
Input-Output Verification in Viper
Master Thesis Project Description

Vytautas Astrauskas
Supervised by Prof. Dr. Peter Müller, Marco Eilers

Department of Computer Science
ETH Zürich

Zürich, Switzerland

SCION is a network architecture that aims to resolve
main security issues of the current Internet implementa-
tion [1]. To have reliable security guarantees, not only
the protocols must be verified, but also their implemen-
tation. An important aspect of the entities participating
in the protocol is their input-output (IO) behavior. The
primary goal of this project is to find a methodology and
implement support in the Viper [2] frontend py2viper for
verifying IO properties of non-terminating programs. IO
verification of programs that are assumed to terminate was
already explored in [3] while the methodology for verifying
properties of non-terminating programs was shown in [4]
and implemented in the Viper frontend Chalice2Silver [5].
However, the way to combine these two approaches still
needs to be discovered.

The first section explains the used property and as-
sumption types. The second section gives three example
programs and a list of properties we want to verify.
The following section presents subgoals and the predicted
workload. The final section lists the project deliverables.

I. Property and Assumption Types
This section presents property and assumption types

that were introduced to simplify goal descriptions. Veri-
fying property types under some assumption types means
verifying all properties that belong to given property types
under all assumptions that belong to given assumption
types.

All property types we want to verify in this project and
their explanations:

progress
An operation will be performed in a finite number
of steps.

IO credit
A program is allowed to perform an IO operation
with arguments that satisfy given requirements
expressed in terms of a program state and result
values of other IO operations. The IO operation
may return a value.

IO obligation
A program has to and is allowed to perform an
IO operation with arguments that satisfy given
requirements expressed in terms of a program

state and result values of other IO operations.
The IO operation may return a value.

arbitrary order
IO operations are performed in arbitrary order.

strict order
IO operations are performed in the specified or-
der.

periodic IO obligation
A thread periodically gets an IO obligation or an
IO credit.

IO obligation transfer
If one thread fulfills an IO obligation by transfer-
ring it to some other thread, it is still guaranteed
that the transferred obligation will be eventually
fulfilled.

All assumptions used in this project and their explana-
tions:

call termination
A call is guaranteed to terminate.

loop iteration termination
A loop iteration is guaranteed to terminate.

lock fairness
Locks are fair.

scheduler fairness
A scheduler is fair.

infinite memory
Memory size is unbounded.

II. Motivating Examples

This section presents three examples we want to verify.

Example 1. If a server thread receives a specific input,
then it performs a specific output in a finite number of
steps.

A code example is given in Listing 1. For this example,
we would like to verify some subset of the following
properties:

1) P {progress}: A thread creates a server socket in
a finite number of steps.

2) P {progress, IO obligation}: The thread calls
accept on the server socket in a finite number of
steps.



3) P {progress}: If the accept call returns, then the
thread in a finite number of steps:

a) P {IO obligation}: Tries to read all data
from the socket.

b) If succeeds in reading all data:
• P {IO obligation}: Sends it back via the

same socket. The sent data is the same data
that was received.

• P {IO obligation}: Prints the client ad-
dress to the standard output.

c) If fails to read all data:
• P {IO credit}: Does not send any informa-

tion.
• P {IO credit}: Does not print any informa-

tion.
d) P {IO obligation}: Closes the socket.
e) P {IO obligation}: Calls

server_socket.accept.
Also:

a) P {strict order}: The data is sent after it is
read.

b) P {strict order}: The address is printed after
the data is read.

c) P {strict order}: The socket is not closed
before the data is sent.

d) P {arbitrary order}: Address printing and
sending data can be performed in an arbitrary
order.

under some subset of these assumptions:
• A {call termination}: read_all, send and close

are guaranteed to terminate.
• A {loop iteration termination}: A loop iteration

is guaranteed to terminate.

class Server(Thread):
def run():

server_socket = create_server_socket()
while True:

client_socket = server_socket.accept()
data = client_socket.read_all(timeout=1)
if data:

print(client_socket.address)
client_socket.send(data)

client_socket.close()
Listing 1: Echo server.

Example 2. A thread periodically outputs a value that
depends on a configuration parameter that can be modi-
fied by some other thread.

A code example is given in Listing 2. For this example,
we would like to verify the following properties:

1) P {periodic IO obligation}: Each second a
thread gets an obligation to print a message.

2) P {progress}: The thread fulfills each obligation in
a finite number of steps by printing a message.

3) P {IO obligation}: The printed message is the
same as stored in a shared data structure.

under assumptions:
• A {call termination}: print and sleep are guar-

anteed to terminate.
• A {lock fairness}: Locks are fair.
• A {scheduler fairness}: The scheduler is fair.

class Server(Thread):
def run():

while True:
mutex.lock()
msg = mutex.data
print(msg)
mutex.unlock()
sleep(1)

Listing 2: Periodical output.

Example 3. A server thread puts received input into a
concurrent queue. A worker thread picks input from the
queue and performs specific output in a finite number of
steps.

A code example is given in Listing 3. For this example,
we would like to verify the following properties of the
Worker.run method:

1) P {progress}: A thread calls self.queue.pop in a
finite number of steps.

2) P {progress}: If the self.queue.pop call returns,
then the thread in a finite number of steps:

a) P {IO obligation}: Tries to read all data
from the socket.

b) P {IO obligation}: If succeeds in reading all
data, sends it back via the same socket. The
sent data is the same data that was received.
Otherwise, does nothing.

c) P {IO obligation}: Closes the socket.
d) P {progress}: Calls self.queue.pop in a fi-

nite number of steps.
Also:

a) P {strict order}: The data is sent after it is
read.

b) P {strict order}: The socket is not closed
before the data is sent.

under assumptions:
• A {call termination}: read_all, send and close

are guaranteed to terminate.
Also, the following properties of the Listener.run

method:
1) P {progress}: A thread creates a server socket in

a finite number of steps.
2) P {progress, IO obligation}: The thread calls

accept on the server socket in a finite number of
steps.



3) P {progress}: If the accept call returns, then the
listener thread in a finite number of steps:

a) P {IO obligation transfer}: Puts the client
socket in the concurrent queue and in this
way transfers all IO obligations and IO credits
related to that socket to the thread that will
take the socket from the queue.

b) P {IO obligation}: Calls
server_socket.accept.

under assumptions:
• A {infinite memory}: The ConcurrentQueue size

is unbounded.
and prove obligations for the context that creates the
listener thread:

• P {IO obligation transfer}: The worker thread is
running.

• P {IO obligation transfer}: For each socket put
into self.queue, the worker thread in a finite number
of steps:

1) P {IO obligation transfer}: Will take the in-
serted client socket from the self.queue.

2) P {IO obligation}: Will try to read all data
from the socket.

3) P {IO obligation}: If succeeds in reading all
data, then will send it back via the same socket.
The sent data is the same data that was received.
Otherwise, it will do nothing.

4) P {IO obligation}: Will close the socket.
Also:

1) P {strict order}: The data is sent after it is
read.

2) P {strict order}: The socket is not closed be-
fore the data is sent.

III. Goals
This section presents the subgoals that support the

primary goal of this project.

A. Core Goals
The core goals of this project that should be achieved

in the first 4 months of the project:

Goal 1. Create a methodology that allows verifying the
following property types of the motivating Example 1:

1) progress
2) IO credit
3) IO obligation
4) arbitrary order
5) strict order

under assumptions:
1) call termination
2) loop iteration termination
This includes:

def main():
queue = ConcurrentQueue()
worker = Worker(queue)
worker.wait_until_started()
listener = Listener(queue)

class Listener(Thread):
def __init__(self, queue):

self.queue = queue
def run(self):

server_socket = create_server_socket()
while True:

client_socket = server_socket.accept()
self.queue.put(client_socket)

class Worker(Thread):
def __init__(self, queue):

self.queue = queue
def run(self):

while True:
client_socket = self.queue.pop()
data = client_socket.read_all(timeout=1)
if data:

client_socket.send(data)
client_socket.close()
Listing 3: Echo server with worker thread.

1) Creating rules that allow verifying the Example 1 by
using a pen and paper.

2) Demonstrating how Example 1 can be verified by
using the created rules.

3) Demonstrating how variations of the Example 1 that
require showing properties that belong to types listed
in this goal under assumptions that belong to types
listed in this goal can be verified by using created
rules.

4) Providing an argument why properties verified with
the methodology hold.

Planned workload: 1 month.

Goal 2. Define how rules from Goal 1 can be encoded in
the Viper language.

This includes extending the Viper language with new
constructs if rules cannot be reasonably expressed with
existing ones, or if new constructs are needed to achieve a
reasonable verification time.

Planned workload: 1 month.

Goal 3. Define extensions for the py2viper contract spec-
ification language that allow to automatically apply rules
from Goal 1.

Planned workload: 0.25 month.

Goal 4. Implement support for the methodology (Goal 1)
in Viper tools.

This includes:



1) Implementing support for py2viper contract specifi-
cation language extensions (Goal 3).

2) Implementing encoding of py2viper contract spec-
ification language extensions to Viper language
(Goals 3 and 2).

3) If needed, implementing new constructs in the Viper
language (Goal 2).

4) If needed, implementing support for new Viper lan-
guage constructs in at least one of the backends
(Goal 2).

Planned workload: 1.5 months.

B. Extension Goals
Below are the extension goals of this project. Some of

them should be completed in the last 2 months of the
project.

Goal 5. Create a methodology that allows verifying the
following property types of Example 1:

1) progress
under assumptions:

1) call termination
and is compatible with the methodology from Goal 1. Also,
extend deliverables from Goals 2, 3 and 4 to support it.

Goal 6. Extend the methodology (Goal 1) and Viper
tools (Goals 2, 3 and 4) to support the verification of these
property types of motivating Example 2:

1) periodic IO obligation
2) progress
3) IO obligation

under assumptions:
1) call termination
2) lock fairness
3) scheduler fairness

Goal 7. Extend the methodology (Goal 1) and Viper
tools (Goals 2, 3 and 4) to support the verification of these
property types of motivating Example 3:

1) IO credit
2) IO obligation
3) arbitrary order
4) strict order
5) IO obligation transfer

under assumptions:
1) call termination
2) infinite memory

C. Additional Workload
An additional workload that does not belong to any

particular goal:
1) Report finalization: 0.25 month.

IV. Deliverables
The deliverables of this project are:
1) A project report that includes:

a) The methodology description from Goal 1 with
rules, examples and the soundness argument.

b) A description of how rules from Goal 1 are
encoded in Viper language (Goal 2).

c) A description of py2viper contract specification
language extensions (Goal 3).

d) If done, the methodology description from
Goal 5 with rules, examples and the soundness
argument.

e) If done, the methodology extension descrip-
tion from Goal 6 with rules, examples and the
soundness argument.

f) If done, the methodology extension descrip-
tion from Goal 7 with rules, examples and the
soundness argument.

2) The implementation of py2viper extensions from
Goal 4 and (if done) Goals 5, 6 and 7.

3) If needed, the implementation of new Viper language
constructs and support for them in at least one of the
backends for Goal 4 and (if done) Goals 5, 6 and 7.

References
[1] D. Barrera, R. M. Reischuk, P. Szalachowski, and A. Perrig, “The

scion internet architecture.”
[2] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verifi-

cation infrastructure for permission-based reasoning,” in Verifi-
cation, Model Checking, and Abstract Interpretation (VMCAI),
ser. LNCS, B. Jobstmann and K. R. M. Leino, Eds., vol. 9583.
Springer-Verlag, 2016, pp. 41–62.

[3] W. Penninckx, B. Jacobs, and F. Piessens, “Sound, modular
and compositional verification of the input/output behavior of
programs,” in Programming Languages and Systems. Springer,
2015, pp. 158–182.

[4] P. Boström and P. Müller, “Modular Verification of Finite Block-
ing in Non-terminating Programs,” in European Conference on
Object-Oriented Programming (ECOOP), ser. LIPIcs, J. T. Boy-
land, Ed., vol. 37. Schloss Dagstuhl, 2015, pp. 639–663.

[5] R. Meier, “Verification of finite blocking in chalice,” Master’s
thesis, ETH Zürich, 2015.


	Property and Assumption Types
	Motivating Examples
	Goals
	Core Goals
	Extension Goals
	Additional Workload

	Deliverables
	References

