite a few programming languages such as ML or
Haskell and is also supported in Scala. It allows to match objects against patterns at run-time.

In Scala, it is possible to do pattern matching on user-defined case classes and also on
many library types, such as lists or pairs. Case classes are special classes that have additional
convenience methods to facilitate pattern matching.

The first example demonstrates this by rewriting the map function to use pattern matching.
If the list is non-empty, the head and tail of the list get bound to the corresponding variables.

0 def map[A,B](list: List[A], fn: A => B) : List[B] = {
1 list match {
2 case Nil => Nil
3 case head :: tail => fn(head) :: map(tail , fn)
4 }
5 }

Listing 1.4: map using pattern matching
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In the second example, we define our own case classes Number and BinOp, and use them to
write a simple evaluator for syntax trees made up of these expressions.

0 abstract class Expr
1 case class Number(n: Double) extends Expr
2 case class BinOp(operator: String ,
3 left: Expr , right: Expr) extends Expr
4
5 def eval(e: Expr) : Double =
6 e match {
7 case Number(n) => n
8 case BinOp("+", l, r) => eval(l) + eval(r)
9 case BinOp("-", l, r) => eval(l) - eval(r)

10 }
11
12 def test() {
13 println(eval(Number (1))) // 1.0
14 println(eval(BinOp("+", Number(2), Number (1)))) // 3.0
15 println(eval(BinOp("-", Number(2), Number (1)))) // 1.0
16 }

Listing 1.5: Case classes

Traits/Mixins

As mentioned before, traits are one of Scala’s key features. Traits or mixins have been known
for a long time. They were originally introduced in the Flavors Lisp extension [11]. Later this
idea was further refined by Bracha and Cook [7] and Schärli, Ducasse, Nierstrasz and Black
[12] among others. Since then, quite a few, mostly dynamically typed languages, have adopted
them.

Traits have been proposed as a solution to some of the problems associated with multiple
inheritance, such as the “Diamond Problem” [7]. A trait in Scala is basically an abstract class
that is parametrized with respect to its parent class. The parent class will only be “filled in”
after the trait has been mixed into another class or trait. To make this more clear let us look
at two short examples that each demonstrate an important aspect of traits.

0 abstract class Shape {
1 def area: Double
2 def canEqual(other: Any): Boolean
3 }
4
5 trait AreaEquals extends Shape {
6 override def equals(o: Any): Boolean = {
7 o match {
8 case that: Shape =>
9 (that.canEqual(this)) && area == that.area

10 case _ => false
11 }
12 }
13 override def hashCode: Int = area.hashCode
14 }
15
16 class Circle(val radius: Double) extends Shape with AreaEquals {
17 def area = Math.Pi * radius * radius
18 def canEqual(o: Any) = o.isInstanceOf[Circle]
19 }

Listing 1.6: Shapes Example
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With this example we want to illustrate how traits can be used to limit the amount of code
duplication. The goal is to define equality on geometric shapes. For certain shapes (e.g. circles,
squares) we can check the equality between them by comparing their areas. For other shapes
(e.g. rectangles) this might not be the best way to compare them.

We define an abstract class Shape that provides two abstract methods. area returns the
area of this shape. canEqual returns true if we can compare this object with the other one.

Every Java programmer can confirm that it is not entirely trivial to override the equals
method. The same holds for Scala as well. A very common problem is, that people forget to
also override the hashCode method.

The new trait AreaEquals extends the abstract class Shape. This implies that every class
that mixes in this trait has to be an instance of class Shape. AreaEquals overrides the equals
and the hashCode methods just like it is supposed to. In the equals method, pattern matching
is used to ensure that the other object is actually an instance of class Shape and has an area
method consequently.

The class Circle can now simply mix in the trait AreaEquals, inheriting all of its methods.
Of course, Circle has to implement the abstract method canEqual first, to make sure we only
compare circles to other circles. The same would not be possible in languages that only allow
single-inheritance with interfaces because the methods in AreaEquals would have to be abstract.

The second example will demonstrate another interesting aspect of traits. We start out with
an existing class C that has a method m. Later on, it turns out that we sometimes have to log
calls to this method. Unfortunately, it is not possible to change the existing method.

In Java or other languages that do not support traits, one possible solution would be to define
a new subclass of C that overrides m and calls the super method after the logging is done. This
works nicely if class C is the only class we have to modify. But this approach would generate a
lot of duplicate code, if for instance some subclasses of C need the logging feature as well.

In general, languages like Java make it easy to add new classes that implement existing
methods. But not the other way around. This problem is closely related to the “Expression
Problem”, which Odersky and Zenger solve in Scala using traits [13].

0 class C {
1 def m() {
2 ...
3 }
4 }
5
6 trait Logged extends C {
7 override def m() {
8 print(timestamp() + ": ")
9 super.m()

10 }
11 }
12
13 trait Benchmarked extends C {
14 override def m() {
15 val old = timestamp()
16 super.m()
17 print((timestamp() - old) + "ms")
18 }
19 }

Listing 1.7: Logged-Benchmarked Example

The Scala solution is amazingly straightforward. We define a new trait Logged that extends
C and overrides m. Method m prints out the current time stamp and calls the super method to
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do the actual work. Any class, that needs the logging capabilities, can simply mix in the Logged
trait.

The same strategy could be used to add benchmarking capabilities to existing classes. But
what would we do if we want both the logging and the benchmarking capabilities?

Since a class can mix in arbitrarily many traits, we can just mix in both traits. The ex-
pression “new C with Logged with Benchmarked” would create an instance of C that does
benchmarking and then logging. The order of the traits is important in this case because it
affects the order of the super calls.

Figure 1.2 illustrates how a single call of the method m will propagate up via a chain of super
calls.

Figure 1.2: Chain of super calls

C

Logged Benchmarked

C with Logged C with Logged with Benchmarked

Singleton/Companion objects

Singletons are types that have only a single instance. In most programming language singletons
can be modeled using the well-known singleton pattern [14]. In contrast, Scala provides a
separate language construct to create singletons. Here is an example that shows how to define
one:

0 object Elvis extends Human with Musician {
1 val name = "Elvis Aaron Presley"
2 def sing() {
3 println("lalala")
4 }
5 }

Listing 1.8: Elvis the Singleton

This defines and creates an object Elvis with a field name and a method sing.
A companion object is just a singleton object that shares its name with a class, its companion

class. Unlike a regular singleton object, a companion object may access private members of its
companion class and vis-versa. This makes it easy for multiple objects of the same class to have
shared state, similar to static members in Java.

Concurrency

The last Scala feature that we will cover in this introduction is Scala’s concurrency support.
Scala borrows basic support for threads from Java and adds a few alternative concurrency
models, such as Actors or Transactional Memory. Especially the Actors model [15] is worth
looking into at this point, since its lack of shared state makes concurrent programs easier to
verify. Instead of relying on locks and monitors to protect shared state, the pure Actors model
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uses message passing between threads. This eliminates the need for shared state and locks,
which are difficult to reason about.

Unlike Erlang or other languages that only support the Actors model, Scala gives the pro-
grammer a choice about the best way to make its applications thread-safe. It is not uncommon
to supplement the Actors model with some of Java’s built-in concurrency abstractions, such as
ConcurrentHashMap in the java.util.concurrent package.

So far, Spec# is not able to verify concurrent programs and one of the reasons for this is
that Spec# relies on the thread model quite heavily. But since this is quite a large topic itself
we will not be able to deal with concurrent programs in this project.

1.3.3 Challenges

Since Scala and Spec# are similar in a lot of ways, one may think that we could model some of
the most common features in a similar fashion. This was certainly the case, although there are
also a lot of features that Spec# does not support. The last couple of sections should be proof
enough. Of course, these features were the most challenging ones to deal with. In particular,
modeling closures, traits and singleton/companion objects were some of the most ambitious
goals.

There have been a few proposals (e.g. by Müller and Ruskiewicz [16]) on how to model
delegates in Spec# but none of them has been implemented yet. Delegates and closures have a
lot in common, while the latter are somewhat more general because closures may refer to their
lexical environment. This makes verification more difficult because the environment could even
contain local variables, that do not usually have invariants attached to them. How would one
ensure, for instance, that the counter objects in example 1.3 always increments the variable by
one?

Traits were the second major challenge. The main reason for this, was that they make the
modeling of the type hierarchy and super calls in methods more complex. Moreover, mixin-based
inheritance in general is not quite as well-explored as single-inheritance with interfaces.

A third challenge were singleton and companion objects because they are unique to Scala.
Initially, we were not sure whether they would just increase the complexity of our model or
whether they would allow us to avoid some of the problems with static members in Spec#.

These are just a few quite fundamental difficulties that we considered to be worth noting
here.

1.4 Boogie

1.4.1 What is Boogie?

Boogie is a modular reusable verifier for object-oriented programs [3, 4]. It was developed at
Microsoft Research as part of their Spec# programming system [2, 1]. At first, it was only used
to verify programs in their Spec# programming language. The Spec# programming language
was also developed at Microsoft Research and is a variant of the C# programming language with
support for design by contract. But since Boogie was designed to be reusable, it soon became
quite popular as a backend for program verifiers in other languages such as C (e.g. VCC by
Microsoft Research [17]) or Eiffel.

1.4.2 What is BoogiePL?

BoogiePL is a procedural language for checking object-oriented programs [18]. Just like Spec#
and Boogie, it was developed at Microsoft Research as an intermediate language, between the
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high-level programming language Spec# and a theorem prover such as Z3 or Simplify.
Thus, another way to look at BoogiePL, is to see it as a high-level interface to theorem

provers. Boogie can generate verification conditions out of BoogiePL code for a wide range of
theorem provers. This flexibility allows us to use Boogie as a verification backend for our Scala
verification tool by translating the Scala source code to BoogiePL first. Boogie can then be used
to verify the generated code.

Figure 1.3: Program verification with Boogie

High-level language
(e.g. Spec#, Scala)

BoogiePL

Boogie Verifier

Theorem Prover (e.g. Z3)

Figure 1.3 shows the steps that are necessary to verify a program with Boogie. During this
project, we will focus on the first step, which generates BoogiePL code from Scala source code.

In the following subsections we give a quick overview of the BoogiePL language. We focus on
the features that are necessary to understand BoogiePL programs that show up in this report.
For further information about BoogiePL, I would like to refer the reader to Rustan Leino’s “This
is Boogie 2” [4] manual. BoogiePL has only seven top-level declarations, each of which will be
explained.

Types

Type declarations are used to declare new type constructors, which may have type parameters.
They may also be used to define aliases for existing types. There are only a small number of
build-in types (e.g. int, bool). Listing 1.9 provides a few example declarations for each use-
case. The first declaration defines a new type constructor for references. The second declaration
defines a type constructor List that takes an arbitrary parameter, while the last declaration
creates an alias to one particular list type.

0 type ref;
1 type List _;
2 type RefList = List ref;

Listing 1.9: type declarations

Constants

Constant declarations give names to certain fixed (but unspecified) values of some type. Op-
tionally they may be declared to be unique. All unique constants have values different from
each other. Listing 1.10 demonstrates how (unique) constants may be used to define the RGB
colors — red, green and blue.
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0 type Color;
1 const unique RED: Color;
2 const unique GREEN: Color;
3 const unique BLUE: Color;

Listing 1.10: const declarations

Functions

Function declarations allow us to define mathematical (side-effect free) functions, which take
a number of parameters and return a result. Functions might be polymorphic and they might
return a fixed expression. Listing 1.11 defines two functions. inverse#1 declares a function
that takes an integer parameter and returns an integer. inverse#2 on the other hand provides
an “implementation” for that function on top of that.

0 function inverse#1(int) returns (int);
1 function inverse#2(i: int) returns (int) { -i }

Listing 1.11: function declarations

Axioms

Axiom declarations are used to state properties that should hold. For instance, we could add an
axiom stating that function inverse#1 actually returns the additive inverse (see listing 1.12).

0 function inverse#1(int) returns (int);
1 axiom (forall i: int :: inverse#1(i) == -i);

Listing 1.12: axiom declarations

Variables

Variable declarations define global variables, that may be modified by BoogiePL procedures. For
example, we could declare a variable favoriteColor that holds our favorite color (see listing
1.13).

0 var favoriteColor: Color;

Listing 1.13: var declarations

Procedures

Procedure declarations provide procedure signatures that may optionally have additional spec-
ifications (e.g. pre- and postconditions) associated with them. Just like functions, procedures
may take a number of parameters and might return a result. Procedures might also be polymor-
phic and can optionally have an implementation. For instance, we could introduce a procedure
that sets the variable favoriteColor.
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0 procedure setFavoriteColor(c: Color);
1 modifies favoriteColor;
2 ensures favoriteColor == c;

Listing 1.14: procedure declarations

Implementations

Implementation declarations add implementations to previously declared procedures. They
essentially provide an implementation body to the existing procedure specification. Implemen-
tation bodies can consist of various declarations (e.g. local variables, labels) and statements
(e.g. assignments, procedure calls). For example, we could associate an implementation with
the previously defined setFavoriteColor procedure (see listing 1.15).

0 implementation setFavoriteColor(c: Color)
1 {
2 favoriteColor := c;
3 return;
4 }

Listing 1.15: implementation declarations
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Chapter 2

Design

In this chapter we present our design of the Scala to BoogiePL translation tool. The first section
will cover the overall design and will clarify what subset of the Scala language we are dealing
with as part of this project.

The second section then presents how we encode certain Scala features in BoogiePL. When-
ever possible, we try to include examples that help in illustrating the theoretical aspects.

2.1 Overall Design

We have already mentioned in Section 1.4.2 that we planed to design and implement a tool that
translates a valid Scala program to BoogiePL. To achieve this we indented to modify Scala’s
code generator to emit BoogiePL code instead of Java bytecode. We were hoping that this
would be relatively straight-forward once we knew how we could encode Scala’s feature set in
BoogiePL. But since Scala has so many features, we had to pick a subset that we would focus
on primarily. This subset will be defined and presented in the following sections.

2.1.1 Supported Scala Features

We divided Scala’s feature set up into different groups or categories. Each of them covers a
separate aspect of the Scala language.

Object-Orientation

Since Scala is primarily an object-oriented programming language, this is the first aspect we will
look into. But what exactly do we mean by “Object-Orientation”? In this context, we consider
Object-Orientation to be a set of Scala features that affect the way objects behave at run-time
(e.g. classes, constructors, field access, method calls).

Classes are basically blueprints for objects. This makes them a fundamental part of most
object-oriented programming languages. Therefore we consider them to be an essential feature
we will have to support. The same holds for constructors, methods and fields. Since we have
to deal with classes, we will also have to deal with abstract classes and traits which are closely
related.

Of course, we will also have to deal with objects themselves. In particular, we will have to
think about how to represent the heap in BoogiePL. Singleton and companion objects are just
variants of regular objects and we treat them in a similar way.

25
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Since in Scala a class can only inherit from a single base class, we have to model single class
inheritance. This is almost the same as in Spec#. At first we thought, that trait inheritance
would make this more complex, but it turned out that we could treat trait inheritance separately
just like interface inheritance is treated separately in Spec#.

We thought about including generics in this set of features. But since Scala uses type-erasure
at run-time just like Java, the correct use of generics is already statically checked at compile-
time. Thus, we did not deal with generics in this project, although in general they might still
be useful for verification purposes.

Expressions

Expressions in Scala are, roughly speaking, everything that might be written inside of a method
body. This includes calls to new, assignments, conditionals, while-loops and function/method
calls. Our tool should handle all of these.

One interesting difference between Scala and Spec# is, that there is no clear distinction
between expressions and statements in Scala. For example, an if-then-else construct returns a
value (the last expression in one of the branches). The same thing also holds for other constructs,
that would be statements in Spec#, such as loops. We model this by storing the returned value
of an expression in a local variable.

Another difference worth noting here, is that Scala treats assignments to fields just like
method calls to automatically generated getter- and setter-methods. This seems to be a mixed
blessing because it is not entirely obvious what the default contract/specification for these
setter- and getter-methods should look like. Making them too strong, might restrict classes,
that override them, too much; making them too weak, will make it hard or even impossible to
verify certain programs.

Types

We have already talked about Scala’s type hierarchy in section 1.3.2 and have also compared it
to Spec#’s type hierarchy.

Diagram 1.1 shows some of the built-in types that our tool will be dealing with. Additionally
we will add support for arrays, functions and user-defined types. We will focus on pure Scala
types instead of also worrying about Java classes and interfaces.

Scala’s type hierarchy made it necessary to add the bottom types scala.Nothing and
scala.Null and the top type scala.Any to the BoogiePL model and adapt the axioms ac-
cordingly. We also had to add the value type scala.AnyVal and its direct subtypes scala.Int,
scala.Boolean, scala.Char and scala.Unit.

Other features

Another feature that we have to support is loop invariants. Since Scala currently does not come
with a contract specification language, we might interpret the first statement of a loop body as
the loop invariant if it is an assert statement. The main reason for adding loop invariants is,
that it will be impossible to prove a lot of interesting things without them.

Some Scala features that we explicitly ignore because they are already enforced by the
compiler include type safety/generics, access modifiers, packages and existential types.

The section on future work (4.2) mentions a couple of features that were left out intentionally
and could be added in the future.
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2.2 Detailed Design

This section explains our design in more detail. To keep it less abstract and theoretical we will
use real BoogiePL code whenever it seems reasonable.

As we have mentioned previously in section 1.4.2, the Boogie verifier takes BoogiePL code
as its argument and then tries to verify it. For practical reasons the input consists of two main
parts.

The first one is a language specific prelude that encodes fundamental parts of the Scala
programming language and its semantics, such as the heap model or the type hierarchy. The
prelude also encodes certain commonly used objects and methods.

The second part contains the encoding of the particular program that should be verified.
This includes things such as classes and their methods or fields.

The design of these two parts will be discussed in the following subsections. We will start
out with the design of the prelude since this was one of the first major tasks during this project.
This will lay the groundwork for Section 2.2.2, which will explain how we encode a given Scala
program in BoogiePL using the axiomatizations from the prelude.

We will only show the actual BoogiePL code for the most interesting parts of the prelude.
If the triggers do not add to the general discussion, they will be left out, even though they are
an indispensable part of the actual prelude.

2.2.1 Heap Model & Type Hierarchy (Prelude)

Since the prelude is usually specific to the targeted programming language, we could not simply
use an existing one. We therefore started out with the Spec# prelude and gradually modified
it to capture the differences compared to the Scala semantics. Since this is the most interesting
aspect, we will focus on how we adapted the existing Spec# prelude to fit Scala’s and our needs.

The first thing we did was to remove everything from the prelude related to Spec#’s owner-
ship model, frame conditions, pure functions and the .Net types.

Then we replaced the .Net types with Scala types to model the Scala type hierarchy and
introduced types that have no Spec# counterpart, such as the top type Any or the bottom type
Nothing.

Top types

Listing 2.1 shows how the top types are encoded in BoogiePL.

0 // Any (supertype of everything)
1 const unique scala.Any: TName extends complete;
2 axiom $IsClass(scala.Any);
3 axiom $IsMemberlessType(scala.Any);
4 axiom (!$IsReferenceType(scala.Any) && !$IsValueType(scala.Any));
5 axiom (forall $T: TName :: $T <: scala.Any);
6

7 // AnyRef (supertype of all reference types)
8 const unique java.lang.Object: TName extends unique scala.Any;
9 axiom $BaseClass(java.lang.Object) == scala.Any;

10 axiom $IsClass(java.lang.Object);
11 axiom (forall $T: TName ::
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12 ($T != scala.Nothing && $T <: java.lang.Object)
13 <==> $IsReferenceType($T));
14

15 // AnyVal (supertype of all value types)
16 const unique scala.AnyVal: TName extends scala.Any complete;
17 axiom $BaseClass(scala.AnyVal) == scala.Any;
18 axiom $IsClass(scala.AnyVal);
19 axiom $IsMemberlessType(scala.AnyVal);
20 axiom (forall $T: TName ::
21 ($T != scala.Nothing && $T <: scala.AnyVal)
22 <==> $IsValueType($T));

Listing 2.1: Encoding top types in BoogiePL

We introduced several new functions:

• $IsClass returns true, if the type models a class.

• $IsTrait returns true, if the type models a trait.

• $IsReferenceType returns true, if the type is a reference type.

• $IsValueType returns true, if the type is a value type.

We also added an axiom that guarantees that types are not both reference and value types.
A similar axiom was added for the two functions $IsClass and $IsTrait.

The function $IsMemberlessType returns true for types that are abstract.
For the Any type we added an axiom stating that it is a supertype of every other type.

Another axiom states that Any is neither a reference type nor a value type.
For the class AnyRef, which is functionally equivalent to Java’s Object class, we added axioms

saying that its base class is Any and that all of its sub types, except Nothing, are reference types.
We have to exclude Nothing, because it is neither a reference nor a value type.

AnyVal’s axiomatization is similar to AnyRef, except that it is an abstract type and it is the
supertype of all value types.

We also experimented quite a bit with Boogie’s extends, unique and complete keywords,
which essentially allow the programmer to add more restrictive subtyping information to a type.

For example, the “extends complete” clause in Any’s const declaration states that it does
not have any direct supertypes and that all its direct subtypes are known.

AnyRef’s “extends unique scala.Any” clause states that Any is its only direct supertype
and that AnyRef’s subtypes cannot extend from Any directly.

Essentially, these declarations are just syntactic sugar and could just as well be added as
axioms. Rustan Leino’s “This is Boogie 2” [4] manual explains these declarations in more detail.
It turned out that we could not use these declarations for a lot of types because they only seem
to work nicely in the absence of a bottom type. We also had to change quite a few other existing
axioms because of this. Unfortunately, tracking down these axioms was quite difficult because
they simply introduce inconsistencies and there is no automatic way of finding the axioms that
caused them in the first place.
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Bottom types

Now let us have a look at these bottom types. Listing 2.2 includes the important parts of the
prelude.

0 // Nothing (subtype of everything)
1 const unique scala.Nothing: TName;
2 axiom $IsTrait(scala.Nothing);
3 axiom $IsMemberlessType(scala.Nothing);
4 axiom $IsFinal(scala.Nothing);
5 axiom (!$IsReferenceType(scala.Nothing)
6 && !$IsValueType(scala.Nothing));
7 axiom (forall $T: TName :: scala.Nothing <: $T);
8

9 // Null (subtype of all reference types)
10 const unique scala.Null: TName;
11 axiom $IsTrait(scala.Null);
12 axiom $IsFinal(scala.Null);
13 axiom (forall $T: TName ::
14 ($T == scala.Any || $IsReferenceType($T)) <==> scala.Null <: $T);
15 axiom (forall $T: TName ::
16 $T <: scala.Null ==> ($T == scala.Null || $T == scala.Nothing));
17 axiom (forall $r : ref ::
18 $typeof($r) == scala.Null <==> $r == null);

Listing 2.2: Encoding bottom types in BoogiePL

We were not able to use the extends clauses for the Nothing and Null types because they
basically extend an arbitrary number of types.

Another interesting fact is that these types are modeled as traits in Scala. We know that
traits are abstract in general. But we also mentioned that null is an instance of type Null.
This seems to be somewhat contradictory. Still we decided to model it like this for consistency
with Scala’s type declarations and left out an axiom stating that all traits are also abstract.
Instead we explicitly state this for every trait except Null.

Besides being traits, these types are also marked final. This obviously makes sense for
Nothing, but not so much for Null because Nothing is its subtype. We decided that this is not
a problem if we treat Nothing and Null as special types that even final types may be supertypes
of.

In practice, final traits are used very rarely. One possible usage scenario is to use them to
create phantom types, which are somewhat popular in the Haskell community. They are often
used to enforce certain constraints that can be checked by the type checker instead of relying
on run-time checks.

ScalaObject

Another important trait from the prelude is ScalaObject. Its encoding is shown in Listing 2.3.
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0 // abstract trait scala.ScalaObject extends java.lang.Object
1 const unique scala.ScalaObject: TName;
2 axiom $IsMemberlessType(scala.ScalaObject);
3 axiom $IsTrait(scala.ScalaObject);
4 axiom (scala.ScalaObject <: java.lang.Object);
5 axiom (forall t: TName ::
6 ((scala.ScalaObject <: t) && (t != scala.ScalaObject))
7 ==> (java.lang.Object <: t));
8 axiom $BaseClass(scala.ScalaObject) == java.lang.Object;

Listing 2.3: Encoding ScalaObject in BoogiePL

Just as for Any and AnyRef, we do not use the extends clauses here. Instead we added two
axioms. The first one simply states that ScalaObject is a subtype of AnyRef. The second one
states that all supertypes of ScalaObject are also supertypes of AnyRef, which implies that
AnyRef is the only direct supertype.

Value types

Since value types are not implemented in Scala itself, we also had to model them in the prelude.
The relevant parts of the prelude are shown in Listing 2.4. The declarations for Boolean and
Char are very similar to the ones for Int. During the implementation, it turned out that we
had to add more code to the prelude that deals with operations (e.g. arithmetic operations on
integers or logical operations on booleans) on value types. This will be covered in more detail
during the discussion of the implementation details in Chapter 3.

0 const unique scala.Int: TName extends scala.AnyVal;
1 axiom $BaseClass(scala.Int) == scala.AnyVal;
2 axiom $IsClass(scala.Int);
3 axiom $IsFinal(scala.Int);
4

5 const unique scala.Unit: TName extends scala.AnyVal;
6 axiom $BaseClass(scala.Unit) == scala.AnyVal;
7 axiom $IsClass(scala.Unit);
8 axiom $IsFinal(scala.Unit);
9 const unique unit: ref;

10 axiom (forall $r : ref ::
11 $typeof($r) == scala.Unit <==> $r == unit);

Listing 2.4: Encoding value types in BoogiePL

All value types extend AnyVal and are final classes. Additionally we had to define a new
constant unit, which stands for the unit value (() in Scala). This is the only instance of the
Unit class. We could have also modeled it as a singleton object, but we wanted our encoding
to resemble the Scala declarations as closely as possible.

Since in Scala everything is an object, values are also objects and have to be stored on the
heap (more about this in the next section). But Boogie supports certain value types natively
(e.g. int, bool) and we have to use these if we want to proof interesting properties. This made it
necessary to store the corresponding Boogie values together with the Scala value objects. These
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corresponding Boogie values are stored in a two-dimensional array $ValueFields, that maps
a reference to a Scala value and a field name to the respective Boogie value. For instance, a
reference to a Scala Int v would be associated with a Boogie value stored in $ValueFields[v,
$int].

Heap and Fields

To model fields, we use the type Field that has one generic argument (e.g. Field ref for fields
that hold references). This allows us to model the heap as a global variable that refers to a
two-dimensional array. This array maps an object reference and a field to the corresponding
value of that field.

0 type Field _;
1

2 type HeapType = <beta>[ref ,Field beta]beta;
3

4 var $Heap: HeapType where IsHeap($Heap);

Listing 2.5: Encoding of fields and the heap in BoogiePL

Listing 2.5 shows the corresponding declarations in the prelude. IsHeap is a function that
is basically used to tag valid heaps. We thought about removing the generic beta argument for
the HeapType, since we make no distinction between fields to value and reference objects. This
might be something that could be changed in the future. Since this was not our main focus, we
decided not to change it in the end.

To get the field f of an object o, we can access the heap like this: $Heap[o, f]. To store a
new value v in that field we assign to the heap variable like this: $Heap[o, f] := v.

We also experimented with a special encoding for “val fields”, since Scala supports fields that
are constant. These fields are initialized in the constructor of a class and cannot be changed
later on. To encode this we added a new field $ValFieldsAreInitialized that is set to true
after an object has been constructed (see Listing 2.6).

0 function $IsValField<alpha>(f: Field alpha) returns (bool);
1

2 const unique $ValFieldsAreInitialized: Field bool;
3

4 function #UltimateValue<alpha>(ref , Field alpha) returns (alpha);
5

6 axiom (forall o: ref , f: Field ref , h: HeapType ::
7 { IsHeap(h), $IsValField(f), #UltimateValue(o, f) }
8 IsHeap(h) && h[o, $ValFieldsAreInitialized] && $IsValField(f)
9 ==> h[o, f] == #UltimateValue(o, f));

Listing 2.6: Encoding of “val fields” in BoogiePL

The property that this field never changes its value is encoded by the axiom shown in Listing
2.6, which basically states that once the field is initialized, its value does not depend on the
heap. We used this particular encoding because it lets us use very specific triggers. This helps
Boogie a lot in the verification process.
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Arrays

Arrays are the last type we discuss here. There are a couple of interesting differences between
the way arrays are modeled in Scala and in Spec# or Java. The most important one is certainly
that arrays are not a “built-in” or “primitive” type in Scala. Array is just a regular class in the
class hierarchy.

The Array class is also a good example of how traits are used in Scala programs. Figure 2.1
illustrates this very well by showing all of Array’s supertypes.

Figure 2.1: Array’s supertypes
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Since most of Array’s supertypes are traits, Array can mix in not only a whole lot of abstract
methods, but can also reuse a lot of concrete methods. For instance, Array mixes in Function1,
which is a trait that all functions of one argument mix in. Arrays can therefore be treated as
functions that take the array index and return the corresponding element. It is therefore not
necessary to have a special syntax for array access in Scala.

All of this made it necessary to add more traits to the prelude. Listing 2.7 shows just a
small part of the corresponding declarations. The declarations for the other supertraits are
quite similar to the declarations for Array0 and none of these supertraits are essential for this
report.

These declarations are pretty straightforward. Notice that the base class of both Array and
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0 // trait Array0 extends ArrayLike
1 const unique scala.Array0: TName;
2 axiom $IsTrait(scala.Array0);
3 axiom $IsMemberlessType(scala.Array0);
4 axiom scala.Array0 <: scala.ArrayLike;
5 axiom scala.Array0 <: scala.ScalaObject;
6 axiom (forall t: TName :: scala.Array0 <: t && t != scala.Array0
7 ==> (scala.ArrayLike <: t || scala.ScalaObject <: t));
8 axiom $BaseClass(scala.Array0) == java.lang.Object;
9

10 // final class Array extends Array0
11 const unique scala.Array: TName;
12 axiom $IsClass(scala.Array);
13 axiom scala.Array <: scala.Array0;
14 axiom scala.Array <: scala.ScalaObject;
15 axiom (forall t: TName :: scala.Array <: t && t != scala.Array
16 ==> (scala.Array0 <: t || scala.ScalaObject <: t));
17 axiom $BaseClass(scala.Array) == java.lang.Object;

Listing 2.7: Encoding Array and Array0 in BoogiePL

its supertraits is AnyRef. The reason for this will be explained in a later section on how traits
are encoded.

0 type Elements _;
1

2 const unique $elementsRef: Field (Elements ref);
3

4 function ArrayGet<alpha>(Elements alpha , int)
5 returns (alpha);
6

7 function ArraySet<alpha>(Elements alpha , int , alpha)
8 returns (Elements alpha);

Listing 2.8: Encoding Array access in BoogiePL

Listing 2.8 shows how array operations are modeled. The field $elementsRef stores the
elements of an array on the heap. Our prelude also formalizes arrays of primitive types, such as
integers, but we only use arrays of references in the end. We kept the other types of arrays for
now, but they could probably be removed at some point.

Multidimensional arrays can be encoded as arrays of arrays, since this is the way arrays are
handled in Scala, whereas Spec# also supports “true” multidimensional arrays as an alternative
to these “jagged arrays”.

The functions ArrayGet and ArraySet are used to get and set the elements of an array. The
prelude contains a lot of axioms that encode certain properties that should hold. For example,
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setting an array element to a value v and accessing it should return the same value v.
We also had to adapt many axioms to ensure that arrays are invariant in their element type.

This means for instance, that the following declaration is not allowed in Scala, unlike in Spec#
or Java: “var a: Array[Super] = new Array[Sub](1)”, where Sub is a subtype of Super
(Sub <: Super).

Difficulties with Boogie

Now that we covered the most interesting parts of the prelude, I would like to add a few words
about my experience with Boogie. The hardest part about designing the prelude was to find
out how to express properties in a way that Boogie can deal with efficiently. I often thought of
ways to encode properties, that would be very easy for humans to understand, only to discover
that unfortunately Boogie does not (yet) pass the Turing test.

This should not necessarily be seen as a criticism, but as a word of caution. There usually
does exist a way to encode things that Boogie knows how to deal with. It might just take some
time to find it.

Another difficulty was that it turned out to be quite tricky to “debug” the prelude. Most
often this was necessary because there was an inconsistency somewhere in the prelude that
would allow Boogie to proof anything (“ex falso quodlibet”). But finding these inconsistencies
could take hours, because it was usually very difficult to track down the axioms that caused the
inconsistency. This difficulty is not really specific to Boogie though.

2.2.2 Translation to BoogiePL

Now that we presented the Scala prelude, we want to look at how specific parts of Scala programs
are translated to BoogiePL. We basically turn the spotlight on various fundamental parts of a
Scala program. First, we will look at how Scala’s basic building blocks — classes, abstract
classes, traits and singleton objects — are axiomatized in BoogiePL on the type-level. In the
next sections, we present how fields, constructors and methods of a class, trait or object are
translated to BoogiePL. And finally, we focus on method/constructor bodies and closures.

Classes, Traits and Singleton Objects

This section describes how we modeled classes, traits and singleton objects in BoogiePL. For
now, we concentrate on the type-level. This includes how these constructs are integrated into
Scala’s type hierarchy and how we can encode certain properties about them (e.g. final or
abstract classes). We start with “normal” classes before we move on to abstract classes, traits
and finally singleton objects.

Every class has a base class. In fact, every Scala type has a base class. But the base class
itself must be a class. It cannot be a trait or a singleton object. Since in Scala classes are only
allowed to inherit from a single super class the super class and the base class are the same thing.
To make this whole discussion less theoretical we will look at a simple example (see Listing 2.9)
and look at the BoogiePL code that this translates to.

0 abstract class C
1
2 trait U
3
4 trait V
5
6 trait T extends C with U with V
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7
8 class D extends C with T
9

10 object O extends D

Listing 2.9: Classes, Traits and Singleton Objects in Scala

In Listing 2.10 we see that there is an axiom that states that C is D’s base class. We also have
axioms, that declare all the direct super types of class D, including the axiom that declares that
there are no others. The direct super types of class D are of course the base class C, the trait T
and implicitly also the trait ScalaObject. To make class D abstract, we would have to add an
additional axiom, saying that it is a memberless type (axiom $IsMemberlessType(C);). The
same holds for final classes (axiom $IsFinal(E);).

0 const unique D: TName;
1 axiom $IsClass(D);
2 axiom (D <: C);
3 axiom (D <: T);
4 axiom (D <: scala.ScalaObject);
5 axiom (forall t: TName :: (((D <: t) && (t != D))
6 ==> (C <: t) || (T <: t) || (scala.ScalaObject <: t)));
7 axiom $BaseClass(D) == C;

Listing 2.10: Classes in BoogiePL

Traits are encoded just in a slightly different way (see Listing 2.11). Traits are always mem-
berless, just like abstract classes. Traits also have a single base class, which has the additional
property that it restricts the set of classes, that may mix in that trait, to the subclasses of its
base class. In our example trait T does not have any concrete methods. Therefore it is basically
an interface and does not mix in ScalaObject implicitly. The order of the traits is not encoded
yet, because it does not matter for the type hierarchy. It only matters for the super calls.

0 const unique T: TName;
1 axiom $IsMemberlessType(T);
2 axiom $IsTrait(T);
3 axiom (T <: C);
4 axiom (T <: U);
5 axiom (T <: V);
6 axiom (forall t: TName :: (((T <: t) && (t != T))
7 ==> (C <: t) || (U <: t) || (V <: t)));
8 axiom $BaseClass(T) == C;

Listing 2.11: Traits in BoogiePL

Singleton objects are basically non-abstract final classes that have only a single instance.
This is exactly how we encode them in BoogiePL (see Listing 2.12). The prelude contains two
axioms that help in encoding these properties (see Listing 2.13). Besides this we also declare
the singleton instance as a constant reference, that can be used to refer to the singleton.

0 const unique O: TName;
1 axiom $AsSingleton(O) == O;
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2

3 const unique O$$instance: ref;
4 axiom $typeof(O$$instance) == O;
5

6 axiom (O <: D);
7 axiom (O <: scala.ScalaObject);
8 axiom (forall t: TName :: (((O <: t) && (t != O))
9 ==> (D <: t) || (scala.ScalaObject <: t)));

10 axiom $BaseClass(O) == D;

Listing 2.12: Singleton Objects in BoogiePL

0 // A singleton may only have a single instance.
1 axiom (forall S: TName , o1: ref , o2: ref ::
2 $typeof(o1) == S && $typeof(o2) == S
3 && $AsSingleton(S) == S ==> o1 == o2);
4 // A singleton is final.
5 axiom (forall S: TName :: $AsSingleton(S) == S ==> $IsFinal(S));

Listing 2.13: Axioms from the Prelude

Fields

So far, we only looked at how to encode “empty” classes, traits or singleton objects. Since fields
are a integral part of objects, we will look at how to encode them first. In Scala, there exist two
different kinds of fields — “val fields” and “var fields”. We already showed how to model “val
fields” in section 2.2.1. “var fields” are fields that can be changed. For these, Scala will provide
both a getter- and a setter-method. Whereas for “val fields” there will be just a getter-method.
Section 2.2.2 will cover how these methods look like in BoogiePL. In this section we will only
look at how fields are declared.

The easiest way to explain this, is by looking at another example. Our very simple Scala
program declares a class with two fields (see Listing 2.14). Fields and variables always have to
be initialized in Scala. But since this happens in the constructor, we will discuss this in Section
2.2.2 on constructors.

0 class C {
1
2 val i: Int = 1
3
4 var b: Boolean = true
5
6 }

Listing 2.14: Class with two fields in Scala

0 // var C.b: scala.Boolean
1 const unique C.b: Field ref;
2 axiom DeclType(C.b) == C;
3 axiom AsRefField(C.b, scala.Boolean) == C.b;
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4

5 // val C.i: scala.Int
6 const unique C.i: Field ref;
7 axiom DeclType(C.i) == C;
8 axiom AsRefField(C.i, scala.Int) == C.i;
9 axiom $IsValField(C.i);

Listing 2.15: Class with two fields in BoogiePL

Instead, let us look at how the corresponding BoogiePL declarations look like (see Listing
2.15). We have to use the field’s fully qualified name (e.g. C.b instead of b) to prevent name
clashes. For our purposes all fields are reference fields and both of them are declared in class C.
The types of the fields are scala.Boolean for field b and scala.Int for field i. The conceptual
difference between them is that we add an axiom for field i, stating that it is a “val field”.

Constructors

In Scala, a class has a single primary constructor and possibly a certain number of auxiliary
constructors, that have to call the primary constructor eventually. Only the primary constructor
may call the super constructor. Scala’s rules are a little more strict than in other languages,
such as Spec# or Java. Traits and singleton objects do not have auxiliary constructors.

Just like methods, constructors are modeled as procedures in BoogiePL, that take the this
reference as their first argument. Since Scala supports method and constructor overloading we
have to generate unique procedure names by appending the types of the method/constructor
parameters to the actual name. The following example should highlight some more important
points (see Listing 2.16).

0 trait T
1
2 trait U {
3 val u: AnyRef = null
4 }
5
6 class D(val d: AnyRef)
7
8 class C(val c: AnyRef) extends D(null) with T with U {
9 def this() {

10 this(null)
11 }
12 }

Listing 2.16: Constructors in Scala

Class C has two constructors. The primary constructor takes one argument while the auxil-
iary constructor takes no arguments at all and calls the primary constructor.

0 procedure C..ctor$$scala.AnyRef(
1 $this: ref where ($IsNotNull($this , C) && $Heap[$this , $allocated]),
2 c: ref where $Is(c, scala.AnyRef));
3 // The val fields are initialized.
4 free ensures (($typeof($this) == C)
5 ==> $Heap[$this , $ValFieldsAreInitialized ]);
6 free ensures $HeapSucc(old($Heap), $Heap);
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7 // The target object is allocated upon return.
8 free ensures $Heap[$this , $allocated];
9 modifies $Heap;

10

11 implementation C..ctor$$scala.AnyRef($this: ref , c: ref)
12 {
13 // Initialize fields.
14 assert($this != null);
15 $Heap[$this , C.c] := c;
16 assume(IsHeap($Heap));
17

18 // Call the super constructors.
19 call D..ctor$$scala.AnyRef($this , null);
20 call U..ctor($this);
21

22 // Execute the rest of the constructor (e.g. method calls).
23 ...
24 }

Listing 2.17: Primary constructors in BoogiePL

The general pattern can be observed in Listings 2.17 and 2.18. The “procedure” declarations
specify the interface of the constructors while the “implementation” declaration contains the
actual constructor body. The primary constructor initializes the fields before calling the super
constructors; starting with the base class constructor, followed by the trait constructors (from
left to right in the “extends” clause).

In our example trait T does not have a constructor because it is completely abstract, just
like an interface. The auxiliary constructor, first calls the primary constructor before doing
anything else.

0 procedure C..ctor(
1 $this: ref where ($IsNotNull($this , C) && $Heap[$this , $allocated ]));
2

3 // The val fields are initialized.
4 free ensures (($typeof($this) == C)
5 ==> $Heap[$this , $ValFieldsAreInitialized ]);
6

7 free ensures $HeapSucc(old($Heap), $Heap);
8 // The target object is allocated upon return.
9 free ensures $Heap[$this , $allocated];

10 modifies $Heap;
11

12 implementation C..ctor($this: ref) returns ($result: ref)
13 {
14 // Call the primary constructor.
15 call C..ctor$$java.lang.Object($this , null);
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16

17 ...
18 }

Listing 2.18: Auxiliary constructors in BoogiePL

Methods

Methods and constructors are encoded in very similar ways. In fact, constructors are special
kinds of methods. Just like constructors they are encoded as two different BoogiePL declarations
— the “procedure”, that expresses the method signature together with the specification, and
the “implementation”, that holds the method body. The separation of these two method frag-
ments allows us to model abstract methods in a natural way, by merely providing a procedure
declaration without a matching implementation.

Before we can move on to method bodies in the next section, let us look at another example
that focuses on super calls (see Listings 2.19 and 2.20).

0 class C {
1
2 def m() { }
3
4 }
5
6 trait T extends C {
7
8 override def m() {
9 super.m()

10 }
11
12 }

Listing 2.19: Super calls in Scala

Trait T calls the super method super.m in method m. Since T is a trait, we cannot tell which
method will ultimately be called. This depends on the class that mixes in trait T. But we would
like to be able to verify T even if no class has mixed in this trait yet.

If method T.m contains, for instance, a division by zero, we can spot this even though no class
has mixed in trait T. To make this possible, we introduce an abstract method T$$super$m, that
classes will have to implement when they mix in the trait T. In the method T.m, this abstract
super method T$$super$m will be called instead of an actual super method. The example also
illustrates that all method calls in Scala return a value, even if it is just the unit value.

0 implementation T.m($this: ref) returns ($result: ref)
1 {
2 var $tmp$1$3: ref where $Is($tmp$1$3 , scala.Unit);
3

4 call $tmp$1$3 := T$$super$m($this);
5 }
6

7 procedure T$$super$m(
8 $this: ref where ($IsNotNull($this , T) && $Heap[$this , $allocated]))
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9 returns ($result: ref where $Is($result , scala.Unit));

Listing 2.20: Super calls in BoogiePL

Method/Constructor Bodies

So far, we have only covered the encoding of method and constructor signatures. This section
discusses the translation of method and constructor bodies to BoogiePL. As mentioned earlier,
a Scala method body is transformed to an “implementation” declaration in BoogiePL. These
method bodies can contain different declarations and instructions, such as variables declarations,
assignment statements, conditionals, loops or method calls.

Variable declarations in Scala can be nested; the inner declarations “shadow” the outer
ones. This feature is not supported in BoogiePL; instead all variables have to be declared at
the beginning of the implementation. Since we want to support variable “shadowing” we have
to introduce unique names for all variables. We also have to support additional temporary
variables. These are mostly used to store the result of statements that are expressions at the
same time (e.g. conditionals, method calls).

Assignments are either directly translated to BoogiePL assignment statements (e.g. assign-
ments to local variables) or to a call of the corresponding setter-procedure (e.g. assignments to
fields). The latter case is encoded just like a normal method call.

We decided to translate conditionals to BoogiePL if-then-else statements. The alternative
would have been to encode them using labels and goto statements, which is how Spec# encodes
them. We mainly decided to use if-then-else statements to improve the readability of the gen-
erated code. The price for this is, that we have to deal with the issues of indenting the code
correctly.

Initially, we wanted to do the same for while loops. It turned out though, that loops are
already translated to labels and goto statements in a previous phase of the Scala compiler. Since
we did not want to revert this transformation, we also use labels and goto statements in the
BoogiePL code that we generate. For the verifier this does not make a difference. The only
thing we had to think about was how to encode loop invariants.

The following pseudo-Scala code illustrates how loop invariants could be encoded if Scala
would allow to specify them (see Listings 2.21 and 2.22). A similar transformation allows us to
encode do-while loops.

0 while (COND)
1 invariant: I_1
2 free invariant: I_2
3 {
4 BODY
5 }

Listing 2.21: Loop invariants in Scala

0 while_label:
1 assert(I_1);
2 assume(I_2);
3 if (COND) {
4 BODY
5 goto while_label;
6 } else {
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7 }
8 assert(I_1);
9 assume(I_2);

Listing 2.22: Loop invariants in BoogiePL

Method calls are translated to procedure calls in BoogiePL. They always return a result,
which is always stored in a temporary variable. In the future, this could be optimized in many
cases because methods are frequently called simply for their side-effects. For now, we preferred
to keep things simple and focus on more interesting problems.

Closures

The last major design decision we will discuss concerns the way we model closures. In the
introductory section 1.3.2 on closures and higher-order functions we have seen the Scala syntax
for declaring closures together with a simple example. In this section we demonstrate how
closures can be transformed in such a way that they can later be expressed in BoogiePL.

In the examples from section 1.3.2, we used a special notation to express the types of functions
(e.g. A => B or () => Int). This notation is just syntactic sugar and will be transformed to a
more conventional type that has generic parameters for the types of the functions arguments and
the return value (e.g Function1[A, B] or Function0[Int]. The Scala type hierarchy contains
different generic traits for functions of different arities (from Function0 up to Function22).
Note that we have already pointed out in Section 2.2.1 on arrays that, arrays mix in the trait
Function1[Int, A]. The most important part of this “family” of traits is the abstract apply
method. It takes the arguments of the function and comprises the body of the function; calling
it will evaluate the function. Every function can therefore be expressed as a class that mixes
in one of these “Function traits”. Listing 2.23 demonstrates this transformation on a simple
example.

0 // original function
1 def succ(x: Int): Int = x + 1
2
3 // transformation
4 class Succ extends Function1[Int , Int] {
5 def apply(x: Int): Int = x + 1
6 }

Listing 2.23: Transforming functions

Now how does this work for closures? What happens to the captured variables? An addi-
tional complication is that multiple closures might capture the same variable. To illustrate the
needed transformations, we modified example 1.3 slightly (see Listing 2.24).

0 def newCounter: (() => Int , () => Int) = {
1 var c = 0
2
3 def inc(): Int = {
4 c += 1; c
5 }
6 def dec(): Int = {
7 c -= 1; c
8 }
9 (inc , dec)

10 }
11
12 def test() {
13 val (c1Inc , c1Dec) = newCounter
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14 println(c1Inc()) // 1
15 println(c1Dec()) // 0
16 println(c1Inc()) // 1
17
18 val (c2Inc , c2Dec) = newCounter
19 println(c2Dec()) // -1
20 }

Listing 2.24: Counters

The function newCounter now returns a pair of closures that both refer to the same lexical
environment. Executing these closures will increment and decrement the same variable. To
model this kind of aliasing we have to create a wrapper object for the captured variable. Listing
2.25 illustrates the necessary transformation. Note that the IntRef class serves as a wrapper
class for integers. Similar classes also exist for other types.

The transformed program shows how the formerly nested functions inc and dec were lifted
up to the method level and they now take the captured variable as their argument. In practice,
the classes Inc and Dec are anonymous and they take all captured variables as arguments in their
constructor. This makes the aliasing very explicit. After these transformations, the program
can be translated to BoogiePL by applying procedures from previous sections.

0 def inc(c: IntRef): Int = {
1 c.elem += 1
2 c.elem
3 }
4
5 def dec(c: IntRef): Int = {
6 c.elem -= 1
7 c.elem
8 }
9

10 class Inc(c: IntRef) extends Function0[Int] {
11 def apply(): Int = inc(c)
12 }
13
14 class Dec(c: IntRef) extends Function0[Int] {
15 def apply(): Int = dec(c)
16 }
17
18 def newCounter: (Function0[Int], Function0[Int]) = {
19 var c = new IntRef(0)
20
21 (new Inc(c), new Dec(c))
22 }

Listing 2.25: Counters (Transformation)

We also though about other ways of modeling closures. In the end, we decided to use this
encoding because the Scala compiler does this already and we tried to reuse existing functionality
whenever possible.



Chapter 3

Implementation

This chapter describes the implementation of our Scala verification tool in more detail. Section
3.1 covers the general architecture of the Scala compiler and how it can be modified using
compiler plugins. The following Section 3.2 presents our BoogiePL Abstract Syntax Tree (AST)
library which was used to abstract over the low-level parts of the code generation. This library
was then used by our code generation plugin to transform the Scala AST to a BoogiePL AST.
This transformation is the main topic of Section 3.3. The last two sections mention a few
difficulties that we encountered and present a couple of programs that our code generator already
deals with.

3.1 Scala Compiler Architecture

This section describes the overall architecture of the Scala compiler. In particular, we will look
at the various compiler phases and how we can extend the compiler with plugins.

The Scala compiler is based on a pipeline of phases. Each phase takes an AST representation
of a program as its input, does something with it and finally passes a potentially modified AST
to the next phase in this linear chain. Only the last phase will emit actual code that can be run
for instance on the JVM. The first few phases are traditionally responsible for type checking the
input program and enforcing other properties. This way, the later phases can assume that the
input adheres to the basic conventions of the programming language.

Since producing executable code is the ultimate goal of a compiler, the remaining phases
transform the AST in various ways that usually try to simplify certain parts or boil them down
to use more primitive constructs. For example, a phase might transform while- or do-loops to
labels and goto statements. Some phases may also perform certain optimizations that make the
resulting code faster or smaller in size. Dead code removal is just one example for these kinds
of optimizations.

In Scala, it is possible to write new compiler phases and plug them into the existing compiler
pipeline. Of course, custom plugins should not transform the AST in ways that later phases
cannot deal with. Unfortunately these dependencies among the various existing phases are not
well documented. There are plans to make these kinds of dependencies more explicit in the
upcoming 2.8 release of the Scala compiler and even enforce them automatically. During this
project we still used the latest stable release of the compiler (2.7.5). Table 3.1 provides a good
overview of the existing phases and includes a short description (taken from the Scala compiler
sources). They are listed in the order that they are called in. Since not all of them are relevant
for us, we will not cover them in detail here.
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Table 3.1: Existing compiler phases

Phases Short Description
namer, parser, typer Parsing, type checking etc.
superAccessors Adds super accessors.
pickler Serializes symbol tables.
refchecks Performs reference and override checking; translates nested objects.
liftcode Generates reified trees.
uncurry Translates function values to anonymous classes.
tailCalls Replaces tail calls by jumps.
explicitOuter Replaces “C.this” by explicit outer pointers; eliminates pattern matching.
erasure Erases generic types to Java 1.4 types; adds interfaces for traits.
lazyVals Transforms local lazy vals into vars and initialized bits.
lambdaLift Moves nested functions to top level.
constructors Moves field definitions into constructors.
flatten Gets rid of inner classes.
mixer Does mixin composition and translates lazy fields.
cleanup Some platform-specific cleanups
genicode Generates portable intermediate code.
inliner Does inlining (optimization).
closureElimination Gets rid of uncalled closures (optimization).
deadCode Gets rid of dead code (optimization).
jvm Generates Java bytecode.

We tried to reuse most of the existing phases because we wanted to focus on the actual
code generation and some of the phases already deal with transformations that would needed
anyways. Some examples are the “uncurry”, “lambdaLift”, “constructors” or “mixer” phases.
For now, we are not using any of the existing optimization phases to keep things simple. Of
course it would be possible to add more optimizations in the future. But this was not our main
goal. Instead we added our code generation plugin right after the “mixer” phase. It turned out
later, that this causes some unforeseeable issues in the implementation. These will be discussed
in more detail in Section 3.4.

3.2 BoogiePL AST Library

In this section we introduce the BoogiePL Abstract Syntax Tree (AST) library that we designed
and implemented in Scala, before we started with the implementation of the code generation
plugin itself. The idea behind this library was to separate the component, that deals with
the low-level intricacies of generating valid and readable BoogiePL code, from the component,
that actually performs the high-level transformations on the Scala AST. When we later started
working on the code generation plugin, this library turned out to be a huge help, because it
allowed us to focus only on the transformations of the Scala AST. At the moment, this is the
main purpose of this library, but it could be easily used for other tasks, such as optimization.

We started out with the basic design of the AST. This was guided by the BoogiePL Backus-
Naur Form(BNF) from Rustan Leino’s “This is Boogie 2” [4] manual. Although we do not use
all the features in the BNF description, we added them to the AST design. After all, we could
not yet foresee which features we would use exactly.

This rudimentary AST was then extended with methods that produce the actual BoogiePL
code or deal with indentation. Getting the indentation right, was not completely trivial and
made it necessary to adapt the way we produced the generated code. Initially we had just used
a simple string as the output. This had to be changed to lines that could be indented more
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easily.
Now how would you test something like this? How do you discover bugs in a library when

it is not used yet? Writing unit tests for all these possible cases was clearly not an option.
And we did not want to use a buggy library in our plugin because we could never be sure what
caused an error — the library or the code we were trying to write. To escape this dilemma we
decided to use the ScalaCheck testing tool [19] which was originally inspired by QuickCheck for
Haskell [20]. It makes it easy to automatically generate hundreds of test cases. For instance,
we used it to generate random AST nodes. These AST nodes could then be used to check that
some methods satisfy certain properties. We also automatically tested whether the generated
BoogiePL code was syntactically correct by running Boogie on it.

This way of testing our library was very useful because it allowed us to eliminate a lot of
bugs right away. In fact, we did not discover a single bug in the library while we were developing
the compiler plugin. Instead we even found bugs in the Boogie verifier which demonstrates that
our tests were quite thorough (see Appendix A for more details on minor problems in Boogie
that we discovered). It was just not always easy to track down the parts of our program that
made Boogie crash or emit funny error messages.

Still, we continued to add more features to the library while we actually used it in our
plugin. The ones that were not directly linked to the AST were put into their own packages.
For example, there is a package Util.Axioms that contains a lot of axioms that are frequently
used in the code generator.

3.3 Code Generation Plugin

Now that we have discussed the BoogiePL AST library, we can demonstrate how it was used in
our code generation plugin to translate the Scala code to BoogiePL.

The Scala AST contains a lot of information that is not relevant for our plugin. It is often
quite complicated to extract the bits that we need from the AST. We therefore decided to
minimize the places in our code that actually work with the Scala AST directly. This will also
help in keeping the plugin up to date if the structure of the AST should change. For bigger
language constructs, such as classes, traits or methods, we defined our own classes that take the
Scala AST as an argument in their constructor.

Most relevant parts of the Scala AST are then extracted by initializing “val fields” with them
or defining methods that extract them. Parts of the implementation that need some information
from the Scala AST can then use the fields or methods that know how to extract the information.
For instance, there exists an abstract class ScalaTopLevelDefinition that already extracts a
lot of information from the Scala AST. Special top-level definitions, such as classes or traits,
are subclasses of class ScalaTopLevelDefinition and can therefore reuse a lot of the methods
and fields already defined there or override them if necessary. For classes, traits and objects we
have to extract a lot of different information from the AST. The most important information
are the modifiers (abstract, final, sealed), super types, methods, fields and constructors.

We created similar classes for methods, constructors and fields, which allowed us to reuse a
lot of functionality. This almost meant that we created something close to a simplified Scala
AST. But we only did this for bigger constructs. For statements or expressions in method
bodies, we used a traversal function that recursively traverses the Scala AST.

This traverse function is quite large, much like the commonly used visit method in an
AST visitor. It is not really complex but it has to deal with quite a lot of different cases, which
still looks quite clean thanks to Scala’s pattern matching. Even in the traverse function we
tried to minimize the accesses to the Scala AST. We usually had quite a few local variables that
stored the relevant parts of the AST, so we could easily refer to them later. This turned out to
be very useful because the code that actually extracted the important bits from the AST was
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only used once and could be changed very easily.
To test the plugin itself, we wrote mainly a test, that looks for Scala sources in a testing

directory and runs the Scala compiler with our plugin on it. The BoogiePL output is then
compared to a reference output. If they are not the same, a “diff” tool is called to visualize the
parts that are different. But since there is no definite reference output, we used this mostly as
a regression test and to visualize the changes we made to the plugin.

We also run Boogie on the output to check the BoogiePL code for errors. To make this more
convenient for the user, we wrote a simple Boogie output processor, that can recognize different
kinds of errors by parsing the Boogie error messages.

3.4 Difficulties

In this section we will mention a few difficulties that we encountered during the implementation
phase. All of them are related to the existing ‘erasure’ phase in the Scala compiler. In the
following paragraphs we explain the issues that we encountered and show what Scala features
are mainly affected by this. Moreover we propose several possible resolution strategies.

First, we would like to add a few general remarks on the way we approached the task of
developing the plugin and the inherent difficulties. Since the existing code generation plugins
for the JVM or .Net platform were way too specialized and complex, we were not able to reuse
parts of them. Sometimes, for lack of documentation, we looked at them in order to understand
how the Scala AST was structured. Other than that, we basically started from scratch.

During the design phase, we had already thought about the way we wanted to encode the
Scala code, we had written templates and we had used them to encode small programs. What
remained to do, was to express the templates and extract all the necessary parameters from
the Scala AST. We tested the results on small programs and essentially applied test driven
development techniques. We tried hard to minimize the number of features that these programs
needed, besides the ones that we were currently working on. But initially, a lot of programs
produced huge amounts of Boogie errors, because a lot of features were not yet implemented.
This number of errors could only be reduced over time and Boogie did not always display all
errors because it checks for errors in multiple phases. We could therefore never be quite sure,
that the feature we just implemented actually worked correctly. The result was that a lot of
issues did not show up until the plugin could handle most features. Except for a few more
intricate issues these could be fixed quite easily though.

All of these turned out to be caused by the ‘erasure’ phase. The first issue came up when
we worked on encoding traits. The Scala AST node for traits contains a field that holds the
supertypes of a trait. But we noticed that some supertypes were missing. At first we could not
find out what caused this loss of information. Due to the size of the existing code base, the very
sparse documentation and the not very fruitful responses from the Scala community, it took us
longer than expected to track down this issue. In the end, we were quite sure that the ‘erasure’
phase was responsible for this loss of information, although this was not confirmed by the Scala
developers. Our subsequent experiments in removing the ‘erasure’ phase or changing at least
parts of it, made us realize that other phases depend on the ‘erasure’ phase and it would not be
possible to simply remove it.

Initially, we thought that only a few of the phases that run after the ‘erasure’ phase, were
affected by this. But after more testing we were quite sure that all of them depended on the
‘erasure’ phase for some reason. Some did not work at all without the ‘erasure’ phase and some
just produced garbage output. The bottom line is that by keeping the ‘erasure’ phase as-is, our
axioms concerning the supertypes are weaker than they could be.

The ‘erasure’ phase is also responsible for two other issues. Because this phase erases certain
types (e.g. Any) it has to introduce a couple of extra operations in the AST to compensate for
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this. For value types it introduces explicit boxing and unboxing operations and additionally it
introduces casts.

Summing up, the main issue is that we cannot remove the ‘erasure’ phase because of the
phases that depend on it and we cannot keep it, because it removes certain information in the
AST and introduces unnecessary operations instead. The next section demonstrates these issues
by also showing example programs that do not quite work yet.

There are a few ways in which we could resolve these issues. Unfortunately none of them
seems easy enough to be implemented within the remaining time; especially because testing them
is rather intricate and time-consuming. The “optimal” solution would be to collaborate with
the Scala development team on removing some of the dependencies by modifying the affected
phases. But we would have to see whether they are interested in changing things that work for
them.

Another solution would be to implement these phases ourselves. This would be a huge effort
and would not be easy to maintain because we would have to keep up with the evolution of the
Scala language. A more pragmatic solution would be to store the missing information before it
is erased and then access it again in our plugin. This would require some bookkeeping but we
would not have to mess with the phases that depend on the ‘erasure’ phase.

3.5 Case Studies / Example Programs

This final section presents example programs that demonstrate that our code generator produces
meaningful code for the features that we intended to support. Since even short Scala programs
produce BoogiePL programs that are rather long, we can usually highlight only a few snippets,
that show the encoding of one or two interesting features. Generally we first show a complete
Scala example together with parts of its encoding in BoogiePL and a short discussion. These
discussions are meant to highlight a few points that were left out before, but are interesting
nonetheless.

3.5.1 Classes with Methods and Fields

0 class D
1
2 class C extends D {
3 val x = 1
4 var y = 2
5
6 def m(x: Int) {
7
8 }
9

10 def m(x: Any): Int = {
11 1
12 }
13 }

0 implementation C..ctor($this: ref) returns ($result: ref)
1 {
2 var $tmp$1$10: ref where $Is($tmp$1$10 , scala.Int);
3 var $tmp$3$10: ref where $Is($tmp$3$10 , scala.Unit);
4 var $tmp$2$10: ref where $Is($tmp$2$10 , scala.Int);
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5 var $tmp$4$10: ref where $Is($tmp$4$10 , scala.Unit);
6

7 // ----- Constant: 1 -----
8 havoc $tmp$1$10;
9 assume((!$Heap[$tmp$1$10 , $allocated] && ($tmp$1$10 != null

10 && ($typeof($tmp$1$10) == scala.Int
11 && $ValueFields[$tmp$1$10 , $int] == 1))));
12 $Heap[$tmp$1$10 , $allocated] := true;
13 assume(IsHeap($Heap));
14 // ----- store field -----
15 assert($this != null);
16 $Heap[$this , C.x] := $tmp$1$10;
17 assume(IsHeap($Heap));
18 // Initialize field C.y (left out).
19 // ----- call -----
20 call $tmp$3$10 := D..ctor($this);
21 // ----- Constant: () -----
22 $tmp$4$10 := unit;
23 // ----- set result -----
24 $result := $tmp$4$10;
25 return;
26 }

Listing 3.1: Primary constructor in BoogiePL

Listing 3.1 shows the almost complete encoding of C’s primary constructor. As shown in
Section 2.2.2 we first have to initialize the fields, before we call the super constructors. The
result of a constructor call is always unit. To initialize the fields, we have to create a new
integer object. First we assign an arbitrary value to a temporary variable using the havoc
statement. Then we use the assume statement to restrict this arbitrary value, making it an
unallocated non-null reference to the heap of type scala.Int. Additionally we set the integer’s
Boogie value to 1. Then we allocate the reference by setting the $allocated field on the Heap
to true and assume that the resulting heap is valid. This new integer object can then be used
to initialize the field C.x. The initialization only works like this, if the ‘erasure’ phase is run,
because the ‘constructors’ phases depends on it.

0 // setter for y
1 procedure C.y_$eq$$scala.Int(
2 $this: ref where ($IsNotNull($this , C) && $Heap[$this , $allocated]),
3 x$1: ref where $Is(x$1 , scala.Int))
4 returns ($result: ref where $Is($result , scala.Unit));
5

6 // method m(Any): Int
7 procedure C.m$$scala.Any(
8 $this: ref where ($IsNotNull($this , C) && $Heap[$this , $allocated]),
9 x: ref where $Is(x, scala.Any))

10 returns ($result: ref where $Is($result , scala.Int));
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11

12 // method m(Int): Unit
13 procedure C.m$$scala.Int(
14 $this: ref where ($IsNotNull($this , C) && $Heap[$this , $allocated]),
15 x: ref where $Is(x, scala.Int))
16 returns ($result: ref where $Is($result , scala.Unit));

Listing 3.2: Classes with methods and fields in BoogiePL

In Listing 3.2, we demonstrate how the method signatures for overloaded methods and setter-
methods are translated. The setter-method follows a special naming convention in Scala. In this
case the name of the setter-method is y_=, which has to be escaped to C.y_$eq in BoogiePL. For
overloaded methods we have to append the types of its arguments to make the method names
unique.

3.5.2 Objects with methods and fields

The encoding for singleton objects is very similar to the encoding for regular classes. If we rewrite
the previous example slightly we can observe only minor changes in the BoogiePL output (see
Listing 3.3). The most significant change is that instead of simply using the $this reference,
we can directly refer to the singleton object using C$$instance. Listing 3.4 demonstrates this
in a short snippet.

0 class D
1
2 object C extends D {
3 val x = 1
4 var y = 2
5
6 def m(x: Int) {
7
8 }
9

10 def m(x: Any): Int = {
11 1
12 }
13 }

Listing 3.3: Objects with methods and fields in Scala

0 assert(C$$instance != null);
1 $Heap[C$$instance , C.x] := $tmp$1$10;
2 assume(IsHeap($Heap));

Listing 3.4: Initializing singleton objects in BoogiePL

3.5.3 Method Bodies

Our next example demonstrates how method bodies are encoded (see Listing 3.5). It will cover all
the important expressions and statements, such as assignments, conditionals, loops and method
calls. Besides we will see how simple arithmetic expressions can be translated to BoogiePL.
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0 class C {
1 def factorial(n: Int): Int = {
2 var result = 1
3 var i = n
4
5 while (i > 1) {
6 result = i * result
7 i = i - 1
8 }
9

10 return result
11 }
12
13 def not(b: Boolean): Boolean = {
14 if (b) false else true
15 }
16 }

Listing 3.5: Method bodies in Scala

0 implementation C.factorial$$scala.Int($this: ref , n: ref)
1 returns ($result: ref)
2 {
3 var i$2: ref where $Is(i$2 , scala.Int);
4 var result$2: ref where $Is(result$2 , scala.Int);
5 // more local variable declarations
6
7 // result$2 := 1
8
9 i$2 := n;

10
11 while$1:
12 // $tmp$2$2 := 1
13
14 call $tmp$3$2 := scala.Int.$greater$$scala.Int(i$2 , $tmp$2$2);
15
16 if ($ValueFields[$tmp$3$2 , $bool]) {
17 call $tmp$1$5 := scala.Int.$times$$scala.Int(i$2 , result$2);
18 result$2 := $tmp$1$5;
19
20 // $tmp$2$5 := 1
21
22 call $tmp$3$5 := scala.Int.$minus$$scala.Int(i$2 , $tmp$2$5);
23 i$2 := $tmp$3$5;
24
25 $tmp$1$4 := unit;
26 goto while$1;
27 $tmp$4$2 := $tmp$1$4;
28 } else {
29 $tmp$1$6 := unit;
30 $tmp$4$2 := $tmp$1$6;
31 }
32
33 $result := result$2;
34 return;
35 }

Listing 3.6: factorial in BoogiePL

We had to leave out quite a lot of not so interesting parts from the resulting BoogiePL code
(see Listing 3.6). The parts, that were left out, are shown as pseudo code in the comments. We
can see how the local variables i and result are declared and that their names have to be made
unique. They are initialized before the loop. The loop itself is encoded exactly like in Section
2.2.2. We only left out the loop invariants. The arithmetic and logical expressions are encoded
as procedure calls. The corresponding procedures had to be added to the prelude. Adding all
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of these procedures would have been quite tedious. Thus, we focused on a few important ones.
But adding more of them is straightforward.

This example also illustrates that unit is always the result of a while loop. The last important
thing to notice here, is that we have to access the $ValueFields variable in the conditional
expression. This is necessary because the conditional expression has to be of the native Boogie
type bool.

0 implementation C.not$$scala.Boolean($this: ref , b: ref)
1 returns ($result: ref)
2 {
3 var $tmp$1$7: ref where $Is($tmp$1$7 , scala.Boolean);
4 var $tmp$1$8: ref where $Is($tmp$1$8 , scala.Boolean);
5 var $tmp$1$9: ref where $Is($tmp$1$9 , scala.Boolean);
6
7 if ($ValueFields[b, $bool]) {
8 // $tmp$1$8 := false
9 $tmp$1$7 := $tmp$1$8;

10 } else {
11 // $tmp$1$9 := true
12 $tmp$1$7 := $tmp$1$9;
13 }
14 $result := $tmp$1$7;
15 return;
16 }

Listing 3.7: not in BoogiePL

The encoding of the not method is interesting because it demonstrates the use of a conditional
as an expression. The last expression of each branch is assigned to a temporary variable, which
in turn is assigned to the $result variable of our method.

3.5.4 Arrays

In this example, we focus on arrays (see Listing 3.8). The example features the three most
important operations on arrays — creation, setting an element and getting an element. In
Section 2.2.1 on the design of arrays, we already mentioned that arrays are treated just like
ordinary objects in Scala. From the programmer’s perspective, there is nothing special about
them.

The generated BoogiePL code clearly demonstrates that we wanted to use the same prin-
ciples in our encoding (see Listing 3.9). To make this possible we had to add procedures (e.g.
scala.Array..ctor$$scala.Int) to the prelude that hide and encapsulate our Boogie-specific
encoding of arrays. This is quite convenient, since we do not have to treat arrays as a special
case in the code generator.

0 object Test {
1 def test {
2 val a: Array[Int] = new Array[Int](10)
3 a(1) = 1
4 a(0)
5 }
6 }

Listing 3.8: Arrays in Scala



52 3 Implementation

0 implementation Test.test($this: ref) returns ($result: ref)
1 {
2 var a$3: ref where $Is(a$3 , scala.Array);
3 // more local variable declarations
4
5 // $tmp$1$3 := 10
6
7 // ----- new scala.Array -----
8 havoc $tmp$2$3;
9 assume((!$Heap[$tmp$2$3 , $allocated]

10 && ($tmp$2$3 != null && $typeof($tmp$2$3) == scala.Array)));
11
12 call $tmp$3$3 := scala.Array..ctor$$scala.Int($tmp$2$3 , $tmp$1$3);
13
14 // ----- initializing a$3 -----
15 a$3 := $tmp$2$3;
16
17 // $tmp$4$3 := 1
18 // $tmp$5$3 := 1
19
20 call $tmp$6$3 := scala.Array.update$$scala.Int$$scala.Int(
21 a$3 , $tmp$4$3 , $tmp$5$3);
22
23 // $tmp$1$4 := 0
24 call $tmp$2$4 := scala.Array.apply$$scala.Int(a$3 , $tmp$1$4);
25
26 // ----- Constant: () -----
27 $tmp$3$4 := unit;
28 // ----- set result -----
29 $result := $tmp$3$4;
30 return;
31 }

Listing 3.9: Arrays in BoogiePL

3.5.5 Closures

The example in this section (see 3.10) is just a slight variation of the example in the general
discussion about closures from Section 1.3.2. We had to modify it because it used pairs and we
do not support them. Since this is one of the examples, that is most affected by the issues that
were discussed in Section 3.4, we demonstrate some issues directly in the generated BoogiePL
code.

0 object Test {
1 def newCounter: () => Int = {
2 var c = 0
3 def inc(): Int = {
4 c += 1; c
5 }
6 inc
7 }
8
9 def test() {

10 val c1 = newCounter
11 c1() // 1
12 c1() // 2
13
14 val c2 = newCounter
15 c2() // 1
16 c1() // 3
17 }
18 }

Listing 3.10: newCounter in Scala
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Before we look at the generated BoogiePL code, we should look at some of the transfor-
mations that are necessary to process this program. The first important transformation is to
turn the result value inc in newCounter into an instantiation of the anonymous class AnonFun.
This happens in the ‘uncurry’ compiler phase. The second important transformation lifts the
nested function inc up to the method level. This happens in the ‘lambdaLift’ compiler phase.
This phase also introduces the IntRef wrapper objects that are necessary to support aliasing.
Listing 3.11 illustrates both of these transformations.

0 object Test {
1
2 def inc(c: IntRef): Int = {
3 c.elem += 1
4 c.elem
5 }
6
7 class AnonFun(c: IntRef) extends Function0[Int] {
8 def apply(): Int = inc(c)
9 }

10
11 def newCounter: Function0[Int] = {
12 var c = new IntRef(0)
13
14 new AnonFun(c)
15 }
16
17 ...
18 }

Listing 3.11: newCounter in Scala (transformed)

When we now look at the generated BoogiePL code, we observe that all generics were
removed and instead there are new methods and boxing instructions, that compensate for the
loss of information. For instance, in Listing 3.12 we can see that there are now two apply
methods — one returning scala.AnyRef, the other returning scala.Int. The former acts as
a wrapper for the latter and boxes the integer result before it returns it as a scala.AnyRef
object. This boxing would not be necessary if the ‘erasure’ phase would replace all generic types
with scala.Any instead of scala.AnyRef. Besides, the ‘erasure’ phase also seems to remove
scala.Any completely, which is mainly a problem for code that deals with value types.

0 // method Test$$anonfun$newCounter$1.apply(): scala.AnyRef
1 procedure Test$$anonfun$newCounter$1.apply(
2 $this: ref where ($IsNotNull($this , Test$$anonfun$newCounter$1)
3 && $Heap[$this , $allocated]))
4 returns ($result: ref where $Is($result , scala.AnyRef));
5
6 // method Test$$anonfun$newCounter$1.apply(): scala.Int
7 procedure Test$$anonfun$newCounter$1.apply(
8 $this: ref where ($IsNotNull($this , Test$$anonfun$newCounter$1)
9 && $Heap[$this , $allocated]))

10 returns ($result: ref where $Is($result , scala.Int));

Listing 3.12: apply method in BoogiePL

3.5.6 Traits

In this last section, we have another look at traits and the Logged-Benchmarked example (see
1.7). We focus particularly on the way super calls are encoded and on the issues with the ‘erasure’
phase. Listing 3.13 defines a few classes that extend the Logged or Benchmarked traits.
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0 class CLoggedBenchmarked extends C with Logged with Benchmarked
1 class CBenchmarkedLogged extends C with Benchmarked with Logged
2 class CLogged extends C with Logged

Listing 3.13: Logged-Benchmarked Example (revised)

The generated code for the class constructors (see listing 3.14) looks exactly like we designed
it in Section 2.2.2. It demonstrates again, that the order of the traits is significant.

0 implementation CBenchmarkedLogged..ctor($this: ref)
1 returns ($result: ref)
2 {
3 ...
4
5 call $tmp$1$35 := C..ctor($this);
6
7 call $tmp$2$35 := Benchmarked..ctor($this);
8
9 call $tmp$3$35 := Logged..ctor($this);

10
11 ...
12 }
13
14 implementation CLoggedBenchmarked..ctor($this: ref)
15 returns ($result: ref)
16 {
17 ...
18
19 call $tmp$1$39 := C..ctor($this);
20
21 call $tmp$2$39 := Logged..ctor($this);
22
23 call $tmp$3$39 := Benchmarked..ctor($this);
24
25 ...
26 }

Listing 3.14: Super calls in constructors

In Listing 3.15 we can observe that the same holds for methods as well. Both implementations
of the Benchmarked$$super$m method call different super methods, because the order of the
traits is different.

0 // in CLoggedBenchmarked
1 implementation Benchmarked$$super$m($this: ref) returns ($result: ref)
2 {
3 var $tmp$1$3: ref where $Is($tmp$1$3 , scala.Unit);
4
5 call $tmp$1$3 := Logged.m($this);
6
7 $result := $tmp$1$3;
8 return;
9 }

10
11 // in CBenchmarkedLogged
12 implementation Benchmarked$$super$m($this: ref) returns ($result: ref)
13 {
14 var $tmp$1$8: ref where $Is($tmp$1$8 , scala.Unit);
15
16 call $tmp$1$8 := C.m($this);
17
18 $result := $tmp$1$8;
19 return;
20 }

Listing 3.15: Super calls in methods
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The only issue that we found in this example is due to the ‘erasure’ phase. The generated
code verifies just fine, although the second axiom is obviously too weak (see Listing 3.16).
The correct axiom would be “axiom (Logged <: C);” instead. Sometimes this fact might be
needed, and in these cases, the ‘erasure’ phase will insert casts. But now the verifier does not
know that the corresponding cast is in fact an up-cast and hence legitimate.

0 axiom (Logged <: scala.AnyRef);
1
2 axiom (Logged <: scala.ScalaObject);

Listing 3.16: Issue with the ‘erasure’ phase



56 3 Implementation



Chapter 4

Conclusions

4.1 Related Work

Software verification is a very broad and active field of research, that produced a lot of different
approaches and methodologies over the last decades. The existing tool that had the most
profound influence on this project is certainly the Spec# verification system, which was itself
strongly influenced by the “Extended Static Checker for Java” (ESC/Java) [21] and its Java
Modeling Language (JML) [22]. Our prelude was itself inspired by the Spec# prelude and we
also studied the way certain language features are encoded by the Spec# system.

Müller and Ruskiewicz worked on a verification methodology for C# delegates [16]. Later
Nordio, Calcagno, Meyer and Müller proposed another verification methodology for function
objects that focuses on Eiffel’s agents [23]. Both C# delegates and agents in Eiffel are already
quite similar to Scala’s closures. But closures are more general because they may capture local
variables in their lexical environment. There even exists a proposal to add closures in Java by
Bracha, Gafter, Gosling and von der Ahé [24]. Our encoding of closures is different from the
encoding of agents by Nordio, Calcagno, Meyer and Müller. The main reasons are that they
have specifications in Eiffel and closures in Scala are more general than agents in Eiffel, because
closures can capture local variables.

4.2 Future Work

Like we said in the introduction to this report, this project was only a first step in the direction
of creating a static program verifier for Scala. Hence there are still plenty more things to do
until this goal is reached. In this section we propose a few next steps and extensions for this
project.

The first step would be to sort out the remaining issues from Section 3.4. We already
sketched a few possible resolution scenarios and the most promising at this point seems to be
the one, that stores the AST before the ‘erasure’ phase, so that the original information is not
lost completely. Adding the necessary bookkeeping and testing the resulting implementation
are the major difficulties.

To test more and larger programs it will be necessary to extend the prelude significantly.
For example, we had to add a lot of operations on value types (e.g. addition for integer values).
So far, we added these things only incrementally.

At some point, a specification methodology has to be added of course. Without this, it will
not be possible to verify any interesting programs. The question of how to address the frame
problem for Scala methods and closures in particular will be of great importance in this context.
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Especially the implicit setter- and getter-methods in Scala will be difficult to verify without
precise framing specifications. Adding specifications to variables that are captured by one or
more closures will also require some work.

Another problem that we have not addressed yet, is the initialization of singleton objects. For
now, we simply encode the constructors of singleton objects. Everywhere the singleton object
is used, we should be able to assume that its constructor has already been executed before.

Since the Scala programming language allows the programmer to access Java classes, it might
also be interesting to look into whether this might make it necessary to adapt the prelude or
how this influences the verification of larger Scala programs that make use of Java classes and
interfaces.

Finally, the Scala programming language offers many interesting features that we have not
been able to address in this project. The following seem to be particularly noteworthy:

• Unchecked exceptions

• Concurrency (e.g. Actors model)

• Type system (e.g. generics, abstract types, variance annotations, existential types, path-
dependent types)

• Pattern matching

• Implicit conversions

• Curried functions

• Lazy values

4.3 Conclusions

The main goal of this project was the design and implementation of a tool that translates a
subset of the Scala programming language to the BoogiePL programming language.

To achieve this goal, we first designed a formal model of the Scala heap structure and its
type hierarchy. This model was encoded in BoogiePL and is part of our Scala prelude. Next,
we designed a encoding for a subset of the Scala programming language in BoogiePL. Initially,
this encoding was done “by hand” and only tested on small example programs to ensure its
practicality.

Once we had enough confidence in this encoding, we began to design and implement a tool
that can do this for us. The main component of this tool is a Scala compiler plugin, that
transforms the Scala AST to our own BoogiePL AST. It makes heavy use of the BoogiePL
AST library, which produces the actual BoogiePL code and makes sure that the code is easily
readable, as well as syntactically correct. The syntactic correctness of the produced code was
extensively tested using the ScalaCheck testing tool.

The Scala compiler plugin supports a usable subset of the Scala programming language. This
includes support for traditional object-oriented programming constructs (classes, methods and
fields) and more Scala specific constructs, such as traits, closures or singleton objects. During
the implementation, we discovered certain problems with the existing Scala compiler phases that
we were not able to work around due to the limited amount of time that we had. But these are
merely technical issues that can be resolved and do not put into question the practicality of our
encoding. We even sketched several possible solutions in Section 3.4.
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Appendix A

Minor Problems with Boogie

While developing and testing the BoogiePL AST library we discovered a few minor problems
with Boogie. We list them in the following sections together with a short description and a
program that demonstrates them. They were also reported to the Boogie developers.

A.1 Boogie crashes for nullary functions

0 function f() returns (r: t)
1 {
2 x
3 }

Listing A.1: Nullary functions

This turned out to be a bug. It was fixed very quickly.

A.2 free modifies clause results in a syntax error

0 var x: int;
1

2 procedure p();
3 free modifies x; // Doesn ’t work.
4 modifies x; // Works.

Listing A.2: free modifies clauses

Error message: syntax error: invalid SpecPrePost

This had not yet been implemented. It has been added to the Boogie Issue Tracker.
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A.3 Final types are no longer supported

0 type finite t1; // Doesn ’t work.
1 type t1; // Works.
2 type finite t2;

Listing A.3: Final types

Error message: Error: more than one declaration of type name: finite

It turned out that final types are no longer supported.
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